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GRAPH LAPLACIANS AND FOURIER TRANSFORMS
ON BOOLEAN DOMAINS

We identify the eigenvalue problem for the graph Laplacian on a Hamming graph as an analog to the
problem of modes of vibration on a continuum, and show that the eigenvectors of the graph Laplacian matrix
are the basis functions for the Fourier transform on the Boolean domain.
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Introduction

A recent tutorial paper [1] described how the
Fourier transform on a Boolean domain was re-
invented by Kahn et al. [2] to show the relation
between the influence factors of variables on a
Boolean function and the coefficients of its Fourier
transform. Since that paper Fourier transforms
on Boolean domains have been applied in such
areas as the sampling theorem, approximation of
Boolean functions, noise reduction in Boolean
functions, complexity problems, etc. Another
important application of general Fourier transforms
(not necessarily of Boolean type) is their wide use in
image processing [(3].

In this paper we exhibit the Fourier transform
kemel as a solution of the eigenvalue problem for
the graph Laplacian on an n-dimensional Hamming
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graph. We amrived at this result by pursuing the analogy
between the geometric and graph-theoretic pictures.
As pointed out by Brooks [4], one of the reasons
for passing back and forth between the geometric
and graph-theoretic pictures is that a problem which
appears difficult from one point of view may be
relatively easy, or even already solved, from the other
point of view. Another reason is that attitudes towards
various results may differ markedly in the two areas,
and comparing them may be an important source of
insight.

Fourier transforms and cigenvalue problems are
both applied in nature: we have mentioned some
applications of Fourier transforms on Boolean
demains, and there are numerous applications of them
on real domains; on the other hand, eigenvalues and
eigenvectors of Hamming graphs have applications to
coding theory [5, 6], and, of course, eigenfunctions



derived from Laplacians en real domains are used in
many practical problems.

This paper is organized as follows: In Section 2
Hamming graphs and hypercubes are identified as
graph-theoretic and geometric aspects of the same
object; in Section 3 the eigenvalue problem for the
Laplacian is described for each aspect; and in Section
4 it is shown that the eigenvectors for the graph
Laplacian form the kemel of the Fourier transform
on the Boolean domain.

Hamming Graphs and Hypercubes

A binary Hamming graph is a graph corresponding
to the vertices and edges of a unit hypercube. If {;}
denotes the standard orthonormal basis of R® the n-
dimensional unit cube is v, = {7 ' &0 <& < 1)
A vertex of a Hamming graph is indexed by an
integer i comresponding to its coordinate i regarded
as a binary number. So a Hamming graph consists
of a vertex set V = {0,1,---,2% — 1} with
the edge set E={{i,j}i,jeV,G® 7 = 1},
‘where (i &)= Z:;é tx @© Jx (bitwise exclusive-or
followed by a sideway add). Note that the Boolean
domain {0,1}" can also be indexed by a bit-string
corresponding to an integer in binary, and there is
a one to one correspondence between the Hamming
graph vertices and the Boolean domain. A Hamming
graph can be used to visnalize a Boolean function
f:{0,1}" = {-1,1} by assigning a value to each
vertex or putting circles on vertices with value 1
as shown in the upper right three figures of Fig. 1.
According to the "dictionary" between graphs and
manifolds [4] the Hamming graph and the hypercube
are corresponding entities in the two spaces, and
we expect that whatever happens in one space also
happens (in full or in part) in the other. In the next
section we consider the eigenvalue problem in both
spaces.

The Laplacian Eigenvalue Problem

Consider the vibration problem for a hypercubic
medium, for simplicity the 2D case of the vibration
of a square membrane. Under apprepriate conditions
the transverse displacement U(z,y,t) from the
equilibrium position of the membrane satisfies the
wave equation
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where ¢ is the wave velocity. The solution is a triple
Fourier series [7,8] of which the spatial factors of each
term are solutions of the eigenvalue problem

Au = du, )

and the shape of the membrane at ¢ = 0 is given by
the Fourier series

u(z,y) = i i Amy sin(mrz)sin(nry).  (3)

m=1 n=1

The functions sin{mzz) and sin(nmy) are
eigenfunctions, with eigenvalues m and », of Eq. (2).
The eigenvalues are chosen to satisty the boundary
condition. The graph-theoretic counterparts of Egs.
{(2) and (3) are the eigenvalue problem for the graph
Laplacian on the Hamming graph and the Fourier
expansion of Boolean functions. In the next section
we consider how these are related.

Graph Laplacians and Fourier Transforms on
Boolean Domains

The Laplacian of a graph G, denoted by L{G} is
defined to be I — A, where A = (ay;) is the adjacency
matrix of G (i. e, a;; = 1 if {£, 7} is an edge of G
and O otherwise) and D is the diagonal matrix with
(dii) = d;, the degree of the i-th nede [9]. For the n-
dimensional Hamming graph H, a;; is 1if (1®J) = 1
and 0 otherwise, and d; = n for 0 < 1 < 2" -1, that1s,
the Hamming graph is an equi-degree or regular graph.
We denote the Laplacian matrix by L{H) = (h;;). The
eigenvalue problem for the Hamming graph Laplacian
is

L(H)u = M, @)

where A is the eigenvalue and u is the eigenvector,

On the other hand the Fourier transform of a
Boolean function is defined as follows [1]. The i-th
Fourier coefficient of a Boolean function f is
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and /' can be uniquely represented as
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=0

where x:(7) = (~1)¢9 is the basis function for the
Fourier transform with {3-7) = Z:;é ik 35 (Itis atso
the kemel of the 1D Hadamard transformation [3].)
Some examples of Fourier expansions of Boolean
functions are shown in Fig. 1 as pairs £ and f for
the two-variable functions AND, OR and XOR. As an
example, Table 1 shows the kernel xg(j) forn =3,
and the upper left 4 x 4 matrix is the kernel forn = 2,
needed to find the Fourier transforms f in Fig. 1.
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Fig. 1. The first column shows the 2D Hamming graph with vertices indexed by i and the corresponding Boolean
domain indexed by the binary number i; the other three columns show the Fourier transform pairs, f and f for
the Boolean functions AND, OR and XOR of two variables.

0 1 2 3 4 5 6 7
Of-+1|+1|+1 | +1 +1 | +1 +1 | #1
1]+ | =141 | =1|+1|=1]+1|-=1
2+ 41 | =1 ] =1+ | +1 | -1{-1
3|+ =1 =1|+1 ]+ |~-1]-1]{+I
4 |+l |+l |+ |+ | =1]-1|-1] =1
S|+l | =1+ |-=1|-=1]+41|-1] +I
6|+ | +1 | —-1|—-1|-1]-=-1]|+1 | +I
7+l =-1]-=1]+1 | =1+ |+ | -1

Table 1. The Fourier transform kernel
x;(7) = (=1)) (shown in row i and column j)

for n=23. It is also the kernel of the 1D Hadamard
transformation for eight points.

It is apparent that Eqgs. (4) and (5) correspond
to Egs. (2) and (3), respectively, and by analogy
with the continuum we expect the basis functions for
the Fourier transform to be the eigenvectors of the
graph Laplacian. This is the content of the following
theorem.

Theorem. The eigenvectors of the graph Laplacian
Jor a binary Hamming graph are precisely the
basis  functions of the Fourier transform on
the corresponding Boolean domain (and hence
also the basis functions of the I-dimensional
Hadamard transform). Explicitly, U = (u;;), where
u,-j.—.(—l)(i'j} is a matrix whose columns are
eigenvectors of L(H), thatis L(H)-U = U - C where

C' is a diagonal matrix of eigenvalues.
Proof. The (i, j)-element (HU);; of L(H) - U is

2" -1

(HU)ij = Y hix-ugj =
k=0

= (dik —aix) - (-, (1)
k

For d;, only the term with k = i contributes to
the sum, and has value n, while for a;;, there are
n different k's which contribute to the sum and Eq. [7]

becomes
Z( 1)(’: )
kEK

(HU)zj =n- (=1)09) - (8)

where K = {k](f;&);) = 1} with cardinality | K| = n.
If we put (=1)*9) = g, . (=1)(*J) Eq. [8] can be
written

n—1
(HU)yy = (n = Za“) .(_1)[3-3}_ (9)
k=0

Let the bit in which 7 and k differ be the p-th bit.
Then ap = —1 if the p-th bit of 7 is 1 and ax = 1
otherwise. The sum ", ay is n, when all a;’s are 1,
and a change of a, from | to —1 subtracts 2 from this
sum. Since the number of 1’s in j is (j), the sum is



therefore 3, ay = n — 2 - (7). Thus Eq. [9] becomes

(HU); = {n— (-2 (@)} - (-1 =

=2-(7)- (-0 =2-(3) uy, (10)
which proves the theorem.

Eq. [10] shows that the diagonal matrix of eigenvalues
is

(ej5) = 2-(9)-

This agrees with the known -eigenvalues and
multiplicities of Hamming graph adjacency matrices.
The eigenvalues 6; and their multiplicities f; of a
general Hamming graph matrix (for ¢ symbols instead
of 2) are given in [5] as

0= q(d—j)—d
fi =g -1y,

(12

where d is the dimension of the Hamming code, ¢ is
the number of symbols, and j runs from 0 to 4. Putting
g = 2 and d = n and subtracting 8; from », the
eigenvalues £} and their multiplicities f; of Hamming
graph Laplacian matrix are therefore seen io be

9; =25
fi= )

(13}

The distinct eigenvaluesare {2(3} |0 < j < 2"—1} =

= {27]0<j<n} and their multiplicities are
|{$|(i) =J, i€ {07 L., 2" = l}l = (;1)

Equation [11] is striking, and there must be some
unknown reasen underlying it. As an example, here is
Eq. (10) for n = 3. (The matrix ¥/ on the right of the
product is as in Table 1.)

3 -1 -1 ¢ -1 0 0 0]
-1 3 0 -1 0 -1 0 O
-1 0 3 -1 o0 0 -1 ¢

0 -1 -1 3 0 0 0 -1|
-1 0o 0 0 3 -1 -1 0
0 -1 0 0 -1 3 0 -1

0 0 -1 0 -1 0 3 -1

o 0 0 -1 0 -1 -1 3|
1 1 1 1 1 1 1 1]
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1

R -1 1 1 -1 -1 1]_

1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

(11)

2 2 4 2 4 4 67
-2 2 4 2 -4 4 -6
2 -2 -4 2 4 -4 -6
2 -4 —4 6
2 2 4 -2 -4 -4 -8

2 -2 -4 -2 -4 4 6
-2 -2 4 -2 4 4 -6

DO OoOODoOoOD
f
v
I
v
e

(14)

Concluding Remarks

‘We have shown, by pursning the analogy between
the continuous and discrete pictures and as a natural
consequence, that the kernel of the Fourier transform
on a Boolean domain is a mairix whose columns
are eigenvectors of the graph Laplacian for the
corresponding Hamming graph. This result forms the
basis of the spectral analysis of Boolean functions,
and through the analogy from the continuous system
new developments in this field are expected [10]. It is
interesting to extend the result to ¢ symboel Hamming
graph. The diagram below illustrates the concepts
discussed in this paper and how they are related. Not
all are new. The object of this paper has been to draw
attention to the missing arrow (shown thick) which has
so far been unnoticed,

Graph Laplacian

eigenvalue problem

Real Laplacian
eigenvalue problem

l Sguare
boundary
Fourier ¢xpansion
of Boolean function

Fourier expansion
of rea] function

We note that, for the continuum, different shapes
of boundary lead to different sets of eigenfunctions,
while for the graph-theoretic analog there is a unique
set of eigenvectors, presumably because there is no
freedom to shape the beundary. One graph-theoretic
significance of cur new arrow can be found in coding
theery: the Hamming graph is distance regular and
distance transitive (see [5] and [6] and the entire
structure of this graph and its related codes can be
determine d from the related Bose-Mesner algebra,
which is an algebra with two fixed bases, one of which
is the basis formed by the eigenvectors of the graph
Laplacian. This basis can be used to study special
subalgegras of the Bose-Mesner algebra related to the
so-called fusion schemes [11].
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JIATITACIAHU TPA®IB TA ®YP'€-IMNEPETBOPEHHS BYJIEAHOBOI OBJIACTI

Ilpobaema éracuux 3nauens Jlannaciana epaga na epaghi Xeminea omomoscHIOEMbC 3 NPOOAEMOIO MOO
giopauyii na xoumunyymi. Iloxazano, wo enacui eexmopu mampuyi Jlanaaciana epaga ymeoprowoms 6a3uc
@dyuKkyiti ons nepemeopernus Pyp'e 6yreanosoi obracmi.



