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Solving modern machine learning tasks requires development of new meth-
ods of solving corresponding inverse problems. Majority of real-world inverse
problems are ill-posed and therefore require regularization. For some digital
signal processing tasks, such as image de-noising, image restoration, super-
resolution, image improvement, the choice of regularization technique is non-
trivial, whereas signi�cantly in�uences the corresponding solution.

In our work we study di�usion model for inversion of image transforms.
For inverse problem

Ax = y (1)

we consider Bayesian approach, or maximum a posteriori probability (MAP)
estimate, which �nds such an x, that maximises the conditional probability
p(x|y). According to Bayes rule

p(x|y) = p(x, y)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x)dx

∝ p(y|x)p(x),

therefore maximisation of p(x|y) corresponds to the following problem:

argmin
x

(− log p(y|x)− log p(x)).

Obviously, real probability distribution functions are unknown. Therefore
instead of it we solve the following heuristics

x̂ = argmin
x
{l(x, y) + αρ(x)}, (2)

where l(x, y) is a loss function and ρ(x) is a regularization term.
Let's slightly modify (2):

x̂ = argmin
x,v

{l(x, y) + αρ(v)}, x = v.

It allows us to apply Alternating Direction Method of Multipliers (ADMM)
from the paper [2], using Lagrangian:

Lλ(x, v, u) = l(x, y) + αρ(v) +
λ

2
‖x− v + u‖2 − λ

2
‖u‖2.
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It leads to iterative solving following minimization tasks till convergence:

x̂←− argmin
x

L(x, v̂, u)

v̂ ←− argmin
x

L(x̂, v, u)

u←−u+ (x̂− v̂)

or in terms of (2)

x̂ =min
x
l(x, y) + β‖x− v‖2,

v̂ =min
v
αρ(v) + β‖x− v‖2.

In such a way, instead of one inverse problem with regularization scheme
we've got two interconnected minimization problems, iterative solving of which
allows us to �nd solution for the initial problem. Having some initial x0 and
v0 we iterate

xi+1 =min
x
l(x, y) + β‖x− vi‖2,

vi+1 =min
v
αρ(v) + β‖xi − v‖2.

Let's consider some operator D : X 7→ X, that preserves x as a solution,
i.e.

AD(x, σ) = y,

for example, for super-resolution task instead of D a denoising operator may
be used.

For di�usion model regularization term ρ(x) is αρ(x) = αxT [x−D(x, σ)].
Under mild conditions (di�erentiability, local homogeneity, and symmetric
Jacobian for D) we may apply gradient descent:

xk+1 = xk − µ[AT (Axk − y)− α[xk −D(xk, σ)]].

In our work we study convergence rates of the proposed di�usion model
and approximation error, illustrating it with numerical experiments.
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