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Solving modern machine learning tasks requires development of new meth-
ods of solving corresponding inverse problems. Majority of real-world inverse
problems are ill-posed and therefore require regularization. For some digital
signal processing tasks, such as image de-noising, image restoration, super-
resolution, image improvement, the choice of regularization technique is non-
trivial, whereas significantly influences the corresponding solution.

In our work we study diffusion model for inversion of image transforms.

For inverse problem
Arx =y (1)

we consider Bayesian approach, or maximum a posteriori probability (MAP)
estimate, which finds such an z, that maximises the conditional probability
p(z|y). According to Bayes rule
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therefore maximisation of p(z|y) corresponds to the following problem:
arg min(—log p(y|z) — log p(z)).
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Obviously, real probability distribution functions are unknown. Therefore
instead of it we solve the following heuristics

= arg;nin{l(xv y) + O‘p(m)}ﬂ (2)

where [(z,y) is a loss function and p(z) is a regularization term.
Let’s slightly modify (2):

Z = argmin{l(z,y) + ap(v)},z = v.

It allows us to apply Alternating Direction Method of Multipliers (ADMM)
from the paper [2], using Lagrangian:
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La(z,v,u) = I(z,y) + ap(v) + S |o = v+ ul* = Zull*,
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It leads to iterative solving following minimization tasks till convergence:
& +—argmin L(z, 0, u)
x
0 «— argmin L(&, v, u)
x

u—u+ (T —0)

or in terms of (2)
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In such a way, instead of one inverse problem with regularization scheme
we’ve got two interconnected minimization problems, iterative solving of which
allows us to find solution for the initial problem. Having some initial z¢ and
Vg we iterate

Tit1 :mzinl(m,y) + ﬂHx - vi||27
visr =minap(v) + Bllz; —v|*.

Let’s consider some operator D : X — X, that preserves x as a solution,
i.e.
AD(z,0) =y,

for example, for super-resolution task instead of D a denoising operator may
be used.

For diffusion model regularization term p(z) is ap(z) = ax® [z — D(z, o)].
Under mild conditions (differentiability, local homogeneity, and symmetric
Jacobian for D) we may apply gradient descent:

Tp1 = o — u[AT (Azy, —y) — afz — D(zg, 0)]].

In our work we study convergence rates of the proposed diffusion model
and approximation error, illustrating it with numerical experiments.
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