ECCENTRIC DIGRAPHS OF UNIQUE POINT ECCENTRIC GRAPHS

A. HAK, V. HAPONENKO, S. KOZERENKO

Let G be a simple finite connected undirected graph and $u \in V(G)$ be its vertex. A vertex $v \in V(G)$ is called an eccentric vertex for u if $d_{G}(u, v)=$ $e_{G}(u)$, where $e_{G}(u)=\max \left\{d_{G}(u, x): x \in V(G)\right\}$ denotes the eccentricity of a vertex u. One way to capture the local metric structure of a connected graph G is to consider the so-called eccentric digraph $\operatorname{Ecc}(G)$, which is a digraph with $V(\operatorname{Ecc}(G))=V(G)$ and there is an $\operatorname{arc} u \rightarrow v$ if v is an eccentric vertex for u.

A graph G is called unique eccentric point graph [2] if every its vertex $u \in V(G)$ has a unique eccentric vertex. In other words, G is a uep-graph if it has a functional (the out-degree of every vertex equals one) eccentric digraph $\operatorname{Ecc}(G)$. Self-centered uep-graphs were characterized in [2] and their structure was extensively studied in [1]. Note that a uep-graph is self-centered if and only if its eccentric digraph is a disjoint union of 2-cycles.

A pair of vertices $u, v \in V(G)$ is called diametral if $d_{G}(u, v)=\operatorname{diam}(G)$. It is clear that any diametral pair of vertices in G forms a cycle of length two in $\operatorname{Ecc}(G)$. It turns out that eccentric digraphs of uep-graphs can not have cycles of other lengths.

Proposition 1. The eccentric digraph of a nontrivial uep-graph has cycles only of length two.

Question: does any cycle of length two in a uep-graph corresponds to some diametral pair (this is not true for general graphs)?

A block of a graph is its maximal biconnected subgraph. A graph is called a block graph if it is isomorphic to the intersection graph of the collection of all blocks in some graph. For example, each tree is a block graph.

For a pair of natural numbers $m, k \in \mathbb{Z}_{+}$define the digraph $D_{m, k}$ as follows: $V\left(D_{m, k}\right)=\left\{u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right\}, E\left(D_{m, k}\right)=\{(u, v),(v, u)\} \cup$ $\left\{\left(x_{i}, u\right),\left(y_{j}, v\right): 1 \leq i \leq m, 1 \leq j \leq k\right\}$. For example, $D_{0,0}$ is just a directed 2-cycle.

In general, the problem of characterizing eccentric digraphs of uep-graphs up to isomorphism seems to be very hard. However, in the class of block graphs we have the following result.

Theorem 1. Let G be a uep-graph which is also a block graph. Then $\operatorname{Ecc}(G)$ is isomorphic to $D_{m, k}$ for $m=k=0$ or $m=k=1$ or $m, k \geq 2$. Conversely, for every such $D_{m, k}$ there exists a uep-graph which is a block graph (even a tree) with $\operatorname{Ecc}(G)$ being isomorphic to $D_{m, k}$.

Trees which are uep-graphs were characterized in [2]. It turns out, that we can extend the same characterization to connected block graphs.

Theorem 2. A connected block graph is a uep-graph if and only if it has exactly two central and two peripheral vertices.

References

[1] Göbel F., Veldman V.L. Even graphs // J. Graph Theory - 1986. - V. 10. - P. 225239.
[2] Parthasarathy K.R., Nandakumar R. Unique eccentric point graphs // Discrete Math. - 1983. - V. 46. - P. 69-74.

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine Email address: artikgak@ukr.net

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine Email address: super.gaponenko2012@gmail.com

National University of Kyiv-Mohyla Academy, Kyiv, Ukraine Email address: kozerenkosergiy@ukr.net

