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Abstract

In this paper, the author overviewed an automated testing application during

software development, its issues, and challenges. Designed architecture and

implemented a prototype for a system with a machine learning testing tool. A

proposed design could resolve existing issues with user graphical interfaces tasting

(GUI) by traditional function tools, and improve transparency and feedback to

product managers and designers by verification user interfaces to original

requirements and not only developed cases by the development team.

The system architecture design includes diagrams designed by the C4 + 1

model. As prototype components, TensorFlow and Keras libraries were used for

machine learning tools, Cypress was a functional automation tool. Python and

JavaScript as programming languages.

Keywords: automated testing, visual testing, graphical interface testing,

machine learning, snapshot testing, continuous delivery, continuous code analysis.
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Introduction

In our modern world, we get used to web applications, their convenience,

simplicity, speed, and reliability. With the wide availability of internet connection

options through different channels like wire, mobile, satellite, more and more

customers change their habits in favor of online services. Because of this, more and

more businesses are considering online as the main business platform to serve their

customers everywhere across the globe. Every organization would like to deliver its

software product or just a single feature in the tightest and previously not imaginable

term in a matter of hours or even minutes. This trend pushes development teams to

automate the software development phase where possible including software testing.

Software testing is an activity performed to assess and improve the quality of

software. Automated software testing is the process where the testing functions such

as test steps, launching, initialization, execution, analysis, and results output, are done

automatically with the help of test automation tools.

Test automation as a practice started to be used in some companies quite a long

time ago, however, it has become essential in recent years. The reason for this is the

transition from the traditional Waterfall approach in software development to the

Agile approach. In the traditional Waterfall approach you consequently plan, design,

build the solution, then test the end product and fix issues that arise. It means that the

end product must be tested only once during the corresponding phase in the software

development cycle. If some tests fail, then one more test round is done after the

issues have been fixed. So it is more cost-effective and makes more sense to test the

product manually.

Currently, software projects are so sophisticated that it is not feasible to plan,

design, and think overall the technical details in advance. The projects are usually

long-term, while technologies and business needs change fast. It has become
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extremely important for software products to respond to customers’ feedback fast. So

instead of having big rare releases, software companies have to have rapid delivery

cycles and release new versions of software as quickly as possible.

Consequently, test automation is not a tool for developers anymore.

Contrariwise it services and influences almost all stakeholders in software

development organizations, including testers, developers, product owners, solution

architects, DevOps specialists, project managers. Each organization has its own

unique quality needs and demands for automation techniques and practices. The

maturity of automation testing projects in some cases could lead to the failure of the

whole project or elevation quality and customer satisfaction to new heights if testing

done properly.

Machine learning (ML) in test automation is a completely new area, it could

boost the productivity of test automation tools many times, improve software

products quality and positively affect the whole organization. Several automation

tools that provide machine learning capabilities have emerged in recent years, but

they are still expensive niche products that are used in specific wide cases. Generic

ML-based automation approach and tool that will service the development team and

product managers yet to be discovered and created.

What makes this paper relevant, as were described above, automation testing is

an obligatory component of any modern software development. Despite massive

improvements in this sphere during the last decade, automation testing still remains a

sophisticated solution that requires significant development efforts and in most cases

still needs to be backed up by manual testing. Coupling automated testing with

machine learning tools could boost quality and cooperation with stakeholders to a

new level.

The objective of this paper is to discover existing solutions in the software

testing area and in test automation specifically. Analyze and explore automated

testing issues and benefits that could bring the usage of machine learning tools in this
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area. Design the system architecture and implement a prototype to automatically

compare website user interface with user interface design templates and make

decisions if results are met requirements.

The object of study in this paper is automated testing with the use of elements

of machine learning.

The research methods include discovery and research of existing solutions,

articles, and papers. Discovery of the ongoing development of automated tools based

on machine learning tools.
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1. Industry research and analysis of automated testing issues and

challenges

1.1 Automated Software Testing Overview

Software testing is usually understood as an activity performed to assess and

improve the quality of software. In general, testing is based on the detection of

defects and problems in software systems.

Automated software testing is the process where the main functions and test

steps, such as launching, initialization, execution, analysis, and results output, are

done automatically with the help of test automation tools.

Looking at the history of the test automation practices, we can see that some

companies used test automation quite a long time ago, however, it has become

essential in recent years. The reason for this is the transition from the traditional

Waterfall approach in software development to the Agile approach. In the traditional

Waterfall approach you consequentially plan, design, build the solution, then test the

end product and fix issues that arise. It means that the end product must be tested

only once during the corresponding phase in the software development cycle. If some

tests fail, then one more test round is done after the issues have been fixed. So it is

more cost-effective and makes more sense to test the product manually.

Nowadays, most software projects are so complex that it is not feasible to plan,

design, and think over all the technical details in advance. The projects are usually

long-term, while technologies and business needs change fast. It has become

extremely important for software products to respond to customers’ feedback fast. So

instead of having big rare releases, software companies have to have rapid delivery

cycles and release new versions of software as quickly as possible. Today, some



11

companies deliver new features and bug fixes many times a day and even a few times

a minute.

Testing each version manually can take a lot of time, and that’s the main reason

why test automation has become so important. There are other reasons as well which

will be considered further in this paper.

1.2 The Cost of Software Complexity

With every new version of the software, new features are added. As new

features are added, the software becomes more complex, and when the software

becomes more complex, it becomes harder and harder to add new features to it

without breaking anything. This is especially true when there is pressure to deliver

the new versions rapidly and not investing enough time to plan and to improve the

quality of the code. Some of this added complexity is unavoidable. It would have

existed even if we carefully planned and designed the entire software ahead. This is

called inherent complexity. But most of the time, most of the complexity in software

exists because features were added quickly without proper design; lack of

communication inside the team; or due to a lack of knowledge, either about the

underlying technology or about the business needs. Theoretically, this is about the

business needs. Theoretically, this complexity could be reduced if the software was

carefully planned in advance as a whole, but in reality, it is a natural part of every

software project. This type of complexity is often called accidental complexity. Any

complexity, be it inherent or accidental, comes with a cost. This cost is of course part

of the overall cost of developing software, which is mainly affected by the number of

developers and testers, multiplied by the time it takes for them to deliver the

software. Accordingly, when the complexity of a piece of software grows, its cost

increases because it takes more time to test everything, and also it takes more time to

fix (and retest) the found bugs. Accidental complexity in particular also makes the
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software more fragile and harder to maintain and therefore requires even more time

to test and more time to fix bugs [2].

1.3 Refactoring

Refactoring is a must-have practice in software development when following

Agile methodology. It is a process of improving the design and code of the software

without changing its functionality. Refactoring also allows keeping accidental

complexity under control.

Though refactoring is an important software development practice, it still can

break the software functionality and bring defects. That is why extensive testing is

required after each round of refactoring. If you have only manual testing on the

project, it means that you will need to repeat the same testing routine quite often,

which will cost time and money on one hand and will affect test team motivation on

the other hand. And in this case test automation becomes really helpful.

1.4 Test Automation and Process Improvement

Test automation has its relationships with all other aspects in the software

development cycle. Besides quality and productivity, test automation is also related to

the architecture of the product, the business processes, the organizational structure,

and even the culture (see Figure 1.1).
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Figure 1.1 - Test automation dependency on software development aspects [2].

All mentioned aspects can affect the test automation practice within the

company. But the dependency is mutual - they can also bring a positive influence on

test automation processes.

1.5 Test Automation Tools

Let’s have an overview of the most popular test automation tools.

1.5.1 Selenium WebDriver

Selenium WebDriver is the most popular test automation tool. It is mainly used

for automating tests for web applications on the User Interface (UI) level. The tool

allows to imitate mouse and keyboard actions on behalf of a user and also to retrieve

data that is displayed on the screen.

The main advantages of Selenium WebDriver are the following:
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- it’s free

- supports multiple browsers

- allows using different programming languages (Java, Python, C#, JavaScript)

The advantages listed above actually make Selenium WebDriver the most

widely used test automation tool. However, it also has some disadvantages, which

are:

- limited support for other interfaces except for browser interface

- is designed mainly to be used from code

Let’s consider the specifics of how Selenium WebDriver works, see Figure 1.2.

It is composed of two interchangeable parts - language binding and browser driver.

The language binding is the code library. It provides classes and methods that you

can use in the tests. There is a different language binding for each supported

programming language (Java, Python, C#, JavaScript). It communicates with the

browser driver using a dedicated JSON wire protocol. After getting a request from

the language binding, the browser driver invokes a relevant operation in the browser.

There is an own driver in each browser. You can run the same test in different

browsers using the corresponding browser driver.
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Figure 1.2 - Typical architecture of a Selenium WebDriver test.

Selenium WebDriver is also commonly used from unit testing frameworks. It

has a quite flexible architecture, so various special tools can be integrated with it,

such as Selenium Grid (tool for on-site cross-browser testing), BrowserStack

(cloud-based testing provider), SauceLabs (cloud-based testing provider), etc.

1.5.2 Cypress

Cypress.io is an open-source test automation tool, created in JavaScript

language. Cypress could be used for different testing tasks like end-to-end testing,

integration and unit testing, tests execution in CI and debug. It provides extended

capabilities to operate with browsers and act like a human in GUI and as a server on

the back-end.

In addition to the test runner, Cypress provides a GUI which allows users to

run tests, see real-time test execution, catch screenshots and videos, debug, logging

and more, Figure 1.3. It allows you to create automated scripts for very UI interactive

applications and deal with actions like manipulating the DOM, do assertion for

elements visibility, input data into fields, directly redirect to a different page and

event work as a mocking solution.

Cypress is based on very popular JavaScript tools like Mocha and Chai and

provides additional features on its functionality. This provides capabilities to build

and deliver a modern Web application with build-in quality and developers

confidence.
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Figure 1.3 - Cypress tool GUI [31].

1.5.3 Browser’s built-in Developer Tools

Many tools for test automation on the UI level (especially commercial ones)

come with a special tool for identifying elements of the interface and their properties.

Selenium WebDriver does not have it. However, all modern browsers have a built-in

toolset called Developer Tools (usually opened by pressing F12). The Developer

Tools include the DOM4 explorer, which allows you to identify the elements and

their properties. In Figure 1.4, you can see an example of the DOM explorer in the

Chrome browser.
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Figure 1.4 - DOM explorer in the Chrome browser

So browsers’ built-in Developer Tools are commonly used by test automation

engineers to locate UI elements properties for accessing them from tests.

1.5.4 Visual Testing Tools

Visual testing is a way to test the software by comparing the actual displayed

image against the predefined template. UI automation tools such as Selenium

WebDriver test the application on the UI level, but they do not verify the appearance

of the UI elements (colors, sizes, shapes, etc.). Nowadays the look and appearance of

the UI elements are important because they affect usability and user experience.

UI automation tools rely not on elements’ exact location, but on their size,

colors, etc. Obviously, these things can change frequently and thus fail the test. But

sometimes verifying the appearance of the UI can be very valuable, in addition to

regular functional tests.
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One of the best tools in this area is Applitools Eyes. The Sikuli open source

project is also popular, but it uses visual object recognition more for identifying

elements rather than for visual testing. Another known tool for visual testing is

Chromatic, it is specifically tailored for the React framework.

We must understand that strict pixel-by-pixel image comparison is not reliable

and stable enough (due to things like screen resolution, etc), so visual testing tools

usually use quite a smart image comparison technique to overcome limitations.

Visual testing provides an API that you can integrate with your functional tests to

take screenshots in relevant moments in the test, either of the entire page or of a

specific element. During the first test run, the images are saved, and they will be used

as reference images during the next runs. So the next time a test is run, it will be

comparing new screenshots against reference images. The differences will be

highlighted, and then you can either exclude the highlighted segment from the next

comparison or update the reference image. Sometimes, maintaining visual tests may

take lots of effort, especially if UI changes frequently or if you have a lot of images

in your tests.  In this case, visual testing is not a proper choice of test automation tool.

Despite the issue described above, visual testing tools can really help with

cross-browser and cross-platform testing. Nowadays there are tens and hundreds of

browsers, operating systems, mobile devices, and you may need to test your software

on many of them. If you have short release cycles, it will not be feasible to test on all

those platforms manually. Applications are designed to be cross-browser and

cross-platform and should look the same on platforms and devices, but sometimes

they don’t. Different browsers and operating systems have different rendering

engines and that can cause differences in UI appearance. Applitools Eyes or similar

tools allow to control the level of accepted variations, and that can overcome the

legitimate differences between browsers from one hand, but still catch more severe

rendering problems on the other hand.
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1.6 Test Automation and Architecture

Any test automation solution should be considered a software product. It

means that it also must have its own architecture. Under architecture, we usually

mean the bunch of high-level decisions that influence the entire solution, and the

more you work on the solution the harder it is to change them.

The architecture of a test automation solution defines how tests are coded,

how they interact with the system under test (SUT), how they are run, etc. And it is

really important to take into account the architecture of SUT itself. Automated tests

must also be reliable and isolated, and that’s another important task for their

architecture.

In general, when working on test automation architecture decisions, you must

consider the following questions:

- who will develop automated tests?

- who will maintain the test automation solution and how easy will it be?

- who and when will be running the test?

- which components of SUT will be covered by tests?

- how long can tests be executed?

- how much effort will be needed to develop new tests?

- how easy will it be to understand test results and investigate failures?

Usually, when we start working on test automation architecture, we define the

areas of SUT that we want to cover with test automation. This is important to

understand that it’s not always feasible to test the entire system end to end and keep

tests reliable. Therefore knowing the system under test, its architecture, and

understanding the input/output combinations are essential when outlining architecture

for a test automation solution.
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Now let’s consider what is an automated test. We can define an automated test

as a computer program that sends inputs to another computer system (the system

under test); compares the output sequence, or part of it, to some predefined expected

result; and outputs the result of that comparison [2]. Figure 1.5. shows that

description of an automated test.

Figure 1.5. Description of an automated test.

One of the main test automation challenges is the fact that very few systems

today are really “stand-alone”. Most of the systems have multiple dependencies on

external services or other systems which are not under our control. That is why it is

difficult to draw a clear line between where our system ends and another one starts.

So we are concerned: what components or services we must test? It is not a big

concern for manual testing, because manual testers mainly act as the end-users, and

test that what they see makes sense. If they encounter problems with external

services, they usually understand on which side the issue is. Also, manual testers

take into account that often the outputs of SUT depend on inputs that it receives from

external services, and testers can define if they are correct or not. But it works

differently for test automation. For automated tests, we must be able to define a

deterministic expected result. This means that we must control all the inputs of the

system that may affect the outputs that we want to verify, including inputs from those
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external services. The case is complex because in modern software systems there is

not just one input and one output. There are sequences of inputs and streams of

outputs and many independent sources. Moreover, the inputs and outputs are often so

tightly related, so it is hard to distinguish them from each other. This makes planning

test automation architecture to be a really hard task. And you must find a solution to

draw a clear line between SUT and external services and handle multiple

dependencies.

If we would have control over all input sources, then we could develop

automated tests with deterministic expected results. Controlling inputs received from

external systems can become feasible if you, for example, simulate them. Tests must

control everything that we consider as inputs to the SUT and that may affect the

outputs that we need to verify.

1.7 Continuous Integration and Continuous Deployment

Nowadays every software project assumes having Continuous Integration (CI)

- a must-have development practice when developers integrate code into a shared

repository as frequently as possible. It’s a standard for the industry. And recently it

has been expanded with Continuous Delivery and Continuous Deployment (CD)

which have become essential for mature software projects in the Agile environment.

Just about 10 years ago, delivering a new version of the software required huge

efforts (for example, manufacturing of a physical CD ROM disc). Today we

download software from the Internet or get updates for web applications

automatically. This means that users can get new versions quite rapidly (and

automated tests can even speed up this process). Most of the software products are

updated via a centralized deployment and distribution system. However, the

deployment process itself needs to be automated. If the deployment process has

manual steps, it takes more time and increases the risk of mistakes.
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Even if you run your test automation in an isolated environment, you still

should do CI for it. Then it also forces you to automate the deployment process,

because it will help to automate the process of deploying new versions to production

more easily. Automation of the entire deployment process is called Continuous

Deployment (CD).

Modern tools and approaches allow automating the entire deployment process.

But in real life software producers prefer to decide what goes into Production and

when. It’s not a technical question, but a business decision. The good practice is to

deploy a new version to a production-like environment first and perform some

manual testing there. So, in this case, the entire process is automated, but the final

step requires manual intervention. This is called Continuous Delivery.

Often companies that produce software for non-critical domains use the

Continuous Deployment practice. Sometimes they have small releases for small

groups of users, and in case of failures, they fix them fast. As for software

applications from critical domains (such as medicine, aviation, etc.), every fix can

take a long time because it requires thorough verifications. So such companies

usually choose the Continuous Delivery approach.

All the approaches and practices described above include the test automation

component as a must-have part.

1.8 Issues with traditional automation testing tools

In the last decade, the speed of testing and release to production dramatically

changed from months and years to weeks and hours. Nevertheless, automated testing

as an obligatory attribute on any CI/CD system remains complicated and challenging.

Visual testing remains complicated for automation and often additionally

covered by manual exploratory testing.
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Traditional methods of automated visual testing by verification of CSS styles

and specific HTML page elements during functional testing could work for a limited

number of components but cannot be used for verification of all visual elements.

Also, this method is time-consuming to write and support.

For example, each component could be verified to be visible, right coordinates,

height, width, color, and others. This means, one component could have 5 visual

assertions to cover. So, a test for just 10 components will lead to 50 lines of code.

As an alternative to traditional methods, a snapshot testing tool is used to

capture the page image and compare it with the reference image. Such a method has

the benefits of speed recognition and could work if the test page is on the same

resolution. On the other hand, this method produces false-positive results if the page

is just slightly updated, see Figure 1.6.

Figure 1.6 - Example of false-positive results with snapshot comparison [5].

In order to respond to the market demands to produce and release software

with even more speed and with build-in quality, automated testing tools need to

adjust and utilize new emerging technologies like artificial intelligence and machine

learning.

This work investigated an option to extend already well-defined function

testing with machine learning for efficient and robust visual testing.
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2. Design of an automated testing system using artificial

intelligence tools

2.1 Architecture documentation

The C4 + 1 model for software architecture documentation has applied in this

paper.

The C4 model approaches documenting and designing software architecture by

diagrams. The model has a granularity of four diagrams that represent the whole

system. Additionally, a deployment diagram has been added to represent the

infrastructure qualities of the solution [29].

The C4 Model represents four levels of diagrams:

● System Context diagram (Level 1): shows the highest level of the system and

how it corresponds to users and other systems. It is proposed as a quick

representation of the system and suitable for presentation for different

stakeholders. It represents the system as the big picture diagram [30].

● Container diagram (Level 2): separates the system into interconnected

containers. Containers are deployable and executable subsystems. It is

designed to provide people who need additional technical details on how the

system is set up [30].

● Component diagram (Level 3): splits containers into interconnected

components, connects them to other containers or other systems. It is intended

for developers who are not yet familiar with the system and going to develop

on it [30].

● Code diagram (Level 4): provides more detailed information on how the

implementation looks in the actual code. It is designed to clearly show some

specific details about the most complex parts of the system [30].
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The C4 model’s four levels are sufficient to describe complex Software

Architectures. In practice, the first three levels are only most applicable, while the

fourth level, like the actual code, is done by engineers who need to review and

understand.

2.2 System architecture diagrams

2.2.1 System context diagram

The designed Automated testing tool has three actors who contribute and get

results from the tool. System Context diagram represented in Figure 2.1.

Developer and/or QA engineers (actor) - create test cases for Web Systems

with user interface under test. After that, they create automated tests with the usage

of Automation testing tools. Automated tests have assertion and expectation for each

case so automated cases have exact criteria to pass or fail. Automated tests merged to

the tool repository.

UX Designer (actor) - creates markup for Web system and uploads images per

component into Automation testing tool. Uploaded images later used as verification

source during Web system testing.

Product Owner or other stakeholders (actor) - optionally could be notified with

a report about automated test execution results. Report generation could be limited to

specific environments such as Staging or Pre-production to avoid unnecessary

false-positive results during development.

Automated testing tool - executes automated cases and runs tests on a system

to test across different environments. The execution could be started manually or

scheduled automatically on the event (successful deployment) or a specific time.
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Figure 2.1 - System context diagram.

2.2.2 Container diagram

The container diagram shows the Automated testing tool in the container view

that makes the system as presented in Figure 2.2.

Test framework - contains automated tests implemented by developers or QA

engineers, test runners, test utilities. It executes created tests against target Web

applications, does assertions, and generates reports. In this paper cypress.io, an

end-to-end framework was selected.

For visual testing validation, the framework is extended by custom functions to

take DOM snapshot and send it to the Components screenshot engine.
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Components screenshot engine - this container renders DOM snapshot and

splits it on components images for further comparison with baseline image

component by ML engine. Implementation of this component outside of this work.

ML engine - meant for comparison of rendered components images with UI

components design. This container includes a convolutional neural network (CNN)

with a pre-trained model from UI components design storage. The container

compares images and returns results to the test framework.

UI components design storage Web app - this application is for UX Designer to

upload and store UI components design and mark them by proper labels. This work

used simplified storage with folders structure of files. Further, a more comprehensive

solution could be added to the system.

UI components design storage - storage for design components. This work

used storage with folders structure of files with folder name as a label. Later this

storage could be updated to a more comprehensive solution with a database.
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Figure 2.2 - Container diagram.

2.2.3 Component diagram - Test framework

As a core of the Test framework, the Cypress.io end-to-end testing framework

has been used. Cypress.io provides comprehensive functionality for functional

end-to-end testing in web web-browsers, test runner, assertions, and reporting.

Cypress has communication with a browser on two protocols. Websocket used

for test execution. HTTP used via proxy for network monitoring and mocking or

stabbing.

For the purpose of this work, the test framework needs to be extended with

custom plugins to extend available functional capabilities with additional visual
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testing and machine learning validation. Another testing framework could be used as

well depending on the testing targets and scope.

With extended custom steps, the Cypress framework takes a DOM snapshot of

the page and sends it to the Components screenshot engine for further rendering and

validation.

ML engine sends back image comparison results to the test framework to pass

or fail depending on the ML engine comparison result.

Figure 2.3 - Component diagram - Test framework.

2.2.4 Component diagram - Components screenshots engine

Components screenshots engine meant for render of the DOM snapshot and

creation of components images for further validation. Snapshot render could be

parallelized and executed for different browsers, resolutions, and mobile device

emulation.
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Components image processor sends to ML engine for validation and

comparison with UI design components.

Implementation for Components screenshots engine outside of this work.

Figure 2.4 - Component diagram - Test framework.

2.2.5 Deployment diagram

The designed system should meet the following architecture significant

requirements (ASRs):

- Performance ;

- Scalability;

- Stability;

- Affordability

- Maintainability;
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Mentioned ASRs attributes could be achieved by cloud infrastructure. Amazon

Web Services deployment diagram depicted in Figure 2.5.

Figure 2.5. Deployment diagram.
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3. Implementation of an automated testing system using artificial

intelligence tools

3.1 Testing website

For the purpose of the web application under test, a test site was published

based on the Wix site constructor. The Wix constructor provides customizable

templates and a drag-and-drop site builder with features like application, plots,

galleries, different fonts, and other features. Such sites have a rich and complicated

GUI and could be selected for automated testing purposes.

Figure 3.1 - Website as the system under test.

3.2 Functional test extension for components comparison

In this paper, a Cypress open-source test automation tool was used. This

provides capabilities to extend base functionality by providing a platform for
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custom-created plaguing and functions. With the use of a custom plugin, the

functionality of the tool was extended to include a component comparison

verification into a functional test.

Common Cypress test for the visual component test will use CSS properties

and ‘have.css’ assertions. This approach is very complicated for implementation due

to the significant number of CSS properties and its dynamic nature. Maintaining such

cases is another challenge and quite a routine and time-consuming task. Example of

such a test depicted in Figure 3.2.

Figure 3.2 - Functional test for visual components.

This work discovered another approach to visual testing with the usage of

CNNs for component image comparison. The custom step takes a component

snapshot (or the entire page) and compares a snapshot by CNN trained model based

on UX designs. If the component comparison passes, by the model, it will mean that

the web application looks the same for users and meets requirements set feature

implementation and design. If differences are found, then the case should be

investigated for visual differences like layout, fonts, color, or other visual attributes.

Example test depicted in Figure 3.3.

Figure 3.3 - Test with visual component verification.
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3.3 Implementation of Convolutional neural network (CNN) for

components comparison

3.3.1 CNN's overview

Convolutional neural networks (CNNs) have been developed on the basis of

the brain’s visual cortex research, such networks highly used for image recognition

starting in the 1980s. In the last decade with the increase in computational power and

huge amounts of training data, CNNs have become able to achieve really great

performance on some very complicated visual tasks. Such networks are used in

image search services, self-driving cars, and automatic movie classification systems.

One of the most important building blocks of CNN is the convolutional layer.

Neurons in the first convolutional layer are not connected to every single pixel in the

input image, but only to pixels in their receptive fields [32]. Consequently, each

neuron in the second layer is connected only to neurons located within a specified

rectangle in the first layer, Figure 3.4.

CNN architecture focuses the network on little low-level features in the first

hidden layer, then mounts them into bigger higher-level features in the next hidden

layer, and so on each following layer. Such structure is typical in real images because

CNN’s suit very well for image recognition.

Taking CNNs advantages in image processing, this model was chosen as the

basis for components comparison solution.
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Figure 3.4 - Convolutional layers.

The neural network for current work has the following requirements:

● The machine learning approach is used as it perfectly suits work with

unstructured data like images.

● The model receives an image at the input and returns a subject.

● The model will use the project training collections to learn.

The overview of the selected CNN design for this work is depicted in Figure

3.5.

Figure 3.5 - Convolutional neural network overview.
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3.3.2 Data set review

In this work, the TensorFlow open-source library and Python as script

language have been used.

TensorFlow library has been designed to train and run deep neural networks

for different purposes and scales like image recognition, written digit classification,

natural language processing, and others. The trained model supports production

prediction at scale.

TensorFlow uses the Python language for high-level programming

abstractions. Nodes and tensors are Python objects, as TensorFlow applications are.

The actual math operations are not performed in Python, C++ used for this, Python

just connects traffic between components.

TensorFlow applications could be run on almost any platform: local machine,

cloud, mobile device, CPU, or GPU. The trained model could be deployed on almost

any device to serve for predictions.

A data set for training has train and test folders are grouped by categories for

further feeding into the model. The categories used in the work are depicted in Figure

3.6.

Figure 3.6 - CNN train categories.
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Figure 3.7 - Original component design image for trains.

According to the system design components, images could be produced by a

designer in different shapes, resolutions, and sizes, Figures 3.6 - 3.7. As a result, the

data set has differences in image shape and size that are not suitable for model trains

and should be converted to one value.

For this purpose, additional steps were added for image processing. The train

folder scanned for image shape and defined an average image size for all further

actions, code for this is presented in Figures 3.8 - 3.9.
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Figure 3.8 - Image sizes in the dataset.

Figure 3.9 - Define average image size.

Figure 3.10 – Set average image size.
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3.3.3 Artificially expanded data set

During Web application development UX designers would upload components

design images to the system. Each component will have one or several images. Such

a number of images could be sufficient if the image for comparison will have very

similar quality. In our case, the system should have the possibility to compare

components rendered on different browsers, resolutions, and devices.

To have a robust model to compare images from different resources the data

set should be significantly extended. For this purpose TensorFlow built-in functions

to automatically generate artificially extended sets of data have been used.

A new extended data set has been created by additional image manipulation

which includes rotation, resizing, and zoom. The ImageDataGenerator used to create

augmented images in an automated way, figure 3.7.

Original image manipulated with parameters:

● rotate the image on 5 degrees;

● shift the image width by 5%;

● shift the image height by 5%;

● image normalizing;

● cutting away some part of the image by 5%;

● zoom the image on 5%;

As a result, an augmented data set consists of a significant number of

manipulated images that could represent real images for comparison. The example

presented in Figure 3.8. Such a data set perfectly fits for model train porpoise.

Code for augmented image generation for each category presented in Figure

3.11.
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Figure 3.11 - Artificial image data generator.

Figure 3.12 - Manipulated image by data generator.

Figure 3.13 - Augmented image generation for each category.
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3.3.4 CNN for components classification

In order to use generated data set in the best way, was selected a model with

includes 3 convolutional layers for image processing. The code presented in Figure

3.14.

Figure 3.14 - CNN for components classification.

The designed and trained model shows a 0.99 accuracy, which is a remarkable

result for image classification tasks, Figure 3.15.
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Figure 3.15 - Model evaluation.

3.3.5 Prediction on an image

The model was verified on test data set files and showed correct categorization

results. As an example a “Best Sellers” image, Figure 3.16., was correctly

categorized by the model. Results on categorization are depicted in Figure 3.17.

Figure 3.16 - Image for categorization.

Figure 3.17 - Categorization results.
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3.3.6 Automated web application testing with neural network comparison

As a result of an extended test framework with functions for components

extraction and comparison by neural network and trained convolutional neural

network with augmented dataset, a complete end-to-end testing flow was created. A

test framework runs a test script and on specific steps sends visual components for

comparison and validation, as depicted on Figure 3.18.

Figure 3.18 - Categorization results.

Design and implemented prototype of the system shows the viability of the

solution and its benefits over traditional testing approaches.

As further improvements the test framework and the neural network could be

modified to be able to test and verify more sophisticated scenarios such as inter

components relations or whole page recognition and verification.
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Conclusions

The first section of this work includes an overview of test automation practice

as a part of software development and its tools and techniques. Explained a need for

automated testing and reasons why testing dramatically changed during the last

decade. Overview of how testing in general and automated testing, in particular,

affects software complexity, refactoring procedures and improves, in general, a

development process for organizations. Added review for existing automated testing

tools, their benefits, and issues. Highlighted and need of automation framework

architecture and its contribution to solution architecture. Continuous integration and

continuous testing are a part of this section as automation is an obligatory part of

these two approaches. The section summary stated issues with traditional automation

testing tools and demand for new generation tools.

The second section, dedicated to the design of automated testing tools with

artificial intelligence components. Architecture documentation prepared by C4 + 1

modes for visualizing software architecture. The section includes a system context

diagram, container diagram, component diagram for test framework, and components

screenshot engine. As a summary added a Deployment diagram with an explanation

of architecturally significant requirements, performance, scalability, stability, and

maintainability addressed in the design.

The third section consists of the system prototype implementation. Here

presented the steps of implementation of functional test extension, convolutional

neural network (CNN) for component comparison. Described how to build a dataset

and additional required steps with image transformation and mutation for successful

CNN model train. During the work, a CNN model was trained and tested against real

application components and showed satisfactory comparison results. Also

implemented CNN model showed ~ 96%+ predictability results.
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In a summary, implemented system design and prototype confirms the

relevance and effectiveness of the automated testing with machine learning tools and

cloud-based deployment could provide scalability and cost-efficiency to the

approach. The design could be used as a prototype for further development of

enterprise-grade testing tools.
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Abbreviation and terms

UI - user interface.

GUI - graphical user interface.

UX - user experience.

ML - machine learning.

SUT - the system under test.

CNN (convolutional neural network) - a machine learning technique, one of

the classes of deep neural networks. Frequently applied to analyze visual images.

CI - continuous integration.

CD - continuous delivery.


