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REGULARIZATION BY DENOISING FOR INVERSE 
PROBLEMS IN IMAGING

In this work, a generalized scheme o f regularization of inverse problems is considered, where a priori 
knowledge about the smoothness of the solution is given by means of some self-adjoint operator in the 
solution space. The formulation of the problem is considered, namely, in addition to the main inverse 
problem, an additional problem is defined, in which the solution is the right-hand side o f the equation. 
Thus, for the regularization of the main inverse problem, an additional inverse problem is used, which 
brings information about the smoothness of the solution to the initial problem. This formulation of the 
problem makes it possible to use operators of high complexity for regularization of inverse problems, which 
is an urgent need in modern machine learning problems, in particular, in image processing problems. 
The paper examines the approximation error o f the solution of the initial problem using an additional 
problem.

Keywords: inverse problems.

Introduction

Solving modern machine learning tasks requires 
development of new methods of solving corre­
sponding inverse problems. Majority of real-world 
inverse problems are ill-posed and therefore require 
regularization. For some digital signal processing 
tasks, such as image de-noising, image restoration, 
super-resolution, image improvement, the choice 
of regularization technique is non-trivial, whereas 
significantly influences the corresponding solution.

In our work we study generalized regularization 
scheme for inversion of image transforms. For in­
verse problem

A x  =  y

we consider Bayesian approach, or maximum a 
posteriori probability (MAP) estimate, which finds

x
bility p(x|y). According to Bayes rule

p (x ly)
p(x, y) p(y|x)p(x)

p(y) f  p(y|x)p(x)dx
«  p(y|x)p(x),

x =  argmin{1(x, y) +  ap(x)} , (1)

where l(x, y) is a loss function and p(x) is a regu­
larization term.
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Let’s slightly modify (1):

X =  argmin{1(x, y) +  ap (v )}, x  =  v.
x,v

It allows us to apply Alternating Direction Method 
of Multipliers (ADMM) from the paper [2], using 
Lagrangian:

A , A ,
Lx ( x , v , u ) =  1(x, y)+ap(v)+-||x-v+u|| --||w|| .

2 ' 2 '

therefore maximisation of p(x|y) corresponds to 
the following problem:

a rgm in (-log  p(y|x) — log p (x )).
X

Obviously, real probability distribution func­
tions are unknown. Therefore instead of it we solve 
the following heuristics

It leads to iterative solving following minimiza­
tion tasks till convergence:

x i—  arg min L(x,  v, u)
X

v i—  arg min L(x, v, u)
X

u i— u +  (x — v) 

or after redefining variables in terms of (1) 

x =  min l(x, y) +  fi||x — v||2,X
v = m in  ap(v) +  P\\x — v||2.V

In such a way, instead of one inverse problem 
with regularization scheme we’ve got two intercon­
nected minimization problems, iterative solving of 
which allows us to find solution for the initial prob­
lem. Having some initial x ^ d  v0 we iterate

x i+ i =  min l(x, y) +  fi||x — Vi||2,X
Vj+ i =  min ap(v) +  ||xj — v||2.V

Let’s consider some operator D  : X  ^  X ,  that
x

A D (x, a) =  y,

X
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for example, for super-resolution task instead of D 
a de-noising operator may be used.

This allows to see all the setting from another 
perspective: we have inverse problem Ax =  y and 
its corresponding loss-function l(x, y), and some 
other problem with loss-function p(x).

In such a way, instead of one inverse problem 
we get two interconnected problems, where second 
one brings prior information to the first one. As 
an additional problem, any prior information may­
be used. For example, some external classifier for 
image generation improvement problem or denois- 
ing problem as a regularization for super-resolution 
problem, etc.

The idea to use image denoisers as a mecha­
nism behind the regularization term underlies the 
Regularization by Denoising (RED) framework [5]

Pr e d (x) =  1 (x ,x  -  f  (x)),

where f  (•) is the denoiser of choice.
This idea has been broadened to the follow­

ing setting, called Regularization by Denoising via 
Fixed-Point Projection (RED-PRO) [1].

x r e d - pr o  =  argm in /(x  y^
X

s.t. ||x -  f  (x)||2 = 0 .

It can be seen as a solving of inverse problem with 
additional inverse problem x =  f  (x) as a regular­
ization.

The same framework may be seen as a regu­
larization by means of regularization term p(x) is 
ap(x) =  a x T [x — D (x ,a )j. Under mild conditions 
(differentiability, local homogeneity, and symmet- 

D
plied to get the solution:

xfc+i =  x k — y,[AT( A x k — y) — a\xk — D (x fc, <r)]].

In [1] it has been shown, that Plug-and-Play 
Prior (PnP) proximal gradient method considered 
in (4] is a special case of Regularization by Denois­
ing via Fixed-Point Projection (RED-PRO), the 
convergence of both frameworks to globally opti­
mal solutions has been proven as a result of the 
convergence analysis and the study of the solutions 
of both PnP and RED frameworks [1].

Another classical approach to solving inverse 
problem Ax =  b is the method of Tikhonov- 
Phillips regularization in Hilbert scales, where a 
regularized approximation x sa is defined as the so­
lution of the minimization problem

min ||Ax — y s II2 +  a||Bsx||2,
xe V (B S ) 11 ......................

where a  >  0 is the regularization parameter, 
B : D (B ) C X  ^  X  is an unbounded densely

defined self-adjoint strictly positive definite opera­
tor and s is some non-negative real number to be 
chosen properly to influence the properties of the 
regularized approximation x sa.

In [7] it was shown that under the assumptions

||Bpx|| <  E

and
m||B- “ x|| <  ||Ax|| <  M||B- “ x||

with some constants E, m mid M , the Tikhonov- 
Phillips regularized approximation x 6a of problem 
A x =  y provides order optimal error bounds

||x£ -  x|| =  ü(sp/(a+py)

for s >  (p — a)/2 , in the case that a  is chosen a 
priori by a  =  cS2(a+s)/(a+p) with some constant 
c >  0.

In the paper we study the approach to solving 
inverse problem with regularization by means of 
additional inverse problem with fixed-point prob- 
jection, that may be seen as a smoothing condi­
tion [6].

General Regularization Scheme

In this paper we consider ill-posed problem

Ax =  y,

where A  : X  ^  Y  is a bounded linear operator be­
tween real Hilbert spaces X  Mid Y  with non-closed 
range R (A ). Let’s denote the inner producy by 
(-, •} and the corresponding norm on the Hilbert 
spaces by || • ||.

A
that y belongs to R (A ). It implies that (2) has a 
unique solution x G X . Suppose that instead of 
exact data y we have an available data y6 G Y  
such that

Il y — y6 l l<  S (3)

for some known noise level S. Since R (A ) is as­
sumed to be non-closed, the solution x does not

y
data y6. Hence, the problem (2) is ill-posed and 
therefore requires the regularization. Regulariza­
tion is reconstruction of the solution of problem 
with inexact data using additional information, for 
example, (A l) subjective information concerning 
the smoothness of x and (A2) objective informa­
tion concerning the smoothing property of the op­

A
To formulate the smoothing properties we use 

densely defined unbounded self-adjoint strictly 
positive operator B  : X  ^  X  and some index 
function y>.
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Definition 1. Function p  : R + ^  R + is called 
index function if it is continuous and strictly in­
creasing with <£>(0+) =  0.
Assumption A l :  For some p >  0 mid E  <  to, 

the solution x  of the problem (2) satisfies 
l|Bp(x)|| <  E.

Assumption A 2 : There exists some index func­
tion £  with properties:

(i) there exists a constant m >  0 with 
m||J<y>(B-2 )x|| <  ||Ax|| for all x G X

p
A<y>(A1/p) : (0, ||B-2p] ^  R+ is convex 

Definition 2. General regularization scheme in 
Hilbert space is defined as

B - s ' 

B -

sup
A>0

VA|9a (A)| < Y/ V a :

sup
A>0

A|9a(A)| < 1,

sup
A>0

VA^ — A9a(A)| < d v a ,

sup
A>0

A|1 — Aga (A)| < 1.

9a J - 0 L_
A y VA +  a

with y =  y/m wid ß =  1.
Spectral method of regularization in Hilbert 

space is defined by ga (A) =  max{ A ay with y =  1
and ß =  2 /v /27. Asymptotical regularization in 
Hilbert space is defined by ga (A) =  A (1 — e-A /“ ), 
Y =  1, ß =  1^V2e. Finally, iterative regulariza­
tion in Hilbert space, also known as Landweber 
iteration, are defined by

ga (A) =  a  ( 1 — (1 — A)1/° )  ,

for y =  1 and [3 = 1 /  V2e.
In [6] it was shown that under Assumption A2 

the regularized approximation x sa with s =  p is 
order optimal if a  is chosen a priori.
Theorem 1 (f6j). Let x sa be regularized approx­
imation defined by general regularization scheme 
(see Definition 2) with s chosen by s =  p and let 
assumptions A l  and AS be satisfied. Then, for

ALE2 >
n^a -  x ii <

3ga (T *T  )T  *y,

Sga(T  *T  )T  *y S

with T  =  A B -s  for some s >  0 and piece-wise 
continuous ga : (0, ||T||2] ^  R  with the property

lim ga (A) =  1/A.

For further analysis we make additional as­
sumption about the function ga .
Assumption A 3 : There exist positive constants

^ d  3  such that

(y +  1) sup{||x|| : ||Brx|| <  E , ||Ax|| <  c5}
x£X

with c =  If, in addition, assumption A2 is
satisfied, then

1 1 4  -  x|l  <  (y +  1 )E i
c252 A

^— ( m 2E 2 )

Different regularization methods are character­
ized by corresponding functions ga.

For example, ordinary Tikhonov-Phillips reg­
ularization in Hilbert space is defined by ga =  
=  1 /(A + a ). In this case Assumption A3 is satisfied 
with y =  1/2 and 3  =  1/2- For Tikhonov-Phillips 

m
tion ga is defined as following:

where ^p(-) is defined as ^p(A) =  A^(A1/p).
It implies A lair's convergence rate result for 

the method of Tikhonov-Phillips regularization. In 
fact, the second error bound of Theorem 1 shows 
the order optimality of the regularized approxima­
tion x 6a (see [6]).

Another inverse problem as a 
régularisation

Let’s come back to the initial inverse problem 

A x =  y.

And let’s consider another inverse problem 

Dq =  x.

Then general regularization scheme defines the fol­
lowing solution:

qa =  9a(E *E )E *x.

In (3] within the proof of Proposition 2.8 it was 
shown that for the whole class of regularization 
families the estimate of regularization error has the 
form

5
||q -  qa y <  R YV(a) +  Y—1/ 2 .J a

The first term here depends on the smoothness of 
the solution, and in the statistical spirit we agreed 
to call it the bias. Then the second term is the 
variance, and its order A /y/a is the same for all 
regularization families under consideration.

Then we have

Dqf, =  D ga (D *D )D *x «  x,

a

m
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thus let’s denote the following operator:

B =  Dga (D*D )D *x  : X  ^  X.

Easy to see, that B  is self-adjoint strictly pos­
itive definite operator. Then all the theoretical 
results from the previous section are applicable to 
this problem setting.

Conclusions

Regularization of ill-posed operator equations 
in Hilbert scales is usually studied under the as­
sumption that the operator A  involved in the equa- 

B
scale are related by some operator-valued index 
function y  In the classical paper [7] of Natterer, 
such a relation that characterizes the smooth­

ing properties of A  relative to the operator B -1 
has been expressed in terms of power functions 
(see [6]). Extensions to general index functions 
have been considered in Mair’s paper (8] for the 
case of high-order regularization in Tikhonov- 
Phillips regularization method. In our paper we 
compare classical results for a general regulariza­
tion scheme to the case of regularization by means 
of denoiser operator. Another accomplishment of 
this paper is the justification of error bounds in the 
light of general index functions y  It is important 
to note that the general regularization scheme re­
quires neither any knowledge of the index function 
y nor any knowledge of the solution smoothness 
measured against the Hilbert scale. Nevertheless, 
it automatically provides an order optimal solution 
for the considered ill-posed problem.
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Кравчук О. М., Крюкова Г. В.

РЕГУЛЯРИЗАЦІЯ ЗА ДОПОМОГОЮ ВИДАЛЕННЯ  
Ш УМ У В ОБЕРНЕНИХ ЗАДАЧАХ ОБРОБКИ 

ЗОБРАЖЕНЬ

У цій роботі розглянуто узагальнену схему регуляризації обернених задач, де апріорне зна­
ння про гладкість розв ’язку дано за допомогою деякого самоспряженого оператора в просторі 
розв ’язків. Розглянуто постановку задачі, коли окрім основної оберненої задачі визначено дода­
ткову задачу, в якій шуканий розв ’язок є правою частиною рівняння. Таким чином, для регуляри­
зації основної оберненої задачі використовується додаткова обернена задача, яка привносить до 
початкової задачі інформацію про гладкість розв ’язку. Така постановка задачі дає можливість 
використовувати оператори високої складності для регуляризації обернених задач, що є нагаль­
ною потребою в сучасних задачах машинного навчання, зокрема, в задачах обробки зображень. 
В роботі досліджено похибку апроксимації розв ’язку початкової задачі за допомогою додаткової 
задачі.

Ключові слова: обернені задачі.
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