
Мiнiстерство освiти i науки України
Нацiональний унiверситет «Києво-Могилянська академiя»

Факультет iнформатики
Кафедра iнформатики

Квалiфiкацiйна робота
освiтнiй ступiнь – бакалавр

на тему: «ЗАСТОСУВАННЯ АРХIТЕКТУРИ MIDI-DDSP ДО
ЗАДАЧI ЗМIНИ ТЕМБРУ МОНОФОНIЧНИХ МУЗИЧНИХ

IНСТРУМЕНТIВ»

Виконав: студент 4-го року
навчання
освiтньої програми «Комп’ютернi
науки»,
спецiальностi 121 Комп’ютернi
науки

Бараннiк Володимир Вiкторович

Керiвник: Швай Надiя Олександрiвна,
кандидат фiз.-мат. наук, ст. викладач

Рецензент: Шаповал Наталiя Вiталiївна,
к.т.н., старший викладач каф. штучного
iнтелекту IПСА НТУУ «КПI iм. Iгоря
Сiкорського»

Квалiфiкацiйна робота захищена
з оцiнкою

Секретар ЕК
(пiдпис)

« » 20 р.

Київ - 2023

Мiнiстерство освiти i науки України
Нацiональний унiверситет «Києво-Могилянська академiя»

Факультет iнформатики
Кафедра iнформатики

ЗАТВЕРДЖУЮ
Зав.кафедри математики,

проф., доктор фiз.-мат. наук

(пiдпис)
Олiйник Б.В.

“ ” 2022

IНДИВIДУАЛЬНЕ ЗАВДАННЯ
для квалiфiкацiйної роботи

студенту 4-го курсу, факультету iнформатики
Бараннiку Володимиру Вiкторовичу

Тема: «Застосування архiтектури MIDI-DDSP до задачi змiни тембру монофонiчних
музичних iнструментiв»
Змiст квалiфiкацiйної роботи:

Анотацiя.
1. Вступ.
2. Огляд лiтератури.
3. Методи оцiнки якостi змiни тембру.
3. MIDI-DDSP як архiтектура для змiни тембру.
4. SynthCoder як архiтектура для ресинтезу та змiни тембру.
5. Застосування у режимi реального часу.
Висновки.
Список використаних джерел.

Дата видачi “ ” 2022 Керiвник
(пiдпис)

Завдання отримав
(пiдпис)

Графiк пiдготовки квалiфiкацiйної роботи до захисту
Графiк узгоджено « » 2023р.

№
з/п

Перелiк робiт Термiн
виконання
етапу

Пiдпис
наукового
керiвника

Дата озна-
йомлення
наукового
керiвника

Примiтка

1. Отримання теми
квалiфiкацiйної роботи.

01.09.2022

2. Ознайомлення з темою
квалiфiкацiйної роботи.

01.10.2022

3. Розробка плану та
структури роботи.

14.10.2022

4. Робота з науковою
лiтературою, опис основних
означень.

20.02.2023

5. Дослiдження результатiв
отриманих в лiтературi.

13.03.2023

6. Проведення основних
експериментiв.

11.05.2023

6. Робота над текстовим
оформленням результатiв.

11.05.2023

7. Попереднiй захист
квалiфiкацiйної роботи.

11.05.2023

8. Виправлення помилок та
проведення додаткових
експериментiв.

22.05.2023

9. Захист квалiфiкацiйної
роботи.

29.05.2023

Науковий керiвник
(ПIБ)

Виконавець квалiфiкацiйної роботи
(ПIБ)

2

Анотацiя

Тембр – надзвичайно важлива складова музики. З одного боку, сучаснi
музиканти часто прагнуть мати доступ до цифрових копiй дорогих i складних
у використаннi акустичних iнструментiв. Крiм того, iснує великий попит
на новi, експериментальнi звуки. Змiна тембру з використанням методiв
глибинного навчання – перспективний спосiб вирiшення обох задач. Однак
наявнi технiки зiштовхуються iз суттєвими труднощами, пов’язаними з
керованiстю самими моделями та реалiстичнiстю звуку. На щастя, iснує
iнший пiдхiд – диференцiйована цифрова обробка сигналiв (DDSP) – який
задовiльним чином розв’язує вищевказанi проблеми, хоч i має певнi вади,
якi не можна iгнорувати. Її покращена версiя, MIDI-DDSP, демонструє
значно бiльш якiснi та реалiстичнi результати. Однак її недолiк полягає
в тому, що вона оперує суто символiчними вхiдними даними – нотами й
штрихами. У нашiй роботi ми ставимо за мету оцiнити можливостi MIDI-
DDSP у задачi змiни тембру, а також досягти кращого розумiння DDSP
та MIDI-DDSP архiтектур. Проведенi експерименти показують, що MIDI-
DDSP значно випереджає оригiнальну DDSP архiтектуру в задачi змiни
тембру. Ба бiльше, ми показуємо, що можна значно спростити MIDI-DDSP
архiтектуру, досягнувши при цьому сумiрної якостi змiни тембру. Наостанок,
ми дослiджуємо можливостi роботи спрощеної моделi у режимi реального
часу, вiдкриваючи цим дверi для подальшої адаптацiї всiєї MIDI-DDSP
архiтектури. Наша робота має безпосередню практичну цiннiсть i розширює
розумiння застосувань методiв глибинного навчання в доменi аудiо.

1

Table of Contents

Abstract 4

1 Introduction 5
1.1 Relevance . 5
1.2 Objectives . 5

2 Related work 7
2.1 Brief overview of neural synthesis architectures 7
2.2 DDSP as a neural synthesis and timbre transfer architecture 8

DDSP-VST: realtime DDSP . 9
2.3 MIDI-DDSP neural synthesis architecture 10

3 Evaluation of timbre transfer quality 13
3.1 Methodology . 13

Multi-scale spectral loss and why it is not suitable 13
Mean opinion score and why it is not suitable 13
Pairwise comparisons . 14

3.2 Tools . 15
Telegram bot . 15

3.3 Data collected . 15

4 MIDI-DDSP as a timbre transfer architecture 16
4.1 Hypothesis . 16
4.2 Experiments description . 16
4.3 Results . 17

Deliberately mismatching input audio 20

5 SynthCoder as a timbre transfer architecture and why it fails 22
5.1 Hypothesis . 22
5.2 Description of experiments . 22
5.3 Results . 23

Resynthesis and timbre transfer evaluation 23
Ablation study and comparison to original DDSP architecture . . . 25

2

6 Real time applications 26
6.1 How to adapt MIDI-DDSP model to a DDSP-VST pipeline 26
6.2 Conversion to TFLite and proof of concept 26
6.3 MIDI-DDSP and increased frame size 27

Hypothesis . 27
Experiments . 27
Results . 27

Summary 29

References 30

3

Abstract

Timbre plays a crucial role in music. On the one hand, those who make it of-
ten seek for more realistic digital copies of expensive and hard-to-play acoustic
instruments. On the other hand, there is also a strong desire for new experi-
mental sounds. Neural timbre transfer (the process of changing the timbre while
preserving semantics) offers a promising solution, but existing techniques often
struggle with realism and interpretability. The Differentiable Digital Signal Pro-
cessing (DDSP) approach shows potential and is capable of performing timbre
transfer but has room for improvement. The MIDI-DDSP, an enhanced version
of DDSP, offers significantly better audio quality and realism. Nonetheless, it
operates exclusively with symbolic inputs, such as MIDI notes and diverse ex-
pression controls. In this work, we aim to assess the timbre transfer capabilities
of the MIDI-DDSP architecture and achieve better understanding of DDSP and
MIDI-DDSP architectures. Through a series of experiments, we show that MIDI-
DDSP significantly outperforms original DDSP architecture in the timbre transfer
task. We also show that it is possible to greatly simplify MIDI-DDSP architecture
while still achieving decent timbre transfer quality. At last, we explore the pos-
sibilities of running the simplified model in real time, thereby paving the way for
real-time applications of the full MIDI-DDSP model. This research contributes to
practical applications directly and provides insights into deep learning techniques
in the audio domain.

4

1 Introduction

1.1 Relevance

Timbre is one of key aspects of any musical sound. Some genres, such as ambient
and spectral music, are completely devoted to it [1][2]. There are 5934 virtual
instruments (all of which generate sound) and 8153 effects (all of which process the
sound and some manipulate the timbre) in the KVR database [3]. The compound
annual growth rate of the music production is expected to be 7.31% and virtual
instruments are "widely utilized by practitioners as well as non-professionals as the
products offer a similar experience as a physical musical instrument" [30]. These
facts indicate a clear demand for both new, musically interesting timbres and for
more affordable digital copies of real instruments (both acoustic and analog ones).

Neural timbre transfer may be an alternative to existing solutions, providing us
with interpretable, realistic and easy-to-get results, thus satisfying both demands.
However, as we show in our work, most of existing neural synthesis and timbre
transfer techniques struggle with at least one of the aformentioned aspects.

Differentiable digital signal processing (DDSP) approach promises to solve
most of the existing neural synthesis issues and is even capable of performing
timbre transfer [6]. However, the output quality is far from perfect [20].

Hence, in our work, we try to find a better solution to the task of realistic
neural timbre transfer. Our objective holds immediate practical value and can
also yield valuable insights into applications of deep learning in the audio domain.

1.2 Objectives

• Our main goal is to assess whether MIDI-DDSP [20] architecture is capable
of performing timbre transfer.

• Our secondary goal is to better explain the performance of DDSP [6] & MIDI-
DDSP models; to show some nuances that were omitted or explained poorly
in the original papers.

• We constrain ourselves to the monophonic musical instruments, meaning that
they play only one note at a time. Such constraint is useful as it reduces the

5

overall complexity of the problem by allowing to solve the polyphony and
timbre transfer tasks separately.

To achieve our goals, we have conducted a series of experiments to assess the
capabilities and restrictions of DDSP & MIDI-DDSP architectures:

1. Assessing timbre transfer capabilities of the MIDI-DDSP model trained on
the violin dataset.

2. Assessing timbre transfer capabilities of the MIDI-DDSP model trained on
the multi-instrument dataset.

3. Assessing timbre transfer capabilities of the MIDI-DDSP’s SynthCoder trained
on the violin dataset.

4. Assessing timbre transfer capabilities of the MIDI-DDSP’s SynthCoder trained
on the multi-instrument dataset.

5. Why SynthCoder is such good resynthesizer and bad timbre transfer model.
Ablation study.

6. Real time applications of MIDI-DDSP and SynthCoder.
7. The role of frame size in SynthCoder.

We have also developed a telegram chat-bot to evaluate timbre transfer capa-
bilities of different neural networks. It is available at our github page and can be
used in other projects as well.

6

https://github.com/volodymyr-barannik/timbre-transfer-evaluation-telegram-bot

2 Related work

2.1 Brief overview of neural synthesis architectures

In general, most of audio synthesis models can be divided into two groups [7]:

• Those that generate waveforms directly:
WaveNet [31], WaveRNN [9], DiffWave [8], Jukebox [18] and others.

• Those that generate some representation (e.g. magnitude spectrogram [28])
that is being converted to waveforms by some algorithm (e.g. by Griffin-Lim
[15]):
GANSynth [10], TimbreTron [27] and others.

There is no evidence for which kind of modelling is inherently better. However,
due to the specific choice of the non-waveform output representation in the second
type of the models (which also needs to be transformed to the waveform somehow),
it is easy to lose some important information and generate waveforms of poor
perceptual quality. For instance, when the model runs a STFT on the input
waveform and preserves the magnitudes only, it then losses phase information
which is crucial to human sound perception [7] [20].

(a) Magnitudes (b) Phase (imaginary part)

Figure 1: Plot of magnitudes and imaginary parts of STFT output [7]

The problem is that we cannot simply add phase information in addition to
magnitude information because it is nearly impossible to model phase distribution
in neural networks. Phase is an angle and it wraps up. Moreover, in the real-
world audio, when the magnitude is close to 0, the phase is effectively random as
the noise is clearly dominating over the signal [7]. Nevertheless, other representa-
tions could be used, such as instantaneous phase 𝜑(𝑡) and frequency 𝑓(𝑡) of the
signal 𝑥(𝑡), which are shown to improve the audio quality in the IF-GANSynth

7

architecture [10]:

𝜑(𝑡) = arg [𝑥(𝑡) + 𝑖 · ℋ{𝑥(𝑡)}]

𝑓(𝑡) =
1

2𝜋
· d

d𝑡
[arg (𝑥(𝑡) + 𝑗 · ℋ{𝑥(𝑡)})]

where ℋ{𝑥(𝑡)} denotes the Hilbert transform of 𝑥(𝑡).

However, IF-GANSynth still has some minor phase issues. [10]

2.2 Differentiable digital signal processing (DDSP) as a

neural synthesis and timbre transfer architecture

Differentiable digital signal processing (DDSP) [6] takes a different approach. In-
stead of generating the waveform directly or generating some audio-domain repre-
sentation that gets converted to a waveform, it generates parameters for harmonic
and noise synthesizers, which in turn generate the waveform. Such design has a
strong inductive bias and solves the phase consistency issues, as the proposed
harmonic synthesizer is parameterized only by fundamental frequency (𝑓0) and
per-harmonic amplitudes. Consequently, the neural network is responsible for
only generating the fundamental frequency 𝑓0 and the synthesis parameters (am-
plitudes, harmonic distribution, and noise magnitudes). At last, the output of
synthesizers can be optionally processed by the reverberation module.

Figure 2: DDSP architecture.

As shown in original paper, DDSP architecture is capable of performing a range
of tasks such as resynthesis, denoising, dereverberation and timbre transfer [6].

8

Encoder The encoder takes audio waveform as input and consists of:
1. Pretrained pitch-extraction CREPE model. [5]
2. Deterministic power or loudness extractor.
3. Optional 𝑧(𝑡) extraction model that uses GRU-RNN [19] and MFCC to ex-

tract features from input audio.
It outputs per-frame fundamental frequency 𝑓0(𝑡), loudness 𝑙𝑑(𝑡) and feature
vector 𝑧(𝑡).

Decoder The decoder takes 𝑓0(𝑡), 𝑙𝑑(𝑡) and 𝑧(𝑡) as inputs and consists of:
1. GRU-RNN.
2. Stack of fully connected layers.

It outputs amplitudes and harmonic distribution for harmonic synthesizer and
noise magnitudes for a noise synthesizer.

Number of parameters The model has 15,960,226 parameters, 12,751,176 of
which come from the pretrained pitch-extraction CREPE model.

DDSP-VST: realtime DDSP

Another advantage of the DDSP architecture is that it requires little time to
perform inference (as compared to autoencoder models) [6]. As a result, Google
Magenta developed a C++ VST plugin [24] called DDSP-VST which runs the
optimized DDSP TFLite models in real time [11].

Figure 3: Screenshot of the running DDSP-VST plugin window.

9

Figure 4: DDSP-VST Inference Pipeline

The DDSP-VST inference pipeline is similar to the original DDSP architecture,
but it also has some key differences, which include:

1. There are two separate models in the DDSP-VST: one for feature extraction
and the other one for synthesis parameters prediction.

2. Synthesizers are implemented in C++ to achieve greater performance [16].
3. Feature extraction model contains a distilled version of a full CREPE model

[16].
4. PredictControlsModel takes power as input (instead of loudness).
5. The pipeline processes a single audio buffer of 1024 samples with scalar 𝑓0

and 𝑝𝑤 values (meaning that the frame size is 1024 samples as well).
6. As a result, PredictControlsModel handles state explicitly. The state is re-

tained in memory between consecutive pipeline runs.
7. Both models must be converted to a TFLite format [26] in order to be ran

from the C++ environment.

2.3 MIDI-DDSP neural synthesis architecture

MIDI-DDSP is the overhauled version of the DDSP architecture which aims to
separate timbre and performance aspects of the sound [20]. To achieve this, it
utilizes two separate modules: SynthCoder and ExpressionDecoder.

10

SynthCoder SynthCoder is a resynthesizer that extracts synthesis parameters
which reconstruct the input audio.

ExpressionDecoder ExpressionDecoder is a module that extracts interpretable
expression parameters from SynthCoder’s synthesis parameters in a determinis-
tic way. There expression parameters are: volume, volume fluctuation, vibrato,
brightness, attack and volume peak position. Based on these parameters, it modi-
fies 𝑓0 in an autoregressive way and produces synthesis parameters for the output
audio.
Please refer to Figure 5 which shows the general architecture of the MIDI-DDSP
model and Figure 6 for more details.

Figure 5: Simplified view of the MIDI-DDSP architecture.

Figure 6: Detailed View of the MIDI-DDSP architecture.

11

Training and inference MIDI-DDSP model is trained in two stages:
1. Train SynthCoder on the reconstruction MSSL loss [6]. Do not run Expres-

sionDecoder for now.
2. Freeze SynthCoder and use it in the inference mode to feed its outputs to the

ExpressionDecoder which is being trained.
As for the inference, only ExpressionDecoder is used.

12

3 Evaluation of timbre transfer quality

3.1 Methodology

Multi-scale spectral loss and why it is not suitable

Multi-scale spectral loss (MSSL) is the loss used for training DDSP and MIDI-
DDSP’s SynthCoder models. [6][20]

ℒMSSL =

[64,128,..,2048]∑︁
𝑖=1

||𝑆𝑖 − 𝑆𝑖||1 + 𝛼|| log𝑆𝑖 − log𝑆𝑖||1 (1)

Such loss provides us with information at multiple resolutions, so it is quite
useful for signal comparison. However, we cannot use it to measure the quality of
timbre transfer because our dataset lacks ground truth timbre transfer samples.
And even if we had some (e.g. for oboe → violin), we could not simply compare
the model’s output to the ground truth violin sample. The reason is that there
could be multiple waveforms that have roughly same spectral [20] and overall
audio quality characteristics, meaning that they are all perceived as the violin
playing same notes with similar articulation and overall audio quality. In other
words, there is no one correct result in the timbre transfer task.

Mean opinion score and why it is not suitable

Instead, we can employ a listener based score. MOS (mean opinion score) is one
of the possible perceptive metrics for the quality of the sound generated by neural
networks [31].

The Mean Opinion Score (MOS) formula is given by:

𝑀𝑂𝑆 =
1

𝑁

𝑁∑︁
𝑖=1

𝑆𝑖

where:

𝑀𝑂𝑆 is the Mean Opinion Score,

𝑁 is the total number of ratings,

𝑆𝑖 is the individual rating score for each sample.

13

However, our experiments showed that it is rather difficult for listeners to give
a numeric score indicating the perceptual timbre similarity between two instru-
ments. Furthermore, the ’warm-up effect’ was too prominent here and we could
not provide them with dozens of samples due to high fatigue, so we had to drop
that metric.

Pairwise comparisons

Another option is to employ pairwise comparisons. This method is good because
it is relatively easy for participants to compare the pair of samples and pick the
best one. Here, the absolute scores are computed from the relative ones.

Question types We have asked three types of questions to the listeners:
1. Which audio sounds more realistic and has better quality?
2. Which audio sounds more like a source instrument of the timbre transfer?

(here we are evaluating timbre reconstruction stability)
3. Which audio sounds more like a target instrument of the timbre transfer?

(here we areevaluating timbre transfer capabilities)

Survey description When the survey is started, the listener is presented with
one question of a randomly generated type. It is accompanied by a pair of ran-
domly selected 4-second audio samples from the test dataset that includes both
input and output audios for each model evaluated in this paper. There are 17
input audios in total and they were manually picked from the evaluation dataset
to represent various articulations and melodies. So there is 𝑛𝑜𝑢𝑡 · 𝑛𝑚𝑜𝑑𝑒𝑙𝑠 + 𝑛𝑖𝑛 =

17 · 10 + 17 = 187 audio samples in total. The question type is selected with fol-
lowing probabilities: [0.3, 0.3, 0.4] (respective to the list above). Once the listener
answered a question, it disappears, and a new question is presented. Listener has
no knowledge about the presented audio and its origin. For the timbre similarity
questions we also provide a sample of how the instrument sounds in real world.
That audio is picked from a training dataset. It is useful as a reference for those
who do not know names or sound of rarer musical instruments. Therefore, our
survey can be characterized as a randomized and single-blind.

14

3.2 Tools

Telegram bot

We have developed a modular python telegram bot [22] to conduct such surveys.
The code for the bot is available at our github repo.
The bot is built in a modular fashion and it is fairly easy to add new data sources
as well as question types. To ensure efficient handling of multiple concurrent read
and write requests, we utilize a locally hosted PostgreSQL relational database for
data storage [21].

3.3 Data collected

We have collected 1067 pairwise comparisons from 89 listeners. There are 55 out
of 55 possible unique unordered pairs of models, samples of which were presented
to listeners (𝐶𝑘

𝑛 = 𝐶2
10+1 = 55).

15

https://github.com/volodymyr-barannik/timbre-transfer-evaluation-telegram-bot

4 MIDI-DDSP as a timbre transfer architecture

4.1 Hypothesis

Our main hypothesis is that MIDI-DDSP [20] can perform timbre transfer in at
least one of two ways:

• If we pass audio recording of some melody, performed on an arbitrary instru-
ment, as an audio input to a model, which was trained on a dataset containing
only one (target) instrument. No other modifications required.

• If we pass audio recording of some melody, performed on an arbitrary instru-
ment, as audio input to a model, which was trained on a dataset containing
arbitrary instruments, including the target one. No other modifications re-
quired.

4.2 Experiments description

To test our hypotheses, we have trained two models: ’vn’ (trained by us on a
violin-only dataset) and ’all’ (trained by Google Magenta on a multi-instrument
dataset).

model name batch size lr frame size (samples) epochs steps MSSL [20]
all 16 0.0003 64 80 50000 4.9703
vn 16 0.0003 64 235 28669 5.4714

Figure 7: Parameters used for training MIDI-DDSP models.
All the other parameters are equal to default ones in the MIDI-DDSP repo. [13]

Both models were trained on a URMP dataset prepared by Google Magenta [12].
The dataset is annotated with pitch and notes data and consists of 4-second audio
samples. URMP dataset in turn "comprises a number of simple multi-instrument
musical pieces assembled from coordinated but separately recorded performances
of individual tracks" and was created by University of Rochester [29].

16

Violin
Viola
Cello

Double bass

(a) String instruments

Flute
Oboe

Clarinet
Saxophone
Bassoon

(b) Woodwind instruments

Trumpet
Horn

Trombone
Tuba

(c) Brass instruments

Figure 8: All 13 musical instruments that are represented in the URMP dataset.

Dataset Number of training examples Number of evaluation examples
’vn’ 1938 172
’all’ 9982 833

Figure 9: Comparison of ’vn’ and ’all’ datasets in terms of example count.

4.3 Results

Our experiments showed that MIDI-DDSP is capable of performing high-quality
timbre transfer:

• Multi-instrument model successfully generates the timbre of the passed in-
strument_id and preserves articulations.

• Single-instrument model generates the timbre of the instrument it was trained
on. However, it often ignores note onsets when playing repeated notes. It
also required more training steps to achieve same spectral loss compared to a
multi-instrument model. 1

Based on the listeners’ scores, MIDI-DDSP is significantly surpassing the baseline
DDSP model in both realism, audio quality and timbre similarity to the target
instrument (see 10). For a detailed visualization of the outputs from each module
and input/output comparison, please refer to Figure 15. See 2 to learn about
DDSP and DDST-VST datasets.

1The issue with onsets being ignored is less prominent in earlier epochs, e.g. in epoch 100. So it seems to
be a sign of overfitting. Our hypothesis is that on small dataset, the model learns the timbre too late, and on
that late stages it does overfit in terms of pitch.

17

(a)

(b)

Figure 10: Number of wins for MIDI-DDSP & DDSP models in the listeners’
survey (orange). (a) survey of sound quality, (b) survey of timbre similarity to target (i.e. timbre

transfer capabilities).

Our survey shows that MIDI-DDSP is far superior in terms of sound quality
and realism compared to original DDSP timbre transfer model: it is nearly as
good as the ground truth audios. Regarding the timbre transfer capabilities,
MIDI-DDSP exhibits notable improvements as well. Nevertheless, the sound of
ground truth samples of the target instrument is generally rated slightly higher
compared to results from the audio quality survey. The reason is that latter
included violin → violin samples as well.

Amongst most notable MIDI-DDSP’s audio quality issues are: long unrealistic
reverberation tails and rare noises that are perceived as having some phase issues.

18

(a)
Input (flute)

audio
(b)

Input (flute)
fundamental frequency

(c)
SynthCoders’s
output audio

(d)
SynthCoders’s

harmonic distribution
(e)

SynthCoders’s
noise magnitudes

(f)
ExpressionDecoder’s

extracted volume feature
(g)

ExpressionDecoder’s
extracted attack feature

(h)
ExpressionDecoder’s

extracted vibrato feature

(i)
ExpressionDecoder’s

generated audio
(j)

ExpressionDecoder’s
harmonic distribution

(k)
ExpressionDecoder’s

noise magnitudes

(l)
Input (flute)

audio
(m)

Output (violin)
audio

Figure 11: Intermidiate outputs for each module in the ’all’ MIDI-DDSP model
for flute → violin timbre transfer. The spectrograms are created using Mel-STFT
[25] [28] with frame_size=64, n_fft=1024, num_mels=64.

19

Deliberately mismatching input audio

There is also an interesting property of the MIDI-DDSP architecture. If we take
the input batch and replace its audio with some other audio while keeping 𝑓0,
𝑙𝑑 and other parameters unchanged, we obtain an output audio with a provided
𝑓0, but with timbre of target instrument_id. Moreover, the attack, vibrato and
rhythm are of the provided audio (see 12 for more details).

(a)
Input (synth arp)

audio
(b)

Input (oboe)
fundamental frequency

(c)
SynthCoders’s
output audio

(d)
SynthCoders’s

harmonic distribution
(e)

SynthCoders’s
noise magnitudes

(f)
ExpressionDecoder’s

extracted volume feature
(g)

ExpressionDecoder’s
extracted attack feature

(h)
ExpressionDecoder’s

extracted vibrato feature

(i)
ExpressionDecoder’s

generated audio
(j)

ExpressionDecoder’s
harmonic distribution

(k)
ExpressionDecoder’s

noise magnitudes

Figure 12: Intermidiate outputs for each module in the ’all’ MIDI-DDSP model
for oboe → violin timbre transfer with input audio of synth arp instead of oboe,
whereas 𝑓0 and 𝑙𝑑 are unchanged.

20

The explanation for this is following: as we will show later, SynthCoder is not
capable of performing timbre transfer, so the ExpressionDecoder is the module
that actually performs timbre transfer and its inputs contain only expression pa-
rameters extracted from SynthCoder’s synth parameters. It means that the entire
timbre transfer process is parameterized solely via expression controls (as opposed
to the direct parameterization via the audio or its spectral characteristics). Such a
"bottleneck" appears to be the key factor enabling the timbre transfer capabilities
of the audio reconstruction neural network.

2

2 The training dataset of DDSP and DDSP-VST models is unknown, but it seems that DDSP used the
dataset based on violin recording from MusOpen [4], while the DDSP-VST model was trained on the NSynth
[14] dataset.

21

5 SynthCoder as a timbre transfer architecture

and why it fails

5.1 Hypothesis

Considering the notable timbre transfer capabilities of the MIDI-DDSP architec-
ture, it is reasonable to question whether the full model is necessary for the task.
Could the SynthCoder alone be enough for it? The rationale is simple: architec-
ture of SynthCoder resembles the original DDSP architecture which had proven
its timbre transfer capabilities. Thus, it seems possible that the SynthCoder has
timbre transfer capabilities as well. And if it is true, then we could end up with
a smaller, simpler and faster architecture for the timbre transfer task.

5.2 Description of experiments

To test this hypothesis we ran the SynthCoder in various configurations alone,
without the ExpressionDecoder module. The evaluation of these models followed
the same methodology as the evaluation of the MIDI-DDSP models (section 3.1).

Name Dataset Target Description Epochs Steps MSSL

SynthCoder URMP
all

oboe Evaluation of the timbre
transfer to oboe.

81 10,000 4.1887

SynthCoder URMP
all

same Evaluation of resynthesis. 81 10,000 4.1887

SynthCoder URMP
all

violin Evaluation of the timbre
transfer to violin.

81 10,000 4.1887

SynthCoder URMP
vn

same Evaluation of resynthesis. 45 5,489 4.4246

SynthCoder URMP
vn

violin Evaluation of the timbre
transfer to violin.

45 5,489 4.4246

SynthCoder
without mel

URMP
all

violin Ablation study of Synth-
Coder.

300 249,599 4.4014

Figure 13: List of all SynthCoder models from our experiments

22

5.3 Results

Our experiments show that SynthCoder architecture is good at both resynthe-
sizing input audio and generalizing its resynthesis capabilities to unseen musical
instruments, which means that it is bad at timbre transfer. It is shown clearly in
the results of the survey (see 14).

Resynthesis and timbre transfer evaluation

Based on the listeners’ scores, SynthCoders are best at resynthesis amongst all the
other models except (meaning that it is better than DDSP and even MIDI-DDSP)
which also aligns with its lower MSSL values (see 14b, 13 and 7). As for the audio
quality, it exhibits variable results, ranging from best to mediocre (depending on
the instrument) (see 14a). However, it is bad at timbre transfer (see 14c).

The other key finding is that the model, trained on the violin-only dataset, is
still able to reconstruct other instruments (meaning that it generalizes to other
instruments). However, the audio quality for these other instruments is rated
lower than in the multi-instrument SynthCoder models. Finally, they also fail at
performing timbre transfer. But what is the reason for such behavior?

23

(a)

(b)

(c)

Figure 14: Number of wins for SynthCoder, MIDI-DDSP & DDSP models per
question type (orange). (a) is for sound quality, (b) is for timbre similarity to source (i.e. audio

reconstruction capabilities), (c) is for timbre similarity to target (i.e. timbre transfer capabilities).

24

Ablation study and comparison to original DDSP architecture

We ran an ablation study to figure out why SynthCoder is not capable of perform-
ing timbre transfer. Our main hypothesis was that SynthCoder receives quite a
detailed representation of the input audio, as compared to original DDSP archi-
tecture (which only possesses MFCC optionally extracted from the input audio)
and to MIDI-DDSP’s ExpressionDecoder architecture (which is parameterized by
expression parameters only). So we modified the original SynthCoder architec-
ture by removing mel spectrogram extractor and a stack of convolutions that
processes it so that it becomes parameterized only by 𝑓0, 𝑙𝑑 and 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡_𝑖𝑑.
The model was trained on the ’all’ dataset to exclude the factor of worsened
reconstruction generalizability which results in the higher timbre transfer capa-
bilities. Our goal is to check whether the model can handle multiple instruments
and perform accurate timbre transfer to each of them.

Based on the listener’s scores, such architecture is indeed better at performing
timbre transfer compared to other SynthCoder models (see 14c). It is even close to
MIDI-DDSP model while having much less parameters (1, 380, 734 vs 11, 868, 933
in the full MIDI-DDSP model). It is also worse then all the other SynthCoder
models in terms of audio reconstruction, even though it is still better then DDSP,
DDSP-VST and both MIDI-DDSP models. As for the sound quality, it is worse
than all the other SynthCoder models, while being better than DDSP and DDSP-
VST models (see 14c).

Drawing from these results, we can conclude that detailed representation of
input audio hinders timbre transfer capabilities of the model.

25

6 Real time applications

While having a high-quality timbre transfer model is advantageous, its usefulness
may be limited if musicians cannot apply it in real-time scenarios. And for such
scenarios it must exhibit low latency, which can also speed up standard workflows.
So aiming for real-time applications can yield broader benefits overall.

As was shown in related work, there is a DDSP-VST [11] real time timbre
transfer plugin developed by Google Magenta. However, it performs worse then
classic DDSP model (see 14a). On top of existing DDSP issues it also has greater
problems with overall timbre quality and pitch detection (f0 swipes in particular).

Hopefully, due to similarities between MIDI-DDSP and DDSP architectures
it seems reasonable to reuse existing DDSP-VST codebase while upgrading the
synthesis prediction model that it runs. In our case, such model is MIDI-DDSP.

6.1 How to adapt MIDI-DDSP model to a DDSP-VST

pipeline

Based on the key differences between the DDSP-VST inference pipeline and DDSP
model itself (see 2.2), we conclude that in order to replace a DDSP PredictCon-
trolsModel with the MIDI-DDSP model without modifying the feature extraction
model, following steps have to be performed:

1. Convert a model to the TFLite format.
2. Make the model work with a frame size of 1024.
3. Handle state for the RNNs explicitly.
4. Optimize the model as much as possible.

6.2 Conversion to TFLite and proof of concept

We made the SynthCoder fully convertible to the TFLite format and MIDI-DDSP
is now partially convertible. The difficulty was that a lot of non-TensorFlow [17]
operations were used in the MIDI-DDSP codebase and some of the TensorFlow
operations had no exact equivalent in the TFLite environment (such as RFFT2D).
You can find the adapted code at our github repo.

26

https://github.com/volodymyr-barannik/midi-ddsp

However, we did not manage to run the ExpressionDecoder as a TFLite model
because it required enabling extended set of TFLite operations via the Flex Del-
egate [23] which was corrupting the output .vst3 for some reason.

Nevertheless, we have shown that it is possible to run SynthCoder in real time.

6.3 MIDI-DDSP and increased frame size

The next step is to make our SynthCoder model work with a frame size of 1024.
However, all of our SynthCoder models are trained with a frame size of 64. For-
tunately, we can feed an arbitrary number of frames to the model.

Hypothesis

Our hypothesis is that we can feed 62 frames for a 4-second audio with a frame
size of 1024 instead of feeding 1000 frames for a same 4-second audio with a frame
size of 64 and get comparable audio quality to the model with a frame size of 64.

Experiments

To test this hypothesis, we implemented a simple input downsampler. As far
as we experiment with SynthCoder, the inputs are constrained to 𝑎𝑢𝑑𝑖𝑜, 𝑓0, 𝑙𝑑
and 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡_𝑖𝑑, which can be downsampled using by taking a mean value
over each 𝑘 timestamps, where 𝑘 is a downsampling factor. We use the ’vn’
SynthCoder from the ’vn’ MIDI-DDSP model.

Results

Unfortunately, the audio realism, instrument articulations and overall timbre char-
acteristics degrade significantly with greater downsampling factors. Even when
𝑘 = 8 the model still performs bad. It has unrealistic f0 slides (as in the origi-
nal DDSP PredictControlsModel) and all of the aforementioned issues (please see
15g).

27

(a)
Input (oboe)

audio
(b)

Input (oboe)
fundamental frequency

(c)
SynthCoders’s
output audio

(d)
SynthCoders’s

harmonic distribution
(e)

SynthCoders’s
noise magnitudes

(f)
Input (oboe)

audio
(g)

ExpressionDecoder’s
generated (violin) audio

Figure 15: Outputs of the ’vn’ SynthCoder model for oboe → violin timbre trans-
fer with inputs downsampled 8 times. The spectrograms are created using Mel-
STFT [25] [28] with frame_size=64, n_fft=1024, num_mels=128.

28

Summary

The study explores the capabilities of the MIDI-DDSP architecture. We have
conducted a listener’s survey and demonstrates MIDI-DDSP’s significant advance-
ments in audio quality and realism compared to DDSP. We have also shown that
MIDI-DDSP is superior to the DDSP architecture not only in the task of au-
dio reconstruction, but in the task of timbre transfer as well. Besides that, we
have found an interesting property of mismatching input audio. Moreover, we
have shown that SynthCoder succeeds at generalizing to unseen instruments but
fails at timbre transfer task. We have explained such results by performing an
ablation study which showed that detailed representation of input audio hinders
timbre transfer capabilities of the models. Through the removal of mel spectro-
gram extraction and processing layers, we have successfully enabled SynthCoder to
perform timbre transfer and attain results comparable to MIDI-DDSP. The study
also investigates real time applications of the MIDI-DDSP model and provides
a modified MIDI-DDSP source code that enables conversion of the SynthCoder
to the TFLite format. As a proof of concept, we have shown that it is possible
to run SynthCoder in real time. Nevertheless, increasing the frame size in the
existing DDSP-VST inference pipeline, as demonstrated in our research, leads to
a significant degradation in output quality. In this way, out findings contribute
to practical applications in music production and provide valuable insights into
the application of deep learning techniques in the audio domain.

29

References

[1] Ambient music genre overview | allmusic. AllMusic. URL:
https://www.allmusic.com/style/ambient-ma0000002424 (date of access:
10.05.2023).

[2] Anderson, Julian. 2000. "A Provisional History of Spectral Music". Contem-
porary Music Review 19, no. 2 ("Spectral Music: History and Techniques"):
p. 7–22.

[3] Audio Plugins ranked by popularity at KVR Audio. KVR Audio. URL:
https://www.kvraudio.com/plugin-ranks.php (date of access: 12.05.2023).

[4] Bach Violin Partita no. 1, BWV 1002 - Download free sheet music. Free
Sheet Music, Royalty Free & Public Domain Music | Musopen. URL:
https://musopen.org/music/13574-violin-partita-no-1-bwv-1002/ (date of ac-
cess: 08.05.2023).

[5] CREPE: a convolutional representation for pitch estimation / J. W. Kim
et al. arXiv.org. URL: https://arxiv.org/abs/1802.06182 (date of access:
10.05.2023).

[6] DDSP: differentiable digital signal processing / J. Engel et al. arXiv.org.
URL: https://arxiv.org/abs/2001.04643 (date of access: 14.05.2023).

[7] Dieleman S. Generating music in the waveform domain. Sander Dieleman.
URL: https://sander.ai/2020/03/24/audio-generation.html (date of access:
14.05.2023).

[8] DiffWave: a versatile diffusion model for audio synthesis / Z. Kong
et al. arXiv.org. URL: https://arxiv.org/abs/2009.09761 (date of access:
14.05.2023).

[9] Efficient neural audio synthesis / N. Kalchbrenner et al. arXiv.org. URL:
https://arxiv.org/abs/1802.08435 (date of access: 13.05.2023).

[10] GANSynth: adversarial neural fudio synthesis / J. Engel et al. arXiv.org.
URL: https://arxiv.org/abs/1902.08710 (date of access: 22.05.2023).

30

https://www.allmusic.com/style/ambient-ma0000002424
https://www.kvraudio.com/plugin-ranks.php
https://musopen.org/music/13574-violin-partita-no-1-bwv-1002/
https://arxiv.org/abs/1802.06182
https://arxiv.org/abs/2001.04643
https://sander.ai/2020/03/24/audio-generation.html
https://arxiv.org/abs/2009.09761
https://arxiv.org/abs/1802.08435
https://arxiv.org/abs/1902.08710

[11] Google Magenta. DDSP-VST repository. GitHub. URL:
https://github.com/magenta/ddsp-vst (date of access: 11.05.2023).

[12] Google Magenta. Magentadata repository. Google cloud storage. URL:
gs://magentadata/datasets/urmp/urmp_20210324 (date of access:
13.05.2023).

[13] Google Magenta. Midi-ddsp repository. GitHub. URL:
https://github.com/magenta/midi-ddsp/blob/d7af42704a63b47267ae6a1bc0fee1ed7dc5c855/midi_ddsp/hparams_synthesis_generator.py
(date of access: 11.05.2023).

[14] Google Magenta. NSynth dataset. Magenta. URL:
https://magenta.tensorflow.org/datasets/nsynth (date of access: 11.05.2023).

[15] Griffin D., Lim J. Signal estimation from modified short-time Fourier trans-
form. IEEE Xplore. URL: https://ieeexplore.ieee.org/document/1164317
(date of access: 11.05.2023).

[16] How is inference speed optimized? GitHub. URL:
https://github.com/magenta/ddsp-vst/issues/14 (date of access:
11.05.2023).

[17] Introduction to TensorFlow. TensorFlow. URL:
https://www.tensorflow.org/learn (date of access: 11.05.2023).

[18] Jukebox: a generative model for music / P. Dhariwal et al. arXiv.org. URL:
https://arxiv.org/abs/2005.00341 (date of access: 08.05.2023).

[19] Learning phrase representations using RNN encoder-decoder for
statistical machine translation / K. Cho et al. arXiv.org. URL:
https://arxiv.org/abs/1406.1078 (date of access: 10.05.2023).

[20] MIDI-DDSP: detailed control of musical performance via hierarchical mod-
eling / Y. Wu et al. arXiv.org. URL: https://arxiv.org/abs/2112.09312 (date
of access: 14.05.2023).

[21] PostgreSQL. PostgreSQL. URL: https://www.postgresql.org/ (date of access:
08.05.2023).

31

https://github.com/magenta/ddsp-vst
gs://magentadata/datasets/urmp/urmp_20210324
https://github.com/magenta/midi-ddsp/blob/d7af42704a63b47267ae6a1bc0fee1ed7dc5c855/midi_ddsp/hparams_synthesis_generator.py
https://magenta.tensorflow.org/datasets/nsynth
https://ieeexplore.ieee.org/document/1164317
https://github.com/magenta/ddsp-vst/issues/14
https://www.tensorflow.org/learn
https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/2112.09312
https://www.postgresql.org/

[22] Python-telegram-bot. python-telegram-bot. URL: https://python-telegram-
bot.org/ (date of access: 14.05.2023).

[23] Select TensorFlow operators | TensorFlow Lite. TensorFlow. URL:
https://www.tensorflow.org/lite/guide/ops_select (date of access:
12.05.2023).

[24] Steinberg. VST3 developer portal. Steinmergmedia. URL:
https://steinbergmedia.github.io/vst3_dev_portal/pages/index.html
(date of access: 11.05.2023).

[25] Stevens S. S., Volkmann J., Newman E. B. A scale for the mea-
surement of the psychological magnitude pitch. AIP Publishing. URL:
https://doi.org/10.1121/1.1915893 (date of access: 11.05.2023).

[26] TensorFlow Lite | ml for mobile and edge devices. TensorFlow. URL:
https://www.tensorflow.org/lite (date of access: 12.05.2023).

[27] TimbreTron: a wavenet(cyclegan(cqt(audio))) pipeline for musical timbre
transfer / S. Huang et al. arXiv.org. URL: https://arxiv.org/abs/1811.09620
(date of access: 12.05.2023).

[28] tf.signal.stft | TensorFlow v2.12.0. TensorFlow. URL:
https://www.tensorflow.org/api_docs/python/tf/signal/stft (date of access:
13.05.2023).

[29] URMP dataset. University of Rochester Blogs. URL:
https://labsites.rochester.edu/air/projects/URMP.html (date of access:
12.05.2023).

[30] Virtual musical instruments market. Market Research Re-
ports, Business Consulting | In-depth Insights | TMR. URL:
https://www.transparencymarketresearch.com/virtual-musical-instruments-
market.html (date of access: 11.05.2023).

[31] WaveNet: a generative model for raw audio / A. van den Oord et al. arXiv.org.
URL: https://arxiv.org/abs/1609.03499 (date of access: 12.05.2023).

32

https://python-telegram-bot.org/
https://python-telegram-bot.org/
https://www.tensorflow.org/lite/guide/ops_select
https://steinbergmedia.github.io/vst3_dev_portal/pages/index.html
https://doi.org/10.1121/1.1915893
https://www.tensorflow.org/lite
https://arxiv.org/abs/1811.09620
https://www.tensorflow.org/api_docs/python/tf/signal/stft
https://labsites.rochester.edu/air/projects/URMP.html
https://www.transparencymarketresearch.com/virtual-musical-instruments-market.html
https://www.transparencymarketresearch.com/virtual-musical-instruments-market.html
https://arxiv.org/abs/1609.03499

	Abstract
	Introduction
	Relevance
	Objectives

	Related work
	Brief overview of neural synthesis architectures
	DDSP as a neural synthesis and timbre transfer architecture
	DDSP-VST: realtime DDSP

	MIDI-DDSP neural synthesis architecture

	Evaluation of timbre transfer quality
	Methodology
	Multi-scale spectral loss and why it is not suitable
	Mean opinion score and why it is not suitable
	Pairwise comparisons

	Tools
	Telegram bot

	Data collected

	MIDI-DDSP as a timbre transfer architecture
	Hypothesis
	Experiments description
	Results
	Deliberately mismatching input audio

	SynthCoder as a timbre transfer architecture and why it fails
	Hypothesis
	Description of experiments
	Results
	Resynthesis and timbre transfer evaluation
	Ablation study and comparison to original DDSP architecture

	Real time applications
	How to adapt MIDI-DDSP model to a DDSP-VST pipeline
	Conversion to TFLite and proof of concept
	MIDI-DDSP and increased frame size
	Hypothesis
	Experiments
	Results

	Summary
	References

