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1 Introduction

1.1 Work outline

Line graphs are among the most extensively studied topics in graph theory.
Harary was one of the first to study it [1], but many followed. In one of
the recent articles Bagga and Beineke offer a good introduction for those
unfamiliar with the concept [2]. Line graphs have numerous applications in
various fields, including other branches of graph theory - for example, Liu,
Sun, and Meng use them to define and describe a certain family of dense
digraphs [3], while Geller and Harary show that arrow diagrams are nothing
else but line digraphs [4].

The line graph operation arises naturally by mapping the set of lines of
one graph to the set of points of the other, preserving adjacency. Defining
line graphs formally, though, turns out to be more complicated; for that, we
view them as a special kind of intersection graphs (refer to Definition 2.1
and Definition 2.2 for better understanding). the goal of this work is to
describe the main properties of the operation. We give the most widely used
characterization of line graphs, along with the characterization of line graphs
of trees. We go on to Whitney isomorphism theorem, which shows that the
root graph of a line graph is unique (with 1 exception), characterization of
graphs isomorphic to their line graphs, and several results about bipartite
graphs. The first section ends with a discussion about connection between
the concept of line graphs ans that of eulerian (and hamiltonian) graphs.

In the second section we talk about line digraphs. The concept is similar
to the concept of line graphs, but is defined differently (more simply) and
have different properties. We characterize line digraphs in general, then do
the same for digraphs isomorphic to their line digraphs. The better part
of the section, though, is dedicated to polytrees, which are orientations of
undirected trees. We highlight polytrees whose line digraphs are weak, and
then design an algorithm that breaks a polytree into subgraphs with weak
line digraphs. We finish the work by characterizing line digraphs of different
classes of polytrees.
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1.2 Basic notations

Let’s start with basic notations we shall use throughout the work. Although
we shall mostly refer to graph vertices as points and to edges as lines, we will
still use notations V (G) for set of points and E(G) for set of lines (instead
of P (G) and L(G)). The author believes these notations to be more familiar
to the reader, and also wishes to avoid confusion with the notation for line
graph.

Also denote G[A] the induced subgraph on set of points A ⊂ V (G). If u
is a point of G, then EG(u) denotes the set of lines adjacent to u in G.

2 Line graphs

2.1 Basic properties

Naturally we shall begin our discussion of line graphs with their definition.
For that, we will first need to introduce the concept of intersection graphs.

Definition 2.1. Let X be a set, and F ⊂ 2X . Then Ω(X,F ) is called an
intersection graph if V (Ω) = F , E(Ω) = {AB|A,B ∈ F ;A ∩B ̸= ∅}.

With that in mind, let’s define line graphs themselves.

Definition 2.2. LetG be a graph. Then the graph L(G) = Ω(V (G), E(G))
is called its line graph. Conversely, G is called the root graph of L(G).

Throughout the work we shall denote V ′(G) and E ′(G) the number of
points and lines of G respectively.

Given this definition, one can immediately see that |V ′(G)| = |E(G)| (as
V ′(G) = E(G) in the first place). The task of finding |E ′(G)| is less trivial;
the next theorem gives answer to it.

Theorem 2.3. Let G be a graph. Then |E ′(G)| = 1
2

∑
u∈V (G) d

2(u)−|E(G)|.

The proof of this theorem relies on a similar formula for line digraphs, and
thus will be given in the next section.

Theorem 2.4. (Line graph characterization). Let H be a graph. Then
H ≃ L(G) for some graph G ⇐⇒ ∃F ⊂ 2V (H) :

1) ∀x ∈ V (H) : |Fx
def
= {A ∈ F : x ∈ A}| = 2;
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2) ∀A ∈ F : H[A] is a complete graph;

3) ∀e ∈ E(H) ∃!A ∈ F : e ∈ E(H[A]).

Proof. =⇒ Let H = L(G). Then F = {EG(u) : u ∈ V (G)} satisfies the 3
conditions stated above, thus proving the theorem.
⇐= Set G = Ω(V (H), F ), where F is a set satisfying conditions 1-3,

existent by assumption. To show H ≃ L(G), we shall use the definition of
isomorphism, i.e. we build a bijection f : V (H) → V ′(G) = E(G) which
should preserve the lines. Let f(x) = Fx (obviously, Fx can be viewed as a
function of x, which is a point of graph H. Fx outputs a set of 2 elements of
F which both contain x - that is, a set of 2 connected points of G, or a line
of G).

First, prove that Fx is bijective:

a) f is injective: let x, y ∈ V (H), x ̸= y and Fx = Fy = {A,B|A,B ∈
F ;x, y ∈ A,B}. By condition 2 H[A] is a complete graph =⇒ xy ∈
E(H[A]). Similarly xy ∈ E(H[B]). But that contradicts 3) with e = xy.
So f is indeed injective.

b) f is surjective: let A,B ∈ F,AB ∈ E(G). G = Ω(V (H), F ) =⇒ ∃x ∈
V (H) : x ∈ A,B =⇒ {A,B} ⊂ Fx. But 1) =⇒ |Fx| = 2. Thus
{A,B} = Fx. As A and B are arbitrary elements of F , this proves
surjectiveness of f .

All that is left is to show the preservation of lines, namely xy ∈ E(H) ⇐⇒
FxFy ∈ E ′(G):

a) Necessity: xy ∈ E(H). By 3) ∃A ∈ F : xy ∈ H[A]. The necessary
implication is x, y ∈ A, whence we conclude A ∈ Fx, Fy. In other
words, lines Fx and Fy share a point A, which means Fx and Fy are
connected in L(G). Thus the necessity is proven.

b) Sufficiency: FxFy ∈ E ′(G) =⇒ ∃A ∈ F : x, y ∈ A. As H[A] is
complete, this implies xy ∈ E(H).

Line graph characterization may strike with its complexity. Thankfully,
there are certain types of graphs whose line graphs are characterized a little
more elegantly. Prominent among them are trees.

A useful concept here is that of a block graph.
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Definition 2.5. An induced subgraph B(G) of a graph G is called a block
if it is a maximal biconnected subgraph.

Denote β(G) the set of blocks of graph G.

Definition 2.6. Call the intersection graph B(G)
def
= Ω(V (G), β(G)) the

block graph of G.

With that in mind, we can characterize the line graphs of trees.

Theorem 2.7. (Tree line graph characterization). For a graph H there
exists a tree T with L(T ) ≃ H ⇐⇒ H is a connected block graph such that
its every cut point belongs to exactly 2 blocks.

Proof. =⇒ We have H = L(T ). As T is connected, therefore (obviously)
L(T ) is connected as well. Also, L(T ) = B(T ), since tree lines are also blocks.
Now lets consider block B in B(T ), which is complete by the characterization
of block graphs. Every its point is a line of T . If |V (B)| = 2, then B
represents 2 lines that share a point. Elsewise it consists of several pairwise
connected points; lets choose 3 of them. The corresponding lines of T are
pairwise adjacent; thus they either form a cycle of length 3, or all 3 lines
share a single point. As T is a tree, the latter holds true. So every block in
B(T ) corresponds to a point in T . If B(T ) contains a cut point that belongs
to at least 3 blocks, it means there are at least 3 pairwise connected points
in T =⇒ T contains a cycle of length 3. So H must satisfy every condition
from theorem statement.
⇐= Set F = {V (B) : B ∈ β(H)} ∪ {{x} : x is NOT a cut point in H}

and show that F satisfies the 3 conditions from Theorem 2.4. We shall refer
to a set A as a set of Type 1 if A = V (B) and as a set of Type 2 if A = {x}.

a) ∀x ∈ V (H) : |Fx| = 2. Indeed, if x is a cut point, then by the statement
of the theorem there are 2 sets of Type 1 that contain x, while none of
the sets of Type 2 contain x; otherwise x is in exactly 1 set of Type 1
and in exactly 1 set of Type 2.

b) ∀A ∈ F : H[A] is complete: if A is a set of Type 2, then the statement
is obvious; elsewise it follows from the characterization of block graphs.

c) ∀e ∈ E(H)∃!A ∈ F : e ∈ E(H[A]). Taking into account that ∀A of
Type 2 : E(H[A]) = ∅, the previous statement is equivalent to ’every
line lies in exactly one block’, which follows from the maximality of
blocks.
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2.2 Main results

Let’s begin the main section with discussion of graph isomorphisms. Firstly,
it is obvious that if G1 ≃ G2, then L(G1) ≃ L(G2). The next theorem,
often referred to as Whitney isomorphism theorem, shows that the inverse
statement is also true but for one case.

Theorem 2.8. Let G and G∗ be connected graphs such that L(G) ≃ L(G∗).
Then either G ≃ G∗, or they are K3 and K1,3.

Proof. Suppose for simplicity that L(G) = L(G∗) = H. First notice that
|E(G)| = |E(G∗)|. Thus there is a one-to-one correspondence between the
lines of G and G∗. Note that if at least one of the graphs G and G∗ has no
more than 4 points, then both graphs have no more than 6 lines. It can be
shown that among such graphs only one pair satisfies the condition of the
theorem: K3 and K1,3.

Let |V (G)| ≥ 5 and |V (G∗)| ≥ 5. We shall show that there exists an
isomorphism ϕ : V (G) → V (G∗). First we prove the next: let x1 = uv1,
x2 = uv2 and x3 = uv3 be lines of G that compose a K1,3 subgraph, then
the lines x∗1, x

∗
2, and x∗3 of G

∗ which correspond to the same points in H also
compose a K1,3 subgraph. Since G is connected and contains at least 1 other
point, there is a line y adjacent to exactly 1 or exactly 3 of the given lines.
The corresponding point y′ of H will be adjacent to one or three of x′1, x

′
2 and

x′3, therefore in G∗ y∗ is connected to one or three of x∗1, x
∗
2, and x∗3. Yet if

x∗1, x
∗
2 and x∗3 form a triangle in G∗ then y∗ can only be adjacent to exactly 2

of these 3 lines. We conclude that the points form a claw (i.e., K1,3) in G∗.
Remember that EG(u) is the set of lines at u in G; let also E ′G(u) be the

set of associated points in H. We shall prove that there exists a point u∗ of G∗

such that E ′G(u) = E ′G∗(u∗). Consider the case deg(u) ≥ 2. Then let y1 and
y2 be a pair of adjacent lines. It is easily shown that the associated points y∗1
and y∗2 are adjacent in G∗; name the shared point u∗. Let x be another line at
u in G. Thus in G these 3 lines form a claw =⇒ y∗1, y

∗
2, and x∗ form a claw in

G∗. So E ′G(u) ⊂ E ′G∗(u∗). Similarly it can be proven that E ′G∗(u∗) ⊂ E ′G(u).
Therefore E ′G(u) = E ′G∗(u∗). Let deg(u) = 1 and v be its only adjacent point.
Then deg(v) ≥ 2. Thus E ′G(v) = E ′G∗(v∗) for some point v∗ in G∗. Let x be
the line between u and v in G and x∗ the line associated with the same point
x′ of H (v∗ is one of 2 points adjacent to x∗ in G∗; call the other one u∗).
What is left is to show that deg(u∗) = 1. By construction deg(u∗) ≥ 1. Let z
be another line incident to u∗. Then deg(x∗) = |EG∗(v∗)| in G∗, whereas in G
deg(x) = |EG(v)|−1 = |E ′G(v)|−1 = |E ′G∗(v∗)|−1 = |EG∗(v∗)|−1. But these
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must be equal, as the lines correspond to the same point x′ in H. Again we
have E ′G(u) = E ′G∗(u∗).

Let ϕ : V (G) → V (G∗) be a mapping such that ϕ(u) = u∗ if E ′G(u) =
E ′G∗(u∗). The mapping is obviously one-to-one. The fact that it is onto
follows from the next sequence of equalities:

∑
u∈V (G)EG(u) = 2|E(G)| =

2|E(G∗)| =
∑

u∗∈V (G∗)EG∗(u∗). Had the mapping not been onto, the last
expression would be strictly greater than the first. Now let e = uv be a line
of G, and let ϕ(uv) = {u∗, v∗}. From E ′G(u) = E ′G∗(u∗) and E ′G(v) = E ′G∗(v∗)
follows that u∗ and v∗ are both incident to a single line. So ϕ is a bijection
that preserves lines =⇒ ϕ is a graph isomorphism, which completes the
proof.

Theorem 2.9. If G is a connected graph, then G ≃ L(G) ⇐⇒ G is a
cycle.

Proof. If G is a cycle, the result is obvious.
Let G be a connected graph such that G ≃ L(G). Then from equality

|V ′(G)| = |E(G)| we have |V (G)| = |E(G)|. Thus G is unicyclic (it contains
a single cycle Z). Now assume that G is not a cycle. Then G contains a
point a that belongs to Z, but is adjacent to line α which does not belong to
Z. Of course a is adjacent to 2 other lines β and γ, both of which belong to
Z. Theorem statement implies that conditions of line graph characterization
apply to G. Let F ⊂ 2V (G) be the set for which these conditions hold true.
Therefore ∃A,B ⊂ F : a ∈ A,B and A,B are the only such sets. For each
of α, β, γ there is exactly one set of F which contains it. Say α ∈ A. Since
G[A] is complete, we can say the next: if β ∈ A, then α and β belong to the
same complete subgraph of G =⇒ there is a cycle that contains both lines.
But G contains only one cycle Z, and α is not in it. Thus β (and likewise
γ) doesn’t belong to A, which only leaves the choice β, γ ∈ B. So β and γ
belong to a complete subgraph of G. If the subgraph is built on at least 4
points, it contains more than one cycle; as G is unicyclic, this implies that
the length of its only cycle is 3.

Note that every line that does not belong to Z is a block; otherwise the
lines from a single block would belong to a common cycle. Therefore every
block in G is either a cycle of length 3 (Z) or a line, that is every block is
complete. This means G is a block graph. Also if any cut point belongs to
at least 3 blocks, then there are at least 3 lines (each from different block)
adjacent to it, all 3 contained in 2 sets out of F . As shown previously, this
implies that 2 of the lines belong to a single cycle despite being in different
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blocks. Here we conclude that every cut point belongs to exactly 2 blocks.
Then by tree line graph characterization we have: G is a line graph of a tree.
But G is also the line graph of itself, and G is not a tree. By Whitney’s
theorem this implies that G is either K3 or K1,3. Neither of these satisfies our
initial assumption (that G is a unicyclic graph, but G is not a cycle). Thus
the assumption was false, so G is indeed a cycle.

Now a brief note about bipartite graphs.

Proposition 2.10. Let H be a connected graph such that H ≃ L(G) for
some graph G. Then H is bipartite ⇐⇒ H is either a path or a cycle of
even length.

Proof. =⇒ Consider the partition of H into complete subgraphs. If H has
a point of degree at least 3, then at least 2 of its incident lines belong to a
common complete subgraph S. Therefore S has at least 3 lines, and so it
includes a cycle of length 3. Thus H cannot be bipartite. Conclude that
every point of H is of degree at most 2. This implies that H is either a path
or a cycle. The only case which doesn’t satisfy the condition of the theorem
is a cycle of odd length, and that is exactly when H is not bipartite.
⇐= Both a path and a cycle of even length are bipartite. Also path of

length n is the line graph of path of length n + 1, while a cycle is the line
graph of itself (see the previous theorem for reference).

Corollary 2.11. Let G be a connected graph. Then L(G) is bipartite ⇐⇒
G is either a path or a cycle of even length.

Proof. By Proposition 2.10 L(G) is bipartite ⇐⇒ it is a path or a cycle of
even length. Thus G is also a path or a cycle of even length respectively.

Let’s see what can we say about L(G) and L(L(G)) given thatG is eulerian
or hamiltonian.

Theorem 2.12. Let G be a connected graph. Then L(G) is eulerian if and
only if the degrees of all points in G are of equal parity.

Proof. ⇐= Let u and v be 2 connected points of G. Then deg(uv) =
deg(u)+deg(v)−2. Since deg(u) and deg(v) are either both even or both odd,
the previous equation implies 2 | deg(uv). Every point of L(G) is associated
with a line of G, so degrees of all the points of L(G) are even. Thus L(G) is
eulerian.
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=⇒ Let u and v be such points of G that 2 | deg(u) but 2 ∤ deg(v).
We know that no to adjacent points of G have degrees of different parity:
otherwise the corresponding line of L(G) would be of odd degree, and L(G)
itself not eulerian. Therefore u and v are disconnected. However, from con-
nectedness of G we deduce that there exists a path u − x1 − x2−...−xn − v
that connects u and v. As x1 is connected to u, 2 | deg(x1). From this we get
2 | deg(x2), as x2 is connected to x1. By induction we can show 2 | deg(xn),
but that means we have 2 adjacent points xn and v with degrees of differ-
ent parity. This implies that our initial assumption was false, proving the
statement of the theorem.

Corollary 2.13. Let G be a connected graph. Then L(L(G)) is eulerian if
and only if the degrees of all the lines in G are of the same parity.

Proof. The degrees of all the lines in G are of the same parity if and only if
the same holds for the points of L(G), which by Theorem 2.12 is in turn
equivalent to L(L(G)) being eulerian.

Proposition 2.14. G is hamiltonian =⇒ L(G) is hamiltonian.

Proof. Let x1, x2, ..., xn be the points of G, and (x1, x2, ..., xn, x1) the hamil-
tonian cycle. We shall construct a hamiltonian cycle Z in L(G). Let e1, e2,
..., ek be the lines at x1, with ek = x1x2. Begin Z with a trail (e1, e2, ..., ek).
It can be done, since the lines are pairwise adjacent. Now let f1, f2, ..., fl
be lines at x2 not equal to ek, with fl = x2x3. Continue the cycle with a
similar trail, so that Z begins with (e1, e2, ..., ek, f1, f2, ..., fl). Note that, as ek
is incident to x2, it is adjacent to f1. Continue in similar manner, by choosing
the set of lines at xi which do not yet belong to Z and adding them to the
cycle. The last line to add at each point should be xixi+1 (or xnx1, if i = n).
That last line xnx1 is adjacent to e1, thus Z indeed is a cycle. Since every
line is adjacent to some point xi (actually, to 2 such points), Z must contain
every line and thus every point of L(G). So Z is a hamiltonian cycle =⇒
L(G) is hamiltonian.

3 Line digraphs

3.1 Definitions

We will stick to the notations used in the previous section, with the exception
of notation for set of lines: instead of denoting it E(D) for a digraph D, we
shall use notation A(D), as E is a common way to call a directed draph.
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Mostly we shall use the same terminology as in [5]. Still we shall outline
it explicitly to avoid possible (and probable) confusion.

Points a and b are called adjacent if there is a line α between them. If the
line goes from a to b, we shall say that a is adjacent to b and b is adjacent from
a. Both a and b are adjacent with each other. We will also say that a is
incident to α, b is incident from α, and both a and b are incident at α. Like-
wise α is incident from a, incident to b, and incident at both. α may be called
an outline from a or an inline to b. The number of inlines to a we shall call
the indegree of a and denote id(a), while the respective number of outlines
we call outdegree of a and denote od(a). The terminology of lines is similar
to that of points: if α and β are subsequent lines, then α is adjacent to β, β
is adjacent from α, and both α and β are adjacent with each other.

Definition 3.1. A polypath is a sequence of points a1, a2, ..., an such that
∀i ∈ [1, n − 1] points ai and ai+1 are connected, i.e., any orientation of a
path. We shall denote undirected paths as a1− a2− ...− an. A polycycle is a
polypath where exactly 2 points are equal: a1 and an, or, in other words, any
orientation of a cycle. Equivalently, unless it is a directed cycle, a polycycle
can be viewed as a sequence of 2k directed trails W1,W2, ...,W2k for which
the next 2 conditions hold:

� W2i and W(2i+1)%2k share the source point ∀i ∈ [1, k];

� W2i−1 and W2i share the sink ∀i ∈ [1, k].

Definition 3.2. Let T be a directed graph. Then T is called a directed tree
(or polytree) if it contains no polycycles. Equivalently, a polytree is any ori-
entation of an undirected tree.

Note that unlike with graphs, not every acyclic digraph is a polytree.

Definition 3.3. Digraph D is called bipartite if ∃A,B ⊂ V (D), A ⊔ B =
V (D), such that every line of D is incident from a point of A to a point of B.

A special case is the two-port digraph, which is derived from a complete
bipartite graph. Formally, if A andB are 2 disjoint sets of points, then digraph
K(A,B) is called a two-port digraph if V (D) = A ⊔ B and A(D) = A × B
(here × denotes the Cartesian product of 2 sets).

Definition 3.4. A polytrail is any sequence of adjacent lines. Note that a
polytrail may not be necessarily traversible (2 subsequent lines may share a
starting point or an endpoint).
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In other words, a polytrail is a sequence of directed trails where each 2
consecutive trails share a point.

Definition 3.5. Call a directed star (or polystar) an orientation of an undi-
rected star (a graph in which all lines are incident to a single point).

3.2 Main results

Just as with ordinary graphs, the number of points in L(D) is equal to the
number of lines in D. For the number of lines in L(D), refer to the following
theorem:

Theorem 3.6. If D is an arbitrary digraph, then |E ′(D)| =
∑

u∈V (D) id(u)×
od(u).

Proof. For every point p of D view all the pairs of subsequent lines α and β
such that α is incident to p, whereas β is incident from p. Clearly for every
point p there are id(p)× od(p) such pair of lines. Since every line of L(D) is
associated with a pair of subsequent lines of D, the previous statement proves
the theorem.

This result allows us to prove a theorem from the first section.

Proof of Theorem 2.3. Derive a digraphD from G by orienting every line of
G in both directions. Then |A′(D)| =

∑
u∈V (D) id(u)×od(u) =

∑
u∈V (G) d

2(u).

But every point of L(G) corrsponds to 2 points of L(D) with 2 lines between
them. If to subtract 2|V ′(G)| = 2|E(G)| from |A′(D)|, we obtain a num-
ber exactly twice greater than E ′(G), since every other line of L(G) corre-
sponds to 2 lines of L(D). Then |E ′(G)| = 1

2(
∑

u∈V (G) d
2(u) − 2|E(G)|) =

1
2

∑
u∈V (G) d

2(u)− |E(G)|.

Theorem 3.7. (Line Digraph Characterization). Let D be a digraph. Then
∃D′ : D ≃ L(D′) ⇐⇒ ∃ 2 improper partitions Ai and Bi of V (D) such that
A(D) =

⋃
iA(K(Ai, Bi)) and ∀i, j |Ai ∩Bj| ≤ 1.

Proof. =⇒ Let p1, p2, ..., pn be the set of points in D′ with nonzero indegree
and nonzero outdegree. Consider inlines to pi; they are associated with some
points of D; let Ai be the set of those points. For lines incident to points
with outdegree 0, let An+1 be the set of corresponding points, and An+2 be
an empty set. Then Ai is an improper partition of V (D). Construct Bi
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in a similar way from outlines from pi, only let Bn+1 be an empty set, and
Bn+1 the set of points of D corresponding to lines incident from points of
zero indegree in D′. Then every induced subgraph D[Ai ∪ Bi] is a two-port
subgraph K(Ai, Bi), and by construction every line of D belongs to one of
these subgraphs. Also, the set of inlines at pi (which corresponds to Ai), and
the set of outlines at pj (which corresponds to Bj) may have at most 1 line in
common - otherwise we would have 2 parallel lines (pj, pi). Thus |Ai∩Bj| ≤ 1,
which completes the proof.
⇐= Construct D′ the next way: associate everyK(Ai, Bi) with a point pi

of D′, and let every point of Ai correspond to an inline to pi, and every point
of Bi to an outline from pi. Since |Ai ∩ Bj| ≤ 1, we will get no double lines
and the construction is valid. We have obviously gotten a bijection between
points of D and lines of D′. By construction every pair of subsequent lines
in D′ corresponds to a line of D: indeed, the point joining the lines has
both nonzero indegree and nonzero outdegree, and thus is associated with
K(Ai, Bi) for some i. The existing of such a line in D then follows from the
definition of a two-port digraph. The reverse is also true: every line of D
belongs to some K(Ai, Bi), and thus corresponds with 2 subsequent lines in
D′, both incident at pi. Conclude that D ≃ L(D′).

Remark 3.8. As can be seen from the proof, the last condition (∀i, j |Ai∩
Bj| ≤ 1) serves only one purpose: to make sure that the root digraph has no
parallel lines. Thus, if to expand the concept of digraphs to multidigraphs
(that is, digraphs with allowed parallel lines), we obtain a simpler character-
ization, stated in the following theorem.

Theorem 3.9. Digraph D is a line digraph of a multidigraph ⇐⇒ ∃ 2
improper partitions Ai and Bi of V (D) such that A(D) =

⋃
iA(K(Ai, Bi)).

Thus we obtained a way to characterize line digraphs, but not the only
one. Another way can be found in [4]. Here we will restate it together with
its proof.

Theorem 3.10. Digraph D is a line digraph of a multigraph if and only if
∀p, q ∈ V (D) if there exists a point adjacent to both p and q, then ∀r ∈ V (D)
rp ∈ A(D) ⇐⇒ rq ∈ A(D).

Proof. =⇒ Let F be the root digraph of D, and let p and q be 2 points of
D. If there is a point adjacent to both p and q, then in F p and q share the
starting point. Thus every line adjacent to p or q in F is also adjacent to the
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other; or equivalently, every point adjacent to p or q in D is also adjacent to
the other.
⇐= For every point pi of D define sets Ai and Bi in one of the next

ways:

� If id(pi)×od(pi) > 0, then Ai = {q ∈ V (D) : qp ∈ A(D)} and Bi = {r ∈
V (D) : ∃q ∈ Ai qr ∈ A(D)}. In other words, Ai is the set of all points
adjacent to pi, and Bi the set of all points r such that r is adjacent from
some point of Ai. Note that Ai ̸= ∅ and Bi ̸= ∅.

� If id(pi) = 0, then Ai = ∅ and Bi = {r ∈ V (D) : id(r) = 0}.

� If od(pi) = 0, then Ai = {q ∈ V (D) : od(q) = 0} and Bi = ∅.

Now lets prove that Ai and Aj are either equal or disjoint. Suppose Ai∩Aj ̸=
∅. Then id(pi) ̸= 0 and id(pj) ̸= 0. If od(pi) = 0, then Ai is the set of
all points with outdegree 0. Then if pj has outdegree 0, then Ai = Aj;
otherwise Aj is the set of points adjacent ot pj, none of which has outdegree
0. So in such case Ai ∩ Aj = ∅, a contradiction. We are left with the
case id(pi) × od(pi) > 0 and id(pj) × od(pj) > 0. Let q ∈ Ai ∩ Aj. Then
qpi ∈ A(D) and qpj ∈ A(D), which by condition of the theorem implies
∀r ∈ V (D) : rpi ∈ A(D) ⇐⇒ rpj ∈ A(D). Thus Ai = Aj.

Lets now show that Bi and Bj are either equal or disjoint. Proof for the
cases other than id(pi) × od(pi) > 0 and id(pj) × od(pj) > 0 are similar to
that for Ai and Aj. Let Bi ∩ Bj ̸= ∅. Choose a point pk ∈ Bi ∩ Bj. Then
∃q ∈ Ai : qpk ∈ A(D) and qpi ∈ A(D) =⇒ Ai ∩ Ak ∋ q =⇒ Ai = Ak.
Similarly Aj = Ak, thus Ai = Aj. This means that ∀r ∈ V (D) : ∃q ∈ Ai qr ∈
A(D) ⇐⇒ ∃q ∈ Aj qr ∈ A(D), which implies Bi = Bj. Note that in the
process we also showed that if id(pi) × od(pi) > 0 and id(pj) × od(pj) > 0,
then Ai = Aj ⇐⇒ Bi = Bj. It easily follows that the last statement holds
true for all the points of D.

Define equivalence classes [pi] the following way: pj ∈ [pi] ⇐⇒ Ai = Aj

and Bi = Bj. Consider Ai and Bi for all such classes. Then we have that every
two Ai and Aj are disjoint; similarly with Bi and Bj. Also by construction
of Ai and Bi D[Ai ∪ Bi] = K(Ai, Bi). Clearly V (D) =

⋃
Ai =

⋃
Bi and

A(D) =
⋃
A(K(Ai, Bi)). Therefore Ai and Bi are improper partitions which

satisfy the conditions of Theorem 3.9, which implies D is a line digraph of
a multigraph.
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Proposition 3.11. Graph G is bipartite if and only if there exists a digraph
D, derived from G by orienting every its line, such that L(D) is an edgeless
digraph.

Proof. =⇒ Let A and B be the parts of G. Construct D in such a way that
every line is a line from A to B. Then D contains no dipath of length greater
than 1, thus L(D) is edgeless.
⇐= Since L(D) has no lines, every point of D is either a source or a

sink. Let A be the set of sources of D, and B the set of sinks. Then every
line’s tail belongs to A, and every line’s head to B. Therefore by neglecting
the orientation of lines we get a bipartite graph G with parts equal to A and
B.

Similarly to undirected graphs, with digraphs we also pose the question of
characterizing digraphs D such that L(D) ≃ D. For ordinary graphs we were
able to accomplish that in simple terms; here, as it often is with digraphs,
everything is a little more complicated. We will need several results related to
connectedness of iterated line digraphs. The results can be seen at [5]. Here
we shall only provide proof to several of them, to give an understanding of
the main idea.

We shall denote a graph L(L(L(...(D)...))) (the operation being repeated
n times) as Ln(D).

Theorem 3.12. Let D be an acyclic digraph. Then ∃n ∈ N such that
Ln(D) is a null-digraph.

Proof. Let W ′ be the longest directed walk in L(D), and let n be its length.
There exists a walk W in D such that L(W ) = W ′. Every point of W ′

corresponds to a line of W , so W has n lines. Since D is acyclic, all points
and all lines inW are distinct, and thusW has n+1 points. Then |W | > |W ′|.
We see that the longest walk in L(D) is shorter than the longest walk in D
for any acyclic digraph D. But in such case L(D) is also acyclic; therefore
the longest walk in L(L(D)) will be shorter still. Then the longest walk in
Ln+1(D) will be of length 0, which means Ln+1(D) contains no lines. Then
Ln+2(D) is a null-digraph.

Theorem 3.13. Let D be a digraph containing 2 cycles and a path between
them. Then |A(Ln(D))| → ∞ as n → ∞ (and thus |V (Ln(D))| → ∞ as
n→∞).
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Proof. Let D∗ be the subgraph containing directed cycles C1 and C2 and a
path of length k between them. Then L(C1) = C1, L(C2) = C2, and the path
between them will have length k+ 1. So L(D∗) will have exactly 1 line more
than D∗. Similarly L2(D∗) will have 2 more lines than D∗, and generally
Ln(D∗) will have n more lines than D∗. Thus |A(Ln(D∗))| → ∞ as n→∞,
and so it is with D.

Theorem 3.14. Let D be a digraph containing multiple cycles, with no
2 cycles having a dipath between them. Then ∃n ∈ N such that Ln(D) is
disconnected.

Theorem 3.15. Let D be a digraph containing a single cycle of length n.
Then L(D) also contains a single cycle of length n. Moreover, let S be the
set of points of D which either belong to the cycle or are pathwise connected
to it. Then ∃n ∈ N such that |Ln(D)| = |S|.

The next concept will be used in our characterization.

Definition 3.16. A digraph D is called functional (contrafunctional) if
every its point has outdegree (indegree) 1.

Theorem 3.17. Let D be a weak digraph. Then D ≃ L(D) ⇐⇒ D is
either functional or contrafunctional.

Proof. ⇐= Let D be a functional digraph with V = {a1, a2, ..., an} its set
of points and E = {α1, α2, ..., αn} its set of lines (|V (D)| = |A(D)| follows
from its functionality). Then the map ϕ : V (D) → A(D) such that ϕ(ai) =
αi ∀i ∈ [1, n] is an isomorphism between D and L(D). Indeed, if point ai is
adjacent to point aj in D, then line αi is adjacent to line αj in D (and so are
the corresponding points of L(D)). The proof for contrafunctional digraphs
is similar.

=⇒ We have |V (D)| = |A(D)|. Now assume D has no source. Then
id(u) ≥ 1∀u ∈ V (D), so |E ′(D)| =

∑
u∈V (D) id(u)×od(u) ≥

∑
u∈V (D) od(u) =

|A(D)| = |E ′(D)|. Thus the ≥ sign turns to =, which can only happen if
id(u) = 1 ∀u ∈ V (D). This means that D is contrafunctional. Similarly if D
has no sink, then it is functional. We are left with only 1 case to consider: D
has a source a and a sink b. From the previous 4 theorems we have that D
has a single cycle C, and every its point is pathwise connected to C.

Since there is a dipath Pa from a to C of length na and a dipath Pb from
C to b of length nb, a and b are connected. Denote by P the path between
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them. Let Pc be the path between the endpoint of Pa and the starting point
of Pb, and nc its length. If α is an outline at a, and β an inline at b, then
in L(D) α is a source and β a sink. Let similarly P ′a be the dipath from
α to the cycle, and n′a its length. Define P ′b, P

′
c, n

′
b, and n′c in the natural

way. Then n′a = na, n
′
b = nb, n

′
c = nc − 1. Continuing this way, after nc

iterations we get a path between a source and a sink which passes through
exactly 1 point and 0 lines of C. Keeping in mind D ≃ L(D), we may say
nc = 0 from the very beginning. Then let P ′ = L(P ). P ′ has n′a − 1 lines in
common with P ′a, n

′
b− 1 lines in common with P ′b, and 1 line in common with

neither. If nmin = min{n′a, n′b} and nmax = max{n′a, n′b}, then after taking
L(D) nmin times P ′ will have nmax − nmin lines in common with P ′a or P ′b
and no lines in common with the other of the 2. Thus after nmax − nmin + 1
more iterations the resulting digraph will definitely be disconnected, which
completes the proof.

Proposition 3.18. For a digraph D there exists a digraph P which is a
polycycle but not a directed cycle such that L(P ) = D ⇐⇒ D has an even
number of weak components C1, C2, ..., C2k with Ci being a dipath ∀i ∈ [1, 2k].

Proof. =⇒ By Definition 3.1 P consists of 2k directed paths W1, W2 ...,
W2k, where Wi and W(i+1)mod 2k share the starting point or the endpoint. In
any case, L(W1), L(W2), ..., L(W2k) will be disconnected, and L(Wi) is a
dipath of length |Wi| − 1 ∀i ∈ [1, 2k]. Thus Ci := L(Wi).
⇐= ∀i ∈ [1, 2k] let Wi be a dipath of length |Ci|+1. Let also W1 and W2

share the endpoint, W2 andW3 share the starting point, and so on alternately.
Then, since 2k is even, W2k and W1 will share the starting point, and we will
have built a weak digraph P consisting of W1, W2, ..., W2k. By construction
L(P ) = D, which completes the proof.

Let’s consider the problem of characterizing L(T ), where T is a directed
tree.

Theorem 3.19. Let D be a weak line digraph. Then ∃T : T is a directed
tree, L(T ) = D ⇐⇒ every polycycle in D is a bipartite subgraph.

Proof. =⇒ Let Z ′ be a polycycle in D. Clearly Z ′ can’t be a directed
cycle. Thus Z ′ consists of 2k trails W ′

1,W
′
2, ...,W

′
2k, trails W

′
i and W ′

i+1 being
connected at a single point, which is either their common source or their
common sink, depending on the parity of i (here and further we write i + 1
instead of (i+1) mod 2k for simplicity). Then L−1(D), which is a subgraph
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of T , consists of 2k trails W1,W2, ...,W2k, with |Wi| = |W ′
i |+1. Wi and Wi+1

share a line - the very line that generates the common point of W ′
i and W ′

i+1.
All the lines in L−1(D) save for the shared ones form a polycycle Z whose
trails are of length |Wi| − 2 = |W ′

i | − 1 (the first and last lines of each trail
Wi are shared with other trails and thus not included). Therefore there is a
single case when |W ′

i | = 1 ∀i ∈ [1, 2k] and Z becomes a single point. Since
T is a directed tree, it contains no polycycles, so Z is indeed a point and
|W ′

i | = 1 ∀i. But that means that Z ′ is a bipartite subgraph, A being the set
of sources of Z and B the set of its sinks.
⇐= As D is a line digraph, there exist improper partitions Ai and Bi

such that A(D) = ∪Ki, where Ki
def
= K(Ai, Bi). Let E = L−1(D). Each Ki

corresponds to a point of E. Every other point of E is a source or a sink;
construct E in such a way that all those points are of degree 1, therefore not
being a part of a polycycle. We shall prove by contradiction that in such a
case E has no polycycles. Let Z be a polycycle in E, and a1−a2− ...−an−a1
its points, αi - the line between ai and ai+1. As previously shown, each point
ai is associated with a two-port subgraph Ki of D. Every line αi corresponds
to a point α′i of D, which is common for Ki and Ki+1. Importantly, no 2
such points coincide; elsewise a point α′j would belong to at least 3 two-port
subgraphs, and therefore by pigeonhole principle to at least 2 sets Ai or at
least 2 sets Bi, which is impossible (Ai and Bi are improper partitions). So
α′i−1 and α′i are distinct points that belong to Ki. If α′i−1 and α′i are from
different ports, then there is a line between them. Otherwise if they both are
from port Ai, there exists a polypath α′i−1−β−α′i, where β is any point from
port Bi (similarly if they are both from Bi). In every case there is a polypath
between α′i−1 and α′i. So points α′1, α

′
2, ..., α

′
n together with some intermediate

points form a polycycle Z ′ of D. Z ′ is not a bipartite subgraph, as every weak
bipartite subgraph of D is either Ki or a subgraph of Ki. Thus we have a
contradiction.

Let T be a directed tree. If L(T ) is weak, then it is characterized in
theorem above. Now we characterize such directed trees.

Proposition 3.20. L(T ) is weak ⇐⇒ every source and every sink of T
is a leaf.

Proof. =⇒ Let s be a source of degree n (the proof is similar for a sink).
As T is a directed tree, there is no point to which we could get from a by
2 different polypaths; thus each of the neighbors of a belongs to a different
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induced subgraph, all the subgraphs sharing exactly 1 point - a. If we take
the line graph, these subgraphs will become different weak components.
⇐= Divide the lines of T into 2 subsets A ⊔ B = A(T ). As T is weak,

there is a point a such that ∃α ∈ A, ∃β ∈ B: a is incident at both α and
β. Since a is no source nor sink, we may presume that a is incident from α
to β (If, for instance, α and β are both inlines at a, then, as a a is no sink,
∃γ ∈ B : γ is an outline at a [if γ ∈ A, swap A and B]. In that case β := γ).
Let A′ be the set of points of L(T ) generated by the lines from A, and B′ the
set of points generated by lines from B. Then A′ ⊔ B′ = P ′(T ). It is easy
to see that there is a line between A′ and B′ - it is the line between points
which correspond to α and β. Since every such pair of sets A′ and B′ can
be obtained in similar way, this means that for every such partition of points
of L(T ) into 2 sets there is a line between points from different sets. This
implies that L(T ) is weak.

Here we provide an algorithm that given a directed tree T constructs its
induced subgraphs that become weak components after taking the line graph
of T .

Algorithm 3.21. 1. Ssources ← the set of outlines from sources of T .

2. s ∈ Ssources ← previously unvisited outline from a source; f ← an inline
to sink reachable from s; S ← set of lines on the directed trail from s to
f .

3. Sprev ← S; S ← {α ∈ A(T )|∃β ∈ S : ∃α − β}, where α − β denotes a
directed path containing both α and β.

4. If Sprev ̸= S, go to 3; else store the subgraph containing the lines from
S, mark s and every other outline from a source that belongs to the
subgraph as visited, and continue.

5. If there are any unvisited outlines from sources, go to 2.

Remark 3.22. Every stored subgraph is generated by repeating step 3
(adding lines according to the rule of the step) until Sprev = S. Since the
total number of lines is finite, the process cannot continue indefinitely, and
so the algorithm terminates.

Lemma 3.23. Let T1 be a subgraph generated by the previous algorithm.
Then T1 is weak, and it contains no source nor sink of degree greater than 1.
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Proof. As shown in remark above, T1 is generated by accumulating lines
through consecutive iterations according to the rule of step 3. The rule implies
that ∀k > 1 a line generated on iteration k is connected to some line generated
on step k − 1, and all the lines generated on iteration 1 are connected. The
connectedness of T1 follows easily by induction. We prove the second part of
the statement by contradiction. Let αn and βm be 2 lines incident from a sin-
gle source (the proof for sinks is sufficiently similar to be omitted). Let also αn

and βm have been generated on iterations n and m respectively. ∀i ∈ [1, n−1]
let αi be a line generated on iteration i, connected with αi+1 (if there are sev-
eral, choose any). Let α0 be the initial line (the one whose value was assigned
on step 2 of algorithm and from which T1 was obtained). ∀j ∈ [0,m − 1] βj
shall be similarly defined (note that β0 is the very same initial line). We have
just obtained a polycycle αn − αn−1 − ... − α0 = β0 − ... − βm−1 − βm − αn.
If one of the sources αn or βm is the initial line, then the polycycle looks like
α0 = β0− ...− βm−1− βm− α0 (here αn = α0 is the initial line). Thus we get
a contradiction, as T is a directed tree.

The next theorem justifies the algorithm above.

Theorem 3.24. Let T1, T2, ..., Tn be subgraphs obtained by applying Algorithm 3.21
to directed tree T . Then the next statements hold:

1. Tk is a weak subgraph ∀k ∈ [1, n].

2. A(T1) ⊔ A(T2) ⊔ ... ⊔ A(Tn) = A(T ).

3. L(Tk) is a weak graph ∀k ∈ [1, n].

4. L(Tk + α) is not weak, ∀k ∈ [1, n],∀α ∈ A(T )\A(Tk).

Proof. 1 follows immediately from the lemma.
Let’s now prove that all sets A(Ti) are pairwise disconnected. Let A(T1)∩

A(T2) = S. T1 is weak =⇒ ∃a ∈ P (T1) : a is incident at lines α ∈ S and
β ∈ T1\S. By lemma a is no source nor sink, so assume a is incident from α
to β. This implies that there is a dipath containing both α and β, namely,
α− β is a dipath. Thus, since α is in T2 (S ⊂ A(T2)), β ∈ T2 as well - it will
be generated on the next iteration after α. To prove 2 we still need to show
that ∀α ∈ A(T )∃k ∈ N : α ∈ A(Tk). If α is an outline from a source than the
algorithm doesn’t terminate until it is marked as visited, that is, it belongs to
some Tk. Otherwise we assert that α is connected by a dipath to some outline
from a source: as α is not an outline from a source, there is a line β1 which
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is adjacent to α. Now we have that either β1 is an outline from a source, or
there is a line β2 adjacent to β1. The process terminates when we reach a line
βm that is an outline from a source (it cannot continue indefinitely, since the
total number of lines in T is finite). Thus α will be generated on the next
iteration after βm (or if βm was chosen as the initial line, then possibly on the
same one). In any case, as shown earlier, βm ∈ A(Tk) for some k ∈ N, and so
α ∈ A(Tk).

3 follows from lemma together with Proposition 3.20.
If α ̸∈ A(Tk), then α isn’t connected with any line from Tk (if it were

connected with a line β, it would be generated on the next iteration after β
and therefore belong to Tk), and so the point of L(T ) associated with it will
lie in different weak component than L(Tk). This completes the proof.

Now we shall consider several special cases of polytrees, to see how their
line digraphs look like.

Proposition 3.25. D ≃ L(T ) for an in-tree (out-tree) T ⇐⇒ every weak
component of D is an in-tree (out-tree).

Proof. We shall offer proof for in-trees, considering the proof for out-trees
sufficiently similar to be omitted.

=⇒ Let E be a weak component of D. Let also s be the only sink of T .
Since s is reachable from every point of T , there is an inline α to s associated
with a point α′ of E. The inline α is single, as otherwise there would be a
point in T from which we could reach s by 2 different polypaths. Thus α′ is
the only sink of E, and so it can be reached from every point. Then E is an
in-tree.
⇐= Let again E be a weak component of D. As it is an in-tree, there

is no point of E with outdegree greater than 1 - otherwise there would be
2 different dipaths from it to s, s being the sink of E. To show that E is
a line digraph of a digraph, we shall construct improper partitions Ai and
Bi. For every point p of E with indegree of at least 1 let Bp = {p} and
Ap be the set of points connected to p. As no 2 points are connected from
a single point, the sets Ai will be disjoint; obviously |Bi ∩ Aj| ≤ 1. Thus
we indeed have an improper partition satisfying the condition of line digraph
characterization. Let then F be a digraph such that L(F ) = E. If α is the
line of F associated with s, then it is reachable from every other line of F .
Thus point b of F , which is incident from α, is reachable from every other
point of F . Conclude that F is an in-tree. Now let F1, F2, ..., Fn be in-trees
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for which L(Fi) ≃ Ei∀i ∈ [1, n], Ei being the weak components of D. Let all
Fi have a common sink b, and let it be the only common point of different Fi

(therefore there will be no common lines). This way we obtain a digraph T ,
which is still an in-tree. Also, L(T ) ≃ D, which completes the proof.

Proposition 3.26. D ≃ L(T ) for a polypath T ⇐⇒ every weak compo-
nent of D is a dipath.

Proof. =⇒ By definition a polypath is a sequence of directed paths where
each 2 consecutive paths share a common point (alternately starting and
ending points). After taking the line digraph every directed path Tn of length
k will become a separate weak component, which by itself is a dipath of length
k − 1. That completes the proof.
⇐= Let D1, D2, ..., Dn be the weak components of D, each of them being

a dipath of length k1, k2, ..., kn respectively. Let Ti, i ∈ [1, n] be digraphs
such that Di = L(Ti)∀i ∈ [1, n]. Then every Ti is a directed path of length
ki+1. Let digraph T be a sequence of T1, T2, ..., Tn with T1 and T2 sharing an
endpoint, T2 and T3 sharing the starting point, and so on alternately. Then
T is a polypath, and L(T ) = D.

Proposition 3.27. D ≃ L(S) for a polystar S ⇐⇒ D is either a two-port
digraph or an edgeless digraph.

Proof. =⇒ If the internal point p of S is either the common source or the
common sink of all its lines, then D is edgeless. Otherwise let α1, α2, ..., αn

be lines ending at p, and β1, β2, ..., βm be lines starting at p. Let a1, ..., an, b1,
..., bm be corresponding points of D = L(S). Then D is a two-port digraph,
its ports being A = {a1, a2, ..., an} and B = {b1, b2, ..., bm}. So D is either a
two-port or an edgeless digraph.
⇐= If D is a two-port digraph, then S is a point together with lines

incident to and from it (which is, a polystar). If D is edgeless with n points,
then D = L(S) for a polystar S with n lines, all of them adjacent to (or
all adjacent from) the internal point. In any case, D is a line digraph of a
polystar.

23



References

[1] F. Harary, Graph Theory (1969), 71-83.

[2] J. Bagga, L. Beineke, A survey of line digraphs and generalizations, Dis-
crete Math. Lett. 6 (2021) 68–83.

[3] J. Liu, L. Sun, J. Meng, A line digraph of a complete bipartite digraph,
Applied Mathematics Letters 22 (2009) 544–547.

[4] D. Geller and F. Harary, Arrow diagrams are line digraphs, SIAM J.
Appl. Math. Vol. 16, No. 6, November 1968.

[5] F. Harary and R. Norman, Some properties of line digraphs, Rendiconti
del Circolo Matematico di Palermo 9, 161–168 (1960).

24


