
Modeling Distributed 
Generalized Suffix Trees For 
Quick Data Access

Written by Vera Didenko

Supervised by Andriy Glybovets



The problem at hand

Fast creation of suffix trees for an input string data collection is an extremely important 
task since, for instance, modern DNA sequencers can process multiple samples per hour, 
while financial programs generate continuous data streams that must be indexed.

However, building a suffix tree is a complex process that imposes the usage of 
intermediate data that takes up a significant portion of the available memory.

The process of building a suffix tree for massive data sets is a very time-consuming task.



Goal

The aim of this work is to distribute generalized suffix tree 
construction, so the process is efficient in terms of time complexity and 
memory consumption.

A distributed approach to constructing the suffix tree will allow working 
with large alphabets and very long strings that exceed the 
available memory capacity.

In this work, an efficient and highly scalable algorithm for constructing 
generalized suffix trees on distributed parallel platforms was modeled by 
optimizing ERa.



Background on suffix 
trees

• The suffix tree indexes all suffixes in a string; the suffix tree is 
a fundamental data structure designed to swiftly process 
operations on strings, for example, phrase matching, finding 
the longest repeated substring in a character sequence, or 
revealing the maximum repeated phrase in a long sequence 
of characters.



Generalized suffix trees

• A generalized suffix tree indexes all suffixes for a set 
of strings; the suffixes of each string are presented 
in the generalized suffix tree.

• A typical approach for constructing a generalized 
suffix tree for a set of strings is to add a unique 
terminal symbol (UTS) to each string and then 
merge all strings together and build a suffix tree for 
the merged string; in this case, the introduced 
terminal helper symbol that is supplemented in 
each string D is used to make sure that no suffix is a 
substring of another suffix. 

• In this work, all strings are merged directly without 
adding a terminal symbol to each string: instead, in 
this implementation, information about the 
location of each string in the merged string - the 
start and end position of each string in the merged 
string, can be used to distinguish between different 
strings in the merged string.



New algorithm by optimizing ERa

Preparation step – data partitioning stage

Parallel subtree partitioning stage

Parallel subtree construction stage



Data partitioning 
stage

• To ensure balance among the computing nodes, the input string is 
divided into even parts, and each partition is assigned to a computing 
node. 

• Because the partitions are processed in parallel, an additional tail is 
assigned to each partition to ensure that the parallel S-prefix frequency 
counting for splitting the subtree as well as the parallel matching of the 
S-prefix for constructing the subtree are both done correctly.



Parallel subtree 
partitioning stage

• Calculating the occurrence 
frequency for the S-prefix

• The frequency trie

• The incremental window count 
approach



Parallel subtree partitioning stage – S-prefix frequency 
calculation

• Calculating the occurrence 
frequency for the S-prefix is the 
main step in splitting the 
subtree: considering that the 
input string is split into 
partitions (during the data 
partitioning stage), the 
frequencies can be calculated in 
each partition in parallel.



Parallel subtree partitioning stage – frequency trie

• Using a frequency trie, the total 
number of iterations (that is, 
Input/Output accesses) was 
reduced by calculating the 
frequencies of different 
lengthed S-prefixes by simply 
scanning the input string.



Parallel subtree partitioning stage – incremental window 
count

• The general process of subtree 
partitioning in a parallel manner is 
organized in multiple iterations, 
during which the count window 
increases by the defined step size.

• Let the initial count window be 
winit, then during the first 
iteration, the frequencies of all 
winit lengthed S-prefixes are 
counted.

• In the next iteration, the window 
size is increased by the defined 
step size. The frequencies of all S-
prefixes that have a length that 
fits into the [winit, wnext] interval 
are calculated in this iteration.



Parallel subtree 
construction stage

• The distribution of subtree 
construction tasks is affected by 
two main factors: the cost of 
input/output calls and keeping 
the worker nodes balanced.

• We used the Bin-Packing and the 
Number-Partitioning algorithms 
in combination to reduce the I/O 
cost and ensure node balance.



Parallel subtree 
construction stage

• We created an LCP-Range data structure for a more efficient 
way to compare the suffixes.

• The LCP-Range array contains LCP-Range information for 
each pair of subsequent suffixes in lexicographical order.



Parallel subtree 
construction stage

• Also, we utilized the loser tournament tree data structure in 
the LCP-Merge Sorting step.

• As a result, a global LCP-Array is generated.

• Finally, the subtree is constructed (recording of the 
algorithm execution).

https://monosnap.com/direct/vfkURjDyNnoQgBGOg4EJd01QuIXYys
https://monosnap.com/direct/vfkURjDyNnoQgBGOg4EJd01QuIXYys


Calculating algorithm complexity

THE COMPLEXITY OF THE PARALLEL 
SUBTREE PARTITIONING STAGE

THE COMPLEXITY OF THE PARALLEL 
SUBTREE CONSTRUCTION STAGE



Calculating algorithm complexity - the parallel 
subtree partitioning stage

• The complexity of the parallel subtree partitioning stage:



Calculating algorithm complexity - the parallel 
subtree construction stage

The local sorting step’s complexity for an S-prefix:

The multi-way LCP-Merge sorting step’s complexity:



Performance 
comparison

• Local machine setup, Ubuntu 20.04
• Apache Spark 1.6.3
• Apache Hadoop 2.6.5 was used for 

the distributed file system

• Both algorithms were executed on 
the same machine setup in the 
same environment and given the 
same input data to ensure that both 
implementations were compared in 
a fair and correct manner.

• Performance gain by roughly 2-2.5 
times



Conclusion

Experimental results on Apache Spark revealed that the modeled 
algorithm significantly outperforms the state-of-the-art ERa algorithm by 
about 2-2.5 times

Therefore, the resulting algorithm for distributed generalized suffix tree 
construction is quite appropriate for applications that wish to improve 
large text data operations and that are based on a distributed system. 

In addition, the modeled algorithm can efficiently construct a generalized 
suffix tree for a set of strings.



Thank you for your 
attention!


	Слайд 1: Modeling Distributed Generalized Suffix Trees For Quick Data Access
	Слайд 2: The problem at hand
	Слайд 3: Goal
	Слайд 4: Background on suffix trees
	Слайд 5: Generalized suffix trees
	Слайд 6: New algorithm by optimizing ERa
	Слайд 7: Data partitioning stage
	Слайд 8: Parallel subtree partitioning stage
	Слайд 9: Parallel subtree partitioning stage – S-prefix frequency calculation
	Слайд 10: Parallel subtree partitioning stage – frequency trie
	Слайд 11: Parallel subtree partitioning stage – incremental window count
	Слайд 12: Parallel subtree construction stage
	Слайд 13: Parallel subtree construction stage
	Слайд 14: Parallel subtree construction stage
	Слайд 15: Calculating algorithm complexity
	Слайд 16: Calculating algorithm complexity - the parallel subtree partitioning stage 
	Слайд 17: Calculating algorithm complexity - the parallel subtree construction stage
	Слайд 18: Performance comparison
	Слайд 19: Conclusion
	Слайд 20: Thank you for your attention!

