

Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра мережних технологій факультету інформатики

“Scaling SignalR WebSocket Real-Time Applications”

Текстова частина до курсової роботи

за спеціальністю „Комп’ютерні науки”-122

Керівник курсової роботи:

док.техн.наук, доц. Глибовець А.М.

(підпис)

“ ” 2021 року

Виконала: студентка КН-1

Діденко В. О.

(підпис)

“ ” 2021 року

Київ 2021

1

Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF "KYIV-MOHYLA ACADEMY"

Network Technologies Department of the Faculty of Informatics

APPROVED

Head of the Network Technologies Department

associate professor, doctor of mathematics

_______________________ G.I. Malaschonok

 (signature)_____________________________

“____” ____________ 2020 year.

INDIVIDUAL TASK

For the course work

For 1-year Master Degree student of the Faculty of Informatics

TOPIC: Scaling SignalR WebSocket Real-Time Applications

Output data:

Text part content of coursework:

Individual task

Calendar plan

Abstract

Introduction

Section 1: WebSocket SignalR Scaling Caveats

Section 2: Introducing Backplanes

Section 3: Scaling with Azure SignalR Service

Conclusion

References

Issue date “____” ____________ 2021 year

Supervisor ______________(signature)

Task received __________________(signature)_

2

CALENDAR PLAN

Theme: Scaling SignalR WebSocket Real-Time Applications

Stage Name Deadline Note

1 Acquiring coursework topic 01.10.2020

2 Finding appropriate literature 10.11.2020

3 Researching WebSocket scaling approaches 10.12.2020

4 Researching load balancing and sticky sessions 27.12.2020

5 Exploring Backplane approach 27.01.2021

6 Exploring Azure SignalR Service 08.02.2021

7 Researching Redis Backplane 07.03.2021

8 Researching Azure SignalR Service Performance 15.03.2021

9 Outline of the coursework 16.03.2021

10 Coursework analysis with the Supervisor 16.03.2021

11 Application implementation 28.03.2021

12 Coursework main section and conclusion 10.04.2021

13 Coursework analysis with the Supervisor 10.04.2021

14 Coursework improvement 13.04.2021

15 Creation of the presentation 13.04.2021

16 Coursework analysis with the Supervisor 18.04.2021

17 Handing in the coursework 11.05.2021

Student: Didenko V.O. “____” ________________

Supervisor: Glybovets A.M. “____” ________________

3

TABLE OF CONTENTS

TABLE OF FIGURES 4

ABSTRACT 5

INTRODUCTION 6

Section 1: WebSocket SignalR Scaling Caveats 8

1.1 Scaling up and out 8

1.2 Syncing clients between application instances 12

Section 2: Introducing Backplanes 15

2.1 Backplanes as a communication layer 15

Section 3: Scaling with Azure SignalR Service 20

3.1 The Azure SignalR Service concept 20

3.2 Azure SignalR Service performance factors 23

3.3 Tool for evaluating Azure SignalR Service performance 32

CONCLUSION 44

REFERENCES 45

4

TABLE OF FIGURES

Figure 1: Server overloaded due to load not being balanced out 9

Figure 2: Introducing a load balancer ... 9

Figure 3: No connection between the application instances ... 12

Figure 4: Broadcast issue caused by no communication between instances 13

Figure 5: Establishing a communication layer for the application instances 14

Figure 6: Backplane as a communication layer .. 16

Figure 7: Azure SignalR Service flow diagram ... 21

Figure 8: Azure SignalR Service scale-out approach ... 21

Figure 9: Echo quick evaluation benchmarking test results .. 27

Figure 10: Broadcast quick evaluation benchmarking test results 27

Figure 11: Initial connection process to Azure SignalR Service 28

Figure 12: The echo WebSocket transport flow.. 29

Figure 13: Recommended application server count in case of echo 29

Figure 14: The broadcast WebSocket transport flow .. 30

Figure 15: Recommended application server count in case of broadcast 31

Figure 16: Application server class diagram ... 42

Figure 17: The benchmark tool component class ... 43

Figure 18: The RpcServer class diagram ... 43

5

ABSTRACT

Real-time applications depend on persistent connections in order to

provide users with high frequency data updates from the application server.

The idea behind persistent connections is that when a connection is

established it is kept open, hence optimizing the data transfer process by

saving time on establishing a new connection. As the number of continuous

connections grows in a high-traffic application sustaining a high number of

clients, eventually the server can run out of connection resources. In this

research work the aim is to scale the persistent connections in order to limit

the number of open connections that a single application server has to

handle; therefore, designing real-time applications that can serve many

clients in an efficient manner. This study introduces WebSocket scaling

techniques, focusing on the Azure SignalR Service as the solution for scaling

data-intensive applications.

6

INTRODUCTION

There is a demand for data-intensive applications to provide real-time

up-to-date information without end-users having to request a data refresh.

[1] In addition, real-time applications are expected to be performance

efficient and respond to user interactions with minimal delay in order to

provide a smooth user experience. Therefore, applications delivering real-

time data access require high frequency updates from the application server

and to do so persistent connections between the server and the application

are established. [2]

Persistent connections incorporate the idea of using the same TCP

connection for managing multiple HTTP requests/responses, instead of

opening a new connection for each request/response pair, therefore

reducing latency since the time spent on the handshake process for

establishing a new connection is saved. Persistent connections stay open

and in a high-traffic application serving many clients, kept-alive connections

can cause servers to reach the maximum number of connections that they

can handle and cause servers to overload, therefore, leading to a poor user

experience. [2]

The SignalR [3] (an open-source library for providing real-time web

functionality) application load testing experiment that was conducted at the

Thousands of concurrent connections with Azure SignalR Service NDC

Conference hosted by Nelly Sattari and Stafford Williams [2][4] revealed that

(using the Cranker [5] load testing tool from a local machine) a real-time

SignalR application hosted on S1 App Service [6] could serve at maximum

7

768 concurrent connections with performance drawbacks. [2] Expanding

from a local machine to 50 docker containers [7] and pointing them at the

SignalR application hosted on S1 App Service helped to increase the limit to

16000 concurrent connections at which the application was not stable and

performance was dropping [2][4].

In this work the aim is to scale the persistent connections in order to

limit the number of concurrent connections that a single application server

has to handle, hence expanding the system’s capability to endure increased

load as the number of concurrent client connections grows. Ensuring higher

scalability in turn secures a smooth user experience in real-time applications

that serve a significant amount of traffic. [1] This work focuses on SignalR

Websocket applications: how they can be scaled out to serve many clients

in a performance efficient manner.

This research work is organized into three sections. The first section

covers scaling problems that occur when the application that depends on

persistent connections (using WebSockets for the data transfer method) is

scaled up and out. The second section introduces backplanes and how they

are used to solve scaling issues of WebSocket applications. The third section

investigates the Azure SignalR Service [8] solution for highly scalable

WebSocket applications and, based on typical use case scenarios,

evaluates the performance factors that impact the Azure SignalR Service

capacity by implementing a performance evaluation tool.

8

Section 1: WebSocket SignalR Scaling Caveats

1.1 Scaling up and out

There are two main approaches to scaling a web-based application:

scaling up and scaling out. An application is scaled up by increasing the

amount of and enhancing the available resources, switching to a larger

server or a more extensive virtual machine with more RAM, CPU, and

specifications. However, as the number of connections grows, eventually,

the application will reach the limit and have to scale out - also referred to as

horizontal scaling - and that means adding more servers to handle the load.

[1][2]

In horizontal scaling, it is essential to balance out the load among the

available instances of the application to prevent critical overload of a specific

instance. For example, when an application is scaled out and made available

on multiple servers if the load is not evenly distributed, requests may mostly

be routed to a particular server even if other servers are available, causing

that server to overload, resulting in a poor end-user experience. Figure 1:

Server overloaded due to load not being balanced out illustrates a possible

scenario if the load is not correctly distributed among the instances of the

application. [1][2][9][10][12]

To solve the issue of incoming client connections overloading a certain

server, a load balancer is introduced to balance out the load among all

available servers. Such an approach helps to prevent client connections from

hitting a certain server when other servers are available, therefore preventing

9

a certain instance of critically overloading. This is illustrated in Figure 2:

Introducing a load balancer. [1][2][9][10][12]

Figure 1: Server overloaded due to load not being balanced out

Figure 2: Introducing a load balancer

10

In addition, sticky sessions [13] should be implemented. In SignalR,

WebSockets are chosen as the data transfer method by default.

Nevertheless, if a WebSocket connection cannot get established, SignalR

switches to other means of persistent communication such as Server-Sent-

Events and Long Polling. Since in the latter data transfer method the

connection between the client and the server needs to be reopened for every

request/response pair, a previously connected client upon initiating a new

connection request could, through the load balancer, get connected to a

different server instead of the server that was previously processing the

client’s request - causing an issue in the application. [13][14][15]

For example, the client, through the load balancer, requests Server 1

to prepare a specific order Order 1. As a result, Server 1 starts processing

the specific order for the client. When the client sends a polling request, the

load balancer could assign the polling request to a different server, for

example to Server 2, which is not aware about Order 1. This applies to

Server-Sent-Events as well since the HTTP connection could get dropped:

as the connection gets restored by the EventSource, in the same way the

load balancer could forward the connection request to a different instance of

the scaled out application. [13][14][15]

To prevent such a scenario from occurring, sticky sessions are

introduced. Sticky sessions help to ensure that the load balancer will assign

the client connection to the same server that processed the client’s previous

request. A possible flow with sticky sessions is that the load balancer will set

a cookie in the browser for tracking which server the client got connected to;

11

based on the cookie, the load balancer will then assign subsequent requests

to the same server. [13][14][15]

12

1.2 Syncing clients between application instances

By design, .NET Core SignalR needs to keep track of the connected

clients in each process, making it essential for each SignalR instance in the

scaled-out application to be informed about which clients are connecting and

disconnecting. This imposes a problem in the load balancer design which

was introduced in the previous section 1.1 since there is no connection

between the SignalR instances that would allow showing which clients are

connecting and disconnecting. [2][8][15][19][21][22][26][27][28]

Figure 3: No connection between the application instances

Figure 3: No connection between the application instances illustrates

that there are three instances of the .NET Core SignalR application behind

a load balancer. It is demonstrated that when Client #1 initiates a SignalR

connection, it connects to the first instance through the load balancer. It is

possible that the next client who connects to the application, for example,

Client #2, could be forwarded to a different instance of the application, for

13

example, the third one. Since no means of communication is established

between the instances of the application, both instances are unaware of the

other connected clients. In consequence, messages sent from the Server

Hub or HubContext will be sent only to the clients that are connected to that

instance of the application instead of being sent to all connected clients.

[2][8][15][19][21][26][27]

Figure 4: Broadcast issue caused by no communication between instances

For example, for collaborative clients who want to broadcast a

message to all the other clients, no communication between the application

instances becomes an issue. An example of such a scenario is illustrated in

Figure 4: Broadcast issue caused by no communication between instances.

14

In the diagram, Client 1 sends a message to Server 1 to broadcast to the

rest of the clients and Server 1 broadcasts the message to all the connected

clients. However, Server 1 is not aware of Server 2 as well as the clients that

are connected to Server 2, that is Client 4, Client 5, and Client 6 - as a result,

only the clients that are connected to Server 1 receive the message, that is

Client 1, Client 2, and Client 3. Therefore, a communication layer needs to

be established between the instances of the application. The general idea is

illustrated in the diagram below in Figure 5: Establishing a communication

layer for the application instances. [2][8][15][19][21][22][26][27][28]

Figure 5: Establishing a communication layer for the application instances

15

Section 2: Introducing Backplanes

2.1 Backplanes as a communication layer

To solve the communication gap issue between the instances of a

horizontally scaled SignalR application, which is described in section 1.2, the

instances need to connect to a shared communication layer, which is called

a Backplane. [19]

Each of the SignalR application instances connects to the Backplane

by subscribing to it. If a certain instance of the application receives any new

messages or client connections, it publishes the received data to the

Backplane and the Backplane broadcasts the updates to all subscribed

instances of the application. [18][19][20][22][26][27][28]

At the same time, whenever an update is available on a certain

application instance, the instance publishes the update to the Backplane and

the Backplane informs the rest of the instances about the update so that the

rest of the instances could forward the update to their connected clients. In

Figure 6: Backplane as a communication layer it is shown how the

application instance Server 1 publishes the message “Hello” to the

Backplane; the message is then forwarded to all the subscribers (the

application instances - Server 1, Server 2, and Server 3) and each

application instance sends the update to its connected clients. As a result,

all clients receive the message “Hello” from Server 1 even if they are

connected to another instance, for example Client #3, Client #4, and Client

#5. It is important to note that without a communication layer being

16

established between the application instances (Server 1, Server 2, and

Server 3) only the clients connected to Server 1 (Client #1 and Client #2)

would have received the message “Hello”. [18][19][20][22][26][27][28]

Figure 6: Backplane as a communication layer

With the help of the Backplane, a communication layer is established

through which the SignalR instances can communicate with one another and

share any received updates. In addition, all connected clients will be able to

receive the same updates regardless of which instance of the application

they get connected to, hence, solving the communication gap issue.

To create a Backplane, a service providing a subscribe and publish

messaging pattern is used; for example, a Backplane can be implemented

with Redis [16] - an in-memory key-value store that provides a subscribe and

publish API, also referred to as Pub/Sub [16]. The Pub/Sub API implements

17

the Publish/Subscribe messaging paradigm and provides the SUBSCRIBE,

UNSUBSCRIBE, and PUBLISH commands. [16]

1

2

3

SUBSCRIBE first second

PUBLISH first Hello

UNSUBSCRIBE first

In the code snippet above on line 1, it is shown how the SUBSCRIBE

command is called to subscribe the client to the channels named first and

second. If any messages are published by other clients to the first or second

channels, Redis will broadcast the messages to all subscribers of the

corresponding channel. On line 2 a sample command to publish a message

to a channel is shown: the Hello message is published to the first channel -

as a result, all subscribers of the first channel will receive Hello. To

unsubscribe from a channel, the client should call the UNSUBSCRIBE

command. On line 3 it is shown how to use the UNSUBSCRIBE command

to unsubscribe from a certain channel, in this case, the first channel. Calling

the UNSUBSCRIBE command without arguments will unsubscribe the client

from all channels. [16]

In a publish and subscribe messaging service publishers and

subscribers are decoupled: published messages get characterized into

channels without knowing the available subscribers and if a channel has any

subscribers at all; in return, subscribers can subscribe to several channels

without knowing the existing publishers and if a channel has any publishers.

Publishers publish messages to the corresponding channels and the

subscribers on the other end receive any messages that are published to the

18

channels that they are subscribed to without the need to know the existing

(if any) subscribers and publishers. [16][17]

Such decoupling of publishers and subscribers enables higher

scalability and provides a more robust network topology. One advantage of

using Redis Pub/Sub API for creating the Backplane for the communication

layer is that it is lightweight, making real-time communication possible at very

high throughput while keeping the latency very low. [16][17]

One way to implement a Redis Backplane for scaling an existing .NET

Core SignalR application is to add the SignalR.StackExchangeRedis

package to the package references of the project file (with the csproj

extension). Afterward, the Redis package can be used in the project’s service

configuration method by calling the AddStackExchangeRedis() method and

passing the Redis connection string to it. [18][27] An example of the package

reference definition and configured services is provided in the code snippets

below. The project’s package references:

1

2

3

4

5

6

7

8

<ItemGroup>

 <PackageReference

 Include="Microsoft.AspNetCore.SignalR.Client"

 Version="5.0.2" />

 <PackageReference

 Include="Microsoft.AspNetCore.SignalR.StackExchangeRedis"

 Version="3.1.0" />

</ItemGroup>

The project’s service configuration:

19

1

2

3

4

public void ConfigureServices(IServiceCollection services)

{

 services.AddSignalR().AddStackExchangeRedis("RedisConnectionString");

}

 As an alternative solution to implementing and managing the Redis

Backplane, SignalR provides a fully managed scaling solution - the Azure

SignalR Service [8] which is introduced in the next section of this research

work, in Section 3: Scaling with Azure SignalR Service.

20

Section 3: Scaling with Azure SignalR Service

3.1 The Azure SignalR Service concept

Azure SignalR Service provides a fully managed backplane allowing to

massively scale WebSocket applications. In fact, Azure SignalR Service is

viewed more as a proxy than a backplane since it manages all the client

connections while the application instances just need to establish a few

persistent connections to the service. [8][15][19][20][21][22][23][24][25][27]

Applications that are scaled using the Azure SignalR Service have the

following initial connection flow. At First, a constant connection is established

between the application server and the Azure SignalR Service. Once the

connection is established between the application server and the Azure

SignalR Service, the system is ready to accept connections. Next, the client

sends an authentication and connection request to the application server;

upon receiving the client connection request, the application server requests

an authentication token from the Azure SignalR Service; the Azure SignalR

Service responds with the Authentication Token to the application server; the

application server redirects the client with the Authentication Token; and, as

a result, the client gets connected to the Azure SignalR Service. The

described flow is illustrated below in Figure 7: Azure SignalR Service flow

diagram. [8][15][19][20][21][22][23][24][25][27][28]

21

Figure 7: Azure SignalR Service flow diagram

As illustrated in the diagram below in Figure 8: Azure SignalR Service

scale-out approach, clients are connected to the Azure SignalR Service

rather than directly connecting to an instance of the .NET Core SignalR

application. The SignalR Service acts as a mediator between the application

instances and the connecting clients - the clients and the application’s

SignalR hub communicate through the service. This design enables scaling

the service and adjusting it to manage different levels of traffic without having

to modify the application’s source code or make changes to the hosting

environment. [8][15][19][20][21][22][23][24][25][27][28]

Figure 8: Azure SignalR Service scale-out approach

22

Due to the decoupled Azure SignalR Service design, explained in the

previous paragraph, integrating the service to scale an existing SignalR

application requires minimal changes to the source code. The Azure SignalR

Service can be integrated into an existing .NET Core SignalR application via

installing the Microsoft.Azure.SignalR NuGet package. Next, an Azure

SignalR Service needs to be created on the Azure Portal to generate the

connection string to the service. The generated connection string is then

specified in the SignalR application. In the code snippet below on line 3, it is

shown how the Azure SignalR Service is enabled by appending

.AddAzureSignalR() to the application configuration services declaration.

Application routes also need to be updated by changing UseSignalR to

UseAzureSignalR. [8][15][19][20][21][22][23][24][25][27][28]

1

2

3

4

public void ConfigureServices(IServiceCollection services)

{

 services.AddSignalR().AddAzureSignalR();

}

The next section investigates and evaluates the performance factors

that impact the Azure SignalR Service in order to properly configure the

service for designing highly scalable data-intensive applications.

23

3.2 Azure SignalR Service performance factors

 It is important to investigate the performance factors and benchmarks

that have an effect on the Azure SignalR Service inbound and outbound

capacity. For evaluating the Azure SignalR Service performance, a sample

benchmark tool was created based on typical use-case scenarios which is

described in detail in the subsequent section, Section 3.3 Tool for evaluating

Azure SignalR Service performance.

To begin, for evaluating performance requirements such as the

inbound/outbound capacity, it is important to define which performance

factors impact the Azure SignalR Service. Next, it is essential to determine

which Azure SignalR Service tier best covers the requirements for each

specific use case. In this study, it is presumed that the application server is

powerful enough and is not the performance bottleneck; with this in mind,

the maximum inbound and outbound bandwidth is checked for every tier

focusing on two used transport types: echo and broadcast. [25]

The following paragraphs describe the performance factors that have

an affect on the Azure SignalR Service inbound and outbound capacity:

computational resources (the selected pricing tier), number of connections,

message size and send rate; data transport type; and the routing cost of the

use case scenario. [25]

 To start, the available computational resources such as the Central

Processing Unit (CPU), memory, and network are one of the factors that limit

Azure SignalR Service capacity: the more connections the service accepts

24

and manages, the more memory is utilized; at the same time more Central

Processing Unit cycles are required to process larger message traffic where

each message exceeds 2,048 bytes. [25]

 The next performance factor is the data transfer type: WebSocket,

Server-Sent-Event, or Long-Polling - with WebSockets being the most

performance efficient, followed by Server-Sent-Events as second best, and

Long Polling showing the lowest performance. SignalR uses WebSockets by

default and switches to other data transfer types if WebSockets are not

supported by the client. In this work, WebSockets is chosen as the data

transfer method. [25]

 The third performance factor is the message routing cost: acting as a

message router, Azure SignalR Service routes incoming messages from

clients or servers to other clients or servers; subsequently, a separate routing

policy is required for every other API or use case. There are four main

scenarios when it comes to types of WebSocket transport: echo, broadcast,

send to group, and send to connection. Echo requires the lowest routing cost

since in this scenario the client sends the message to itself and sets itself as

the routing destination. The rest of the WebSocket transport use cases

require more processing units, memory, and increased network bandwidth

(the total size of incoming and outgoing messages in 1 second) since for

these scenarios the service turns to its internal distributed data structure to

find the target connections, which in turn slows down the performance. [25]

 It can be concluded that the following performance factors impact

Azure SignalR Service inbound and outbound capacity: computational

25

resources (the selected pricing tier), number of connections, message size

and send rate; data transport type; and the routing cost of the use case

scenario. The next stage in performance evaluation includes calculating the

maximum inbound and outbound bandwidth at which a smooth user

experience can still be delivered. [25]

Inbound bandwidth defines the total incoming message size per

second and is calculated with the following formula: inbound bandwidth =

inbound connections * (message size / send interval) [25]. Inbound

connections represent the number of connections that are sending the

message, message size is the size of a single message that is being sent on

average, and the send interval is the timespan in which a single message is

sent that is set to one second. Respectfully, outbound bandwidth defines the

total outgoing message size per second and is calculated with the following

formula: outbound bandwidth = outbound connections * (message size /

send interval) [25], with the outbound connections representing the number

of connections that are receiving the message. [25]

It is important to consider that the maximum inbound bandwidth and

outbound bandwidth differs for each pricing tier (the number of selected

processing units); and in order for a smooth user experience to be

guaranteed, the inbound and outbound connection values should stay below

the maximum values. [25]

For mixed use case scenarios where several transport types are being

used, evaluating the overall capacity (inbound and outbound bandwidth) is

calculated in the following steps: first, mixed use cases are divided into the

26

basic use cases (echo, broadcast, send to group, or send to connection);

second, the maximum inbound and outbound message bandwidth is

calculated for each transport type separately using the preceding formulas;

afterward the total maximum inbound/outbound bandwidth is calculated by

summing the bandwidth calculations of each transport type. [25]

According to performance benchmarking recommendations provided

in the Azure SignalR Service documentation [25], the maximum inbound and

outbound bandwidth is calculated depending on the number of processing

units used. In addition, for each number of units, the committed maximum

threshold for Azure SignalR Service is provided; after which, if exceeded, the

user experience could suffer from connection throttling. [25]

Performing a quick evaluation by simulating connections (every client

represents a single connection) to the Azure SignalR Service each sending

a 2,048 bytes in size message every second and by increasing the number

of connections until performance starts to give in, revealed that the echo

transport type describes the maximum inbound bandwidth since it has the

lowest routing cost whereas the broadcast transport type determines the

maximum outbound message bandwidth. [25][29] The generated echo

evaluation test results for each unit count type are illustrated in Figure 9:

Echo quick evaluation benchmarking test results above and for broadcast

the results are provided in Figure 10: Broadcast quick evaluation

benchmarking test results below.

27

Figure 9: Echo quick evaluation benchmarking test results

Figure 10: Broadcast quick evaluation benchmarking test results

 Having determined the maximum inbound and outbound bandwidth for

each azure SignalR Service unit count type, the following paragraphs

provide more details on the benchmarking case study for echo and

broadcast. Next, it is determined how Azure SignalR Service should be

configured (for example, number of application servers and server

connections) to best correspond to the performance requirements (inbound

and outbound capacity) for use case scenarios when the echo or broadcast

WebSocket transport type is being used; therefore, to ensure a smooth user

experience in real-time applications that serve a significant amount of traffic.

28

For both echo and broadcast, the connection establishment stage is

the same: first, the application server connects to Azure SignalR Service;

when clients connect to the application server, they get redirected to the

Azure SignalR Service with the access token and endpoint URL; afterward,

WebSocket connections are established between the clients and the Azure

SignalR Service. This process is illustrated in the diagram below, in Figure

11: Initial connection process to Azure SignalR Service. [25]

Figure 11: Initial connection process to Azure SignalR Service

The echo Websocket transport type is evaluated by creating the

following use case scenario: once clients connect to Azure SignalR Service,

each connected client sends a message containing a timestamp to a specific

SignalR Hub with a one-second rate and, upon receiving the echoed

response from the application server, calculates the latency. This process is

executed for five minutes and the statistics of all message latency are

provided as a result of the performance test. The communication flow for the

echo transport type evaluation is illustrated in Figure 12: The echo

WebSocket transport flow. [25]

29

Figure 12: The echo WebSocket transport flow

Echo overall performance is impacted by the following factors: the

client connection number, message size, message sending rate, selected

unit count type, and CPU/memory of the application server. To ensure a

smooth user experience when using echo, the recommendations (for each

unit count type) regarding the required application server count are provided

in Figure 13: Recommended application server count in case of echo below.

[25]

Figure 13: Recommended application server count in case of echo

30

In the case of broadcast, once the application server receives the

message, it broadcasts to all clients. The more clients there are to broadcast,

the more messages there are to send to all clients resulting in a more

significant amount of traffic. In this use case, in contrast to the echo use case

test scenario, a smaller number of clients are broadcasting and even though

the inbound message bandwidth is small, the outbound bandwidth turns out

significant: with the increase of client connections or broadcast rate, the

outbound message bandwidth increases. The broadcast flow is illustrated in

Figure 14: The broadcast WebSocket transport flow. [25]

Figure 14: The broadcast WebSocket transport flow

Broadcast overall performance is impacted by the following factors: the

client connection number, message size, message sending rate, and the

selected unit count type. To ensure a smooth user experience when using

broadcast, the recommendations (for each unit count type) regarding the

required application server count are provided in Figure 15: Recommended

application server count in case of broadcast. Fewer application servers are

31

required in case of broadcast compared with echo since the inbound

message bandwidth is significantly smaller. [25]

Figure 15: Recommended application server count in case of broadcast

32

3.3 Tool for evaluating Azure SignalR Service performance

An application was created for evaluating the Azure SignalR Service

performance (throughput [1] and latency [1]) as the load increases to ensure

high performance of high-traffic data-intensive real-time applications as well

as the system’s capability to remain performance efficient as the number of

potential concurrent users increases.

 In the created application, an important metric that is used for

describing Azure SignalR Service performance is latency percentile. [1]

When describing performance of online systems, it is essential to analyze

the time between a client sending a request and receiving a response, also

known as the service response time. Since in real case scenarios, when the

system is serving different types of requests the response time can turn out

significantly different with occasional outlier requests that are processed

much longer than expected occurring due to unpredictable causes, response

time is viewed as a distribution of measurable values rather than a single

value. [1]

To provide relevant insight and analyze how many users got affected by the

response time delay, the percentile aggregation is applied to the collected

response time data. For this, the list of response time values is sorted from

shortest to longest, then the halfway point, the median value, is determined

as the 50th percentile: this means that, if for instance the halfway point turned

out to be 100 milliseconds, it means that the system responds to half of the

user requests less than 100 milliseconds, and the other half is handled above

1000 milliseconds. It is important to consider and analyze tail latencies - high

33

response time percentiles (for example, the 95th, 99th, and 99.9th

percentiles) since such metrics have a direct impact on the user experience.

[1] Therefore, during the performance evaluation, these statistics are

gathered and provided as part of the performance tests evaluation results.

By design, the application runs in the parent process and workers

mode: one parent process oversees several worker nodes. In this process,

SignalR clients are delegated to each worker by the parent process, after

which the parent process gives each worker a benchmark task to complete:

each worker connects to Azure SignalR Service, sends a message and

calculates the latency, providing the parent process with the calculation

results upon completion. This functionality is implemented with the gRPC

[32] (Remote Procedure Call) high-performance framework.

The application uses the methodology of finding the maximum

throughput, number of messages that can be processed with Azure SignalR

Service, based on the criteria that 99 percent of end-to-end latency of

message sending does not exceed the one second threshold. The

application’s performance evaluation case study, benchmarking process,

and statistics result generation is described in detail in the subsequent

paragraphs.

To begin, all SignalR clients connect to Azure SignalR Service at an

equal speed, for example, a thousand clients connect to the service at the

speed of a hundred client connections per second; in about ten seconds,

once all clients are successfully connected to the service, all clients can start

sending messages.

34

With the client connections established, each client starts sending

messages at the same message sending rate set as one second.

Consequently, in case of echo transport type, the message sending process

involves sending messages from the client to the server and then back to the

same client; for broadcast, the clients send messages to all clients

respectfully.

The message sending process repeats several times: each time with

a different number of clients that are sending messages, while the remaining

connected clients are kept in idle state. For example, if a thousand client

connections are established, at first part of the connected clients are chosen

as message senders in a random manner, for instance, two hundred clients

are selected to send messages every second to Azure SignalR Service for

a certain amount of time, for example for one minute, while the rest of the

eight hundred connected clients remain idle. In case during the specified

duration, 200 times 99 percent of the message’s latency stays below the one

second threshold, the number of idle clients is decreased as more clients are

assigned the message sending task to increase the load, for instance, the

number of message senders is increased to four hundred, and so on.

As the load increases with more and more concurrent messages being

sent, the performance test eventually completes when one of the following

is true: no more connected clients are left in idle state and all of them are

sending messages to the Azure SignalR Service, the set criteria of the 99th

latency percentile being below the one second threshold cannot be met, or

if the number of disconnected clients exceeds a certain threshold (if clients

35

get disconnected during the evaluation process and the threshold is not

exceeded, the clients will try to reconnect to keep the same load in each

process). Upon completion, the gathered statistics of the message latency

and number of connections per second during the whole message sending

process can be reviewed. An example of the overall performance test result

output is provided below:

 Type : echo

2021-05-03 11:32:22.522 +03:00 [INF] Stop collecting...

2021-05-03 11:32:22.554 +03:00 [INF] -----------

2021-05-03 11:32:22.554 +03:00 [INF] 1000 connections established in 3s

2021-05-03 11:32:22.557 +03:00 [INF] -----------

2021-05-03 11:32:22.557 +03:00 [INF] Connections/sendingStep: 1000/500 in

5s

2021-05-03 11:32:22.557 +03:00 [INF] Messages: requests: 1.19MB,

responses: 1.19MB

2021-05-03 11:32:22.558 +03:00 [INF] Requests/sec: 115.60

2021-05-03 11:32:22.558 +03:00 [INF] Responses/sec: 115.60

2021-05-03 11:32:22.558 +03:00 [INF] Write throughput: 237.67KB

2021-05-03 11:32:22.558 +03:00 [INF] Read throughput: 237.67KB

2021-05-03 11:32:22.558 +03:00 [INF] Latency:

2021-05-03 11:32:22.558 +03:00 [INF] 50.00%: < 100 ms

2021-05-03 11:32:22.558 +03:00 [INF] 90.00%: < 100 ms

2021-05-03 11:32:22.558 +03:00 [INF] 95.00%: < 100 ms

2021-05-03 11:32:22.558 +03:00 [INF] 99.00%: < 100 ms

2021-05-03 11:32:22.558 +03:00 [INF] 99% time to connect (ms): 501

2021-05-03 11:32:22.559 +03:00 [INF] -----------

2021-05-03 11:32:22.559 +03:00 [INF] Connections/sendingStep: 1000/1000 in

4s

2021-05-03 11:32:22.559 +03:00 [INF] Messages: requests: 2.44MB,

responses: 2.44MB

2021-05-03 11:32:22.559 +03:00 [INF] Requests/sec: 296.50

2021-05-03 11:32:22.559 +03:00 [INF] Responses/sec: 296.50

2021-05-03 11:32:22.559 +03:00 [INF] Write throughput: 609.60KB

2021-05-03 11:32:22.559 +03:00 [INF] Read throughput: 609.60KB

2021-05-03 11:32:22.559 +03:00 [INF] Latency:

36

2021-05-03 11:32:22.559 +03:00 [INF] 50.00%: < 100 ms

2021-05-03 11:32:22.559 +03:00 [INF] 90.00%: < 100 ms

2021-05-03 11:32:22.559 +03:00 [INF] 95.00%: < 100 ms

2021-05-03 11:32:22.559 +03:00 [INF] 99.00%: < 100 ms

2021-05-03 11:32:22.559 +03:00 [INF] 99% time to connect (ms): 501

Throughout the performance test, a statistics collector gathers the

message latencies and organizes the results in specific latency slots with the

maximum value being 1000 milliseconds: 0-100 milliseconds, 100-200

milliseconds, 200-300 milliseconds, 300-400 milliseconds, 400-500

milliseconds, 500-600 milliseconds, 600-700 milliseconds, 700-800

milliseconds, and 900-1000 milliseconds. Along with the latency calculations,

the statistics collector also records the connection status and number of

client join/leave message sender process statistics. All the performance

evaluation results are collected with a one second rate. An example of such

statistics is provided below (on lines 16-26 and 63-73 the latency slots can

be viewed):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

2021-05-03 11:32:20.903 +03:00 [INF]

Statistic type: echo

connection:connect:success : 1000

connection:connect:fail : 0

connection:connect:reconnect : 0

group:join:success : 0

group:join:fail : 0

group:leave:success : 0

group:leave:fail : 0

message:received : 1186

message:sent : 1186

message:sentSize : 2438416

message:recvSize : 2438416

epoch : 2

37

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

sendingStep : 1000

message:lt:100 : 1186

message:lt:200 : 0

message:lt:300 : 0

message:lt:400 : 0

message:lt:500 : 0

message:lt:600 : 0

message:lt:700 : 0

message:lt:800 : 0

message:lt:900 : 0

message:lt:1000 : 0

message:ge:1000 : 0

message:streamItemMissing : 0

connection:connect:lifespan:0.5 : 13856

connection:connect:lifespan:0.9 : 14231

connection:connect:lifespan:0.95 : 14291

connection:connect:lifespan:0.99 : 14352

connection:connect:cost:0.5 : 29

connection:connect:cost:0.9 : 67

connection:connect:cost:0.95 : 92

connection:connect:cost:0.99 : 501

connection:reconnect:cost:0.5 : 0

connection:reconnect:cost:0.9 : 0

connection:reconnect:cost:0.95 : 0

connection:reconnect:cost:0.99 : 0

connection:sla:0.5 : 100

connection:sla:0.9 : 100

connection:sla:0.95 : 100

connection:sla:0.99 : 100

connection:connect:offline:0.5 : 0

connection:connect:offline:0.9 : 0

connection:connect:offline:0.95 : 0

connection:connect:offline:0.99 : 0

2021-05-03 11:32:21.897 +03:00 [INF]

Statistic type: echo

connection:connect:success : 1000

38

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

connection:connect:fail : 0

connection:connect:reconnect : 0

group:join:success : 0

group:join:fail : 0

group:leave:success : 0

group:leave:fail : 0

message:received : 1186

message:sent : 1186

message:sentSize : 2438416

message:recvSize : 2438416

epoch : 2

sendingStep : 1000

message:lt:100 : 1186

message:lt:200 : 0

message:lt:300 : 0

message:lt:400 : 0

message:lt:500 : 0

message:lt:600 : 0

message:lt:700 : 0

message:lt:800 : 0

message:lt:900 : 0

message:lt:1000 : 0

message:ge:1000 : 0

message:streamItemMissing : 0

connection:connect:lifespan:0.5 : 14851

connection:connect:lifespan:0.9 : 15226

connection:connect:lifespan:0.95 : 15286

connection:connect:lifespan:0.99 : 15347

connection:connect:cost:0.5 : 29

connection:connect:cost:0.9 : 67

connection:connect:cost:0.95 : 92

connection:connect:cost:0.99 : 501

connection:reconnect:cost:0.5 : 0

connection:reconnect:cost:0.9 : 0

connection:reconnect:cost:0.95 : 0

connection:reconnect:cost:0.99 : 0

39

87

88

89

90

91

92

93

94

connection:sla:0.5 : 100

connection:sla:0.9 : 100

connection:sla:0.95 : 100

connection:sla:0.99 : 100

connection:connect:offline:0.5 : 0

connection:connect:offline:0.9 : 0

connection:connect:offline:0.95 : 0

connection:connect:offline:0.99 : 0

The described application for evaluating the Azure SignalR Service

performance consists of three main components: the sample application

server provided in the appserver folder; the gRPC configuration for

simulating the client connections (the worker nodes) provided in the

RpcServer folder; and the benchmark tool (parent process node) that uses

the gRPC configuration for simulating the clients (the worker nodes), points

the clients to connect to the application server, and starts performing the

benchmark tests - provided in the master folder. The application’s structure

is provided in the diagram below:

 .

// The sample application server component:

├── appserver

│ ├── Hub

│ │ └── BenchHub.cs

│ ├── Program.cs

│ ├── Startup.cs

// The benchmark tool (parent process) component:

├── master

│ ├── Controller.cs

│ ├── echo.yaml

│ ├── plugins

// Helper third-party Microsoft Azure SignalR Benchmark plugin:

40

│ │ ├── Plugin.Microsoft.Azure.SignalR.Benchmark.dll

│ ├── Program.cs

│ ├── protos

│ │ └── rpc.proto

│ ├── rpc

│ │ ├── RpcClient.cs

│ │ ├── RpcConfig.cs

│ │ └── RpcUtils.cs

│ └── Startup.cs

// The rpc component for simulating client connections (worker

nodes) component:

├── RpcServer

│ ├── Program.cs

│ ├── Protos

│ │ └── rpc.proto

│ ├── rpc

│ │ ├── IRpcServer.cs

│ │ └── RpcServer.cs

│ ├── Services

│ │ └── RpcServiceImpl.cs

│ └── Startup.cs

// Helper third-party components of Microsoft Azure SignalR

Benchmark plugin:

├── rpc

├── signalr

├── interface

├── common

└── utils

The application server uses the Azure SignalR Service, through which

the concurrent simulated client connections are scaled in order to handle the

load. This is demonstrated in the code snippet below (on lines 11-18 and

lines 38-41):

41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

public void ConfigureServices(IServiceCollection services)

{

 if (_useLocalSignalR)

 {

 services.AddSignalR();

 }

 else

 {

 services.AddSignalR()

 .AddMessagePackProtocol()

 .AddAzureSignalR(option => {

 option.AccessTokenLifetime =

 TimeSpan.FromHours(_serverConfig.AccessTokenLifetime);

 option.ConnectionCount =

 _serverConfig.ConnectionNumber;

 option.ConnectionString =

 _serverConfig.ConnectionString;

 });

 }

 services.Replace(ServiceDescriptor.Singleton(

 typeof(ILoggerFactory), typeof(TimedLoggerFactory)));

}

public void Configure(IApplicationBuilder app)

{

 app.UseRouting();

 if (_useLocalSignalR)

 {

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapHub<BenchHub>(HUB_NAME);

 }

);

 }

 else

42

37

38

39

40

41

42

43

 {

 app.UseAzureSignalR(routes =>

 {

 routes.MapHub<BenchHub>(HUB_NAME);

 });

 }

}

The application server’s class diagram is provided in Figure 16: Application

server class diagram below.

Figure 16: Application server class diagram

The parent process (master node), which represents the benchmark tool

component, class diagram is presented in Figure 17: The benchmark tool

component class diagram.

43

Figure 17: The benchmark tool component class

Finally, the RpcServer class diagram is provided in Figure 18: The

RpcServer class diagram.

Figure 18: The RpcServer class diagram

44

CONCLUSION

This work was inspired by the desire to increase real-time applications’

capability to remain performance efficient as the number of concurrent client

connections grows; therefore, ensuring a smooth user experience in data-

intensive applications that serve a significant amount of traffic. In this work

persistent connections were scaled out in order to limit the number of

concurrent connections that a single application server has to handle, and

as a result the system’s ability to cope with increased load was improved.

Focusing on SignalR Websocket applications, it was determined how they

can be scaled out to serve a significant number of clients in a performance

efficient manner.

This study introduced two main WebSocket scaling solutions: the

Redis Backplane and the Azure SignalR Service, focusing on the Azure

SignalR Service as the solution for scaling data-intensive applications. The

following performance factors that impact the Azure SignalR Service were

determined: computational resources, number of connections, message size

and send rate; data transport type; and the routing cost of the use case

scenario focusing on echo and broadcast. Next, the maximum inbound and

outbound bandwidth at which a smooth user experience can still be delivered

was defined. As a result of this work, an Azure SignalR Service performance

evaluation tool was created, using latency percentiles as the performance

evaluation metric that revealed outstanding scalability of the system, capable

of scaling out to serve thousands of connections and at the same time

delivering a smooth user experience.

45

REFERENCES

[1]. Martin Kleppmann Designing Data-Intensive Applications. O'Reilly

Media, Inc., March 2017. ISBN: 9781449373320

[2]. Nelly Sattari & Stafford Williams Thousands of concurrent connections

with Azure SignalR Service. NDC Conferences, October 2019.

https://www.youtube.com/watch?v=s3cq4sQldcM

[3]. https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction

[4]. https://staffordwilliams.com/blog/2019/06/10/load-testing-aspnet-core-

signalr/

[5]. https://github.com/dotnet/aspnetcore/tree/main/src/SignalR/perf/benc

hmarkapps/Crankier

[6]. https://azure.microsoft.com/en-us/pricing/details/app-

service/windows/

[7]. https://www.docker.com/

[8]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview

[9]. https://www.cloudflare.com/learning/performance/what-is-load-

balancing/

[10]. https://medium.com/@itIsMadhavan/what-is-load-balancer-and-how-

it-works-f7796a230034

[11]. https://avinetworks.com/what-is-load-balancing/

[12]. https://www.nginx.com/resources/glossary/load-balancing/

[13]. https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

sticky-sessions.html

[14]. https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-

sticky-sessions.html

https://www.youtube.com/watch?v=s3cq4sQldcM
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://staffordwilliams.com/blog/2019/06/10/load-testing-aspnet-core
https://staffordwilliams.com/blog/2019/06/10/load-testing-aspnet-core-signalr/
https://staffordwilliams.com/blog/2019/06/10/load-testing-aspnet-core-signalr/
https://github.com/dotnet/aspnetcore/tree/main/src/SignalR/perf/
https://github.com/dotnet/aspnetcore/tree/main/src/SignalR/perf/benchmarkapps/Crankier
https://github.com/dotnet/aspnetcore/tree/main/src/SignalR/perf/benchmarkapps/Crankier
https://azure.microsoft.com/en-us/pricing/details/app-service/
https://azure.microsoft.com/en-us/pricing/details/app-service/
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/
https://www.docker.com/
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://www.cloudflare.com/learning/performance/what-is-load
https://www.cloudflare.com/learning/performance/what-is-load-balancing/
https://www.cloudflare.com/learning/performance/what-is-load-balancing/
https://medium.com/@itIsMadhavan/what-is-load-balancer-and
https://medium.com/@itIsMadhavan/what-is-load-balancer-and-how-it-works-f7796a230034
https://medium.com/@itIsMadhavan/what-is-load-balancer-and-how-it-works-f7796a230034
https://avinetworks.com/what-is-load-balancing/
https://www.nginx.com/resources/glossary/load-balancing/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html

46

[15]. https://www.nellysattari.com/real-time-applicationsazure-signalr-

service/

[16]. https://redis.io/topics/pubsub

[17]. https://cloud.google.com/pubsub/docs/overview

[18]. https://blexin.com/en/blog-en/redis-as-backplane-to-scale-your-

blazor-applications/

[19]. https://docs.microsoft.com/en-us/aspnet/core/signalr/scale

[20]. https://docs.microsoft.com/en-us/azure/architecture/example-

scenario/signalr/

[21]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-

scale-aspnet-core

[22]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-howto-

scale-signalr

[23]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-

quickstart-dotnet-core

[24]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-

internals

[25]. https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-

performance

[26]. https://codeopinion.com/practical-asp-net-core-signalr/

[27]. https://codeopinion.com/practical-asp-net-core-signalr-scaling/

[28]. https://www.linkedin.com/learning/scaling-out-using-azure-signalr-

service

[29]. https://github.com/dcomartin/Practical.AspNetCore.SignalR

[30]. https://github.com/Azure/azure-

signalr/blob/dev/specs/ServiceProtocol.md

https://www.nellysattari.com/real-time-applicationsazure-signalr
https://www.nellysattari.com/real-time-applicationsazure-signalr-service/
https://www.nellysattari.com/real-time-applicationsazure-signalr-service/
https://redis.io/topics/pubsub
https://cloud.google.com/pubsub/docs/overview
https://blexin.com/en/blog-en/redis-as-backplane-to-scale-your
https://blexin.com/en/blog-en/redis-as-backplane-to-scale-your-blazor-applications/
https://blexin.com/en/blog-en/redis-as-backplane-to-scale-your-blazor-applications/
https://docs.microsoft.com/en-us/aspnet/core/signalr/scale
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/signalr/
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-howto-scale-signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-howto-scale-signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-quickstart-dotnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-quickstart-dotnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-internals
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-internals
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-performance
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-performance
https://codeopinion.com/practical-asp-net-core-signalr/
https://codeopinion.com/practical-asp-net-core-signalr-scaling/
https://www.linkedin.com/learning/scaling-out-using-azure
https://www.linkedin.com/learning/scaling-out-using-azure-signalr-service/real-time-connections-at-scale-using-signalr-service
https://www.linkedin.com/learning/scaling-out-using-azure-signalr-service/real-time-connections-at-scale-using-signalr-service
https://github.com/dcomartin/Practical.AspNetCore.SignalR
https://github.com/Azure/azure-signalr/blob/dev/specs/
https://github.com/Azure/azure-signalr/blob/dev/specs/
https://github.com/Azure/azure-signalr/blob/dev/specs/ServiceProtocol.md

47

[31]. https://www.sas.co.uk/blog/what-is-network-latency-calculator-to-

calculate-throughput

[32]. https://docs.microsoft.com/en-us/aspnet/core/grpc/

https://www.sas.co.uk/blog/what-is-network-latency-calculator-to
https://www.sas.co.uk/blog/what-is-network-latency-how-do-you-use-a-latency-calculator-to-calculate-throughput
https://www.sas.co.uk/blog/what-is-network-latency-how-do-you-use-a-latency-calculator-to-calculate-throughput
https://docs.microsoft.com/en-us/aspnet/core/grpc/

