MiHicTepCTBO OCBITH 1 HAyKu YKpaiHu

HAIIIOHAJIBHUI1 VHIBEPCUTET «KUEBO-MOTUJITHCHKA AKATEMIST»

Kadenpa indpopmaruku Gaxynsrery iHHOpPMATUKH

PO3POBKA YHI®PIKOBAHOI'O CI/CD PIPELINE JIJI5
INIATPUMKUH, PO3POBKH TA CYIIPOBOAY BEb 3ACTOCYBAHb

TexkcToBa yacTuHA
MaricrepcbKoi podoTu

3a cneuiajbHicTIO ,,JHKeHepisa nporpaMHoro 3adesneyenus” 121

KepiBHuk maricrepcbKoi podooTu
npogecop, 1.H M. M. Ilinoosenn

(nionuc)

« ” 2021 p.

Buxonas crygent T.B. Topoa

@ 2021 p.

Kwuis 2021

MiHICTEpCTBO OCBITH 1 HAyKH YKpaiHH
HAIIIOHAJIbHMM YHIBEPCUTET «KMEBO-MOTMJITHCHKA AKAJTEMIST»

Kadenpa indopmaruku pakynsrery iHHOpPMATHKH

3ATBEPJIKYIO
3aB.xadenpu iHpOpMaTUKH, K.(].-M.H.

C. C. I'opoxoBchkuit

(iarmc)
” 7 2020 p.

IHAMBIAYAJIbHE 3ABJIAHHSA
Ha MariCTepchbKy poooTy

CTYACHTY 2 p.H. MaricTepchbkoi mporpamu [HxkeHepis mporpaMHoro 3abesnedeHHs Topoi
Tersani BikropiBHi

Po3pobutn Po3pobka yHidikoBanoro CI/CD pipeline juis MiATPUMKH, PO3POOKH Ta
CYNPOBOAY BeO 3aCTOCYBaHB"

3MICT TEKCTOBOI YaCTUHHM JI0 MaricTepchbkoi poOOTH:
3micT
AmHorartis
Beryn
1 JocmimkeHHs raixy3i Ta aHai3 BIUIMBY BeO 3actocyHkiB Ha CI/CD
2 TlpoextyBanus CI/CD pipeline mist Be6 3aCTOCYHKIB
3 Peamnizamis CI/CD pipeline mist Be6 3aCTOCYHKIB
4 Otz pe3yabTariB
BucHoBkH
Criucoxk niteparypu
Jlopatku

Jlara Bumaui,, 7 2020 p.
KepiBHuk
M.M. I'mubosetis,mpodecop, 1.H

(mmiamuc)
3aBIaHHs OTpUMaB
T.B. Top0Oa

(miamuc)

Work schedule:

No Name of the phase Deadline Notes
| Obtaining the theme of the course work. 25.10.2020
2 Thematic materials researching and collection. 10.11.2020
3 Work structure discussion. 01.12.2020
4 Introduction. 24.12.2020
5 Theoretical part 15.01.2021
6 The practical part implementation. 15.03.2021
7 Analysis and description of the practical part 06.04.2021
8 Conclusion. 08.05.2021
9 Work revision. 10.05.2021
10 | Corrections according to the mentor's remarks. 13.05.2021
11 | Presentation. 17.06.2021

KepiBHuk
M.M. I'mubosens,mpodecop, 1.H
(miamuc)
Crynent
T.B. Top0Oa
(mmiammc)

. 2021 p.

Table of Contents

Table of Contents
ABSTRACT
INTRODUCTION

1. Industry research and impact analysis CI/ CD for web applications
1.1 Collaboration and planning
1.2 Server configuration and infrastructure as code
1.2.1 Infrastructure as Code
1.2.2 Cloud computing
1.3 Continuous integration and continuous delivery/deployment
1.3.1 Baseline development lifecycle
1.3.2 Elements of a CI/CD pipeline for web application
1.3.3 CI/CD as a single pipeline for Web application
1.4 Containerization and orchestration
1.5 Monitoring and alerting
1.6 Security and DevSecOps
1.6.2 Building Security In Maturity Model (BSIMM)
1.6.3 Web Application Security Risks (OWASP)
1.6.4 Red and Blue Team Approach

2 CI\CD pipeline implementation for web applications

2.1 MVP: Web applications requirements
2.1.1 Functional requirements
2.1.2 Nonfunctional requirements
2.2 CI\CD pipeline
2.2.1 Source Stage
2.2.2 Build Stage
2.2.3 Test Stage
2.2.4 Deploy Stage
2.2.5 Monitoring

CONCLUSION

REFERENCES
ABBREVIATIONS AND TERMS
APPENDIX 1

APPENDIX 2

O O n B

10
12
12
12
13
13
14
16
17
18
21
21
22
23

25

25
25
26
27
27
31
39
41
46

47
49
50
51
54

ABSTRACT

In this work the main approaches for building CI\CD are reviewed, also the
problems are described that might arise during CI\CD construction. At the same time in
work modern approaches are analyzed and characterized with their pros and cons.

After architecture analysis is done. During the design and development stages we
outlined a set of requirements that CI\CD should meet, worked out a system diagram
and set of necessary tools.

In the end, several deployments are done in order to test CI\CD.

Keywords: CI\CD, Jenkins, Jira, Web application, Agile, Security.

INTRODUCTION

The relevance:

If we turn to history, we note that in the 80s and 90s the dominant development
methodologies followed the waterfall process. The waterfall process dictated the rules
and approaches, which were used in software development processes. Development
followed a strictly sequential structure resulting in delays in time to market and a
mismatch between product and business expectations at the time of launch. Taking into
consideration business needs, the movement toward a more light approach started.

In 2001, 17 pioneering software developers met in Snowbird, Utah. Together
they published the Agile Manifesto, which set out to find ways to build software that
would be more collaborative, responsive and deliver more frequent updates. Later, in
2009, another group created the Scrum Alliance. Agile adoption had been growing
slowly but steadily and by 2008 it had reached 13% uptake. By the next year, this had
jumped to 17% and by 2010 it was 37%. Now based on research more than 90% of
software development companies use Agile methodology [4].

Once Agile had gained momentum the necessity of a new process block was
aperead - Developers + Operators (DevOps). DevOps was a new interpretation of what
collaborative software development should be like. While agile brought development
and testing together, DevOps allowed the development team to expand with
non-business stuff and created an environment where new releases could be delivered
faster and more frequently.

In order to meet the requirement of fast and frequent deployment a new pipeline
appeared with three distinct stages: Continuous integration, Continuous delivery and
Continuous deployment. At the moment, none of the projects is being developed

without using the above concepts.

The aim of study:
Develop a modern CI \ CD pipeline architecture and create a CI \ CD mechanism

based on the developed architecture.

The goal:

Analyze existing approaches for the development of CI\CD pipeline
architectures. Examine and explore software products that can be used as components in
the CI\CD pipeline architecture. Choose the components that are best suited to solve the
main goal. Choose approaches and tools for the practical implementation of the

developed architecture.

The object of study:
Continuous Integration and Continuous Delivery pipeline for web application,
specialized solutions for CI\CD development, software products for building and

supporting existing architecture.

The subject:
Pipeline components, their capabilities for integration, API, application

development with integration and organization of interaction of the studied components.

Sources of research:
Electronic versions of printed literature, software documentation, reference books
to API links, electronic resources, including specialized forums and virtual conferences,

source codes for programs and libraries, video instructions.

Scientific novelty of the obtained results:
Research 1s to create a modern CI\CD architecture, the introduction of new
approaches to solving the problem of code delivery to the end user with minimal errors

and timely.

The practical significance of the obtained results:
Due to the use of advanced practices in the development of architecture, the cost
of resources for the development of software developed on the basis of the developed

architecture is reduced. Optimization occurs through the use of reliable components that

are easily configurable and adaptable, the architecture is designed with the possibility of

further independent expansion.

1. Industry research and impact analysis CI / CD for web applications

Continuous integration (CI) is the software development practice of regularly
integrating code changes into a shared code repository. Each commit triggers a build
during which tests are run that help to identify if anything was It aims at building,
testing, and releasing software with greater speed and frequency broken by the changes.

Benefits of Continuous Integration for Businesses:

e Reliable, high-performing releases

e Reduce costs from fewer outages

e Software is delivered to market faster
Benefits of Continuous Integration for Development:

e Smaller code changes

e Test reliability

e Risk mitigation

Continuous delivery (CD) 1is a software engineering approach in which teams
produce software in short cycles, ensuring that the software can be reliably released at
any time and, when releasing the software, doing so manually. [5]

Benefits of Continuous delivery for Businesses:

e Reduce the costs of delivery to keep deliverable in a release-ready state
e Accelerate time-to-value
e Support data-driven decision making
e Increase quality
e Allow experimentation and innovation
Benefits of Continuous delivery for Development
e Streamline workflows
e Enhance teamwork
e Stable and highly available environments
e Test every edit and enhancement
e Better end-to-end visibility to trace the changes and error codes

Continuous deployment (CD) is a software release process that uses automated

testing to validate if changes to a codebase are correct and stable for immediate

autonomous deployment to a production environment [6].

Benefits of Continuous deployment for Businesses:

Improve customer satisfaction

Gather metrics about application performance
Streamline communication

Collecte rapid feedback

Decrease time-to-market of new features

Scale from a single application to an Enterprise IT portfolio.

Benefits of Continuous deployment for Development

End-user involvement and feedback

The backlog of non-critical defects is lower
Mean time to resolution (MTTR) is shorter
Containerization

Single method of deployment

Release cycles are shorter with targeted releases

Test-driven development

Regardless of what is being developed, DevOps practices must be in

development. The processes become increasingly programmable and dynamic, using a

DevOps approach. The general idea can be explained with the CAMS acronym:

Culture of collaboration and shared responsibilities between the team
members,

Automation of the manual processes,

Monitoring and feedback gathering, and

Sharing of responsibilities and information.

1.1 Collaboration and planning

One of the keys of DevOps approach is collaboration within the team and

supplier. Nowadays the team consists of not only developers, there can be devs and ops,

testers, and designers,release managers, product and project managers ets. The members

of the team should collaborate closely, share common responsibilities and should be

involved in each stage of development.

10

The purpose of requirements management tools are to ensure product
development goals are successfully met. It is a set of techniques for documenting,
analyzing, prioritizing, and agreeing on requirements so that engineering teams always
have current and approved requirements.

All participants of CI\CD need to be notified of various CI/CD events depending
on the release workflow of the particular organization. If there are any manual steps or
approvals needed in the deployment pipeline, the team needs to take action quickly so
as not to hold up the release. All communication should be targeted and strictly limited
in order to avoid spam and miscommunication within team members.

The common tools for usage are Trello, Jira, Clarizen, Bitbucket Server, Asana.
These applications are project management tools, which support standard features for
task management, time tracking, planning, invoicing, chatting, etc.

The second step towards efficiency of the developing process is IDEs and
Editors for the project team.

A common IDE includes these main features: Text Editor,,Compiler or
Interpreter, Build and Debugger, Syntax Highlighter, Graphical User Interface (GUI)

According to GitHub data Top 3 IDEs are Visual Studio, Eclipse, Visual Studio
Code (Figure 1.1). [7]

— Visual
Studio
— Edlipse

Wisual
Studio
Code

2006 2008 2010 2012 2014 2016

]
(=]

18 2020

Figure 1.1 Worldwide trend for TOP3 IDEs for Web Application

11

1.2 Server configuration and infrastructure as code

1.2.1 Infrastructure as Code

Infrastructure as code is DevOps practices like CI\CD and Cloud Technologies
and brings more value from DevOps adoption within an organization Infrastructure as
Code is the way of describing all software IT infrastructure, such as virtual machines,
security rules, network settings in a simple code way that can be stored and controlled in
your Version Control System (VCS) and versioned on demand. These repositories of
records are called manifests. They are utilized by DevOps tools like Terraform,
Kubernetes and other proprietary services from Cloud Providers, such as AWS
CloudFormation, to automatically provide and configure new servers and their
infrastructure for any kind of environment.

[aC ensures continuity, as all the environments are provisioned and configured
automatically, with no ability for human error, which incredibly accelerates and
streamlines the product advancement and foundation tasks. The IaC approach provides
traceability for infrastructure changes and the easy-to-restore way of infrastructure
deployment. That empowers overall IT infrastructure stability and availability. There are
also multiple benefits to conducting operations based on the [aC principle.

Well-known apps which allow for automating and bringing infrastructure as code

into the system are Puppet, Chef, Ansible, Terraform, SaltStack, AWS Cloudformation.

1.2.2 Cloud computing

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct active
management by the user. The term is generally used to describe data centers available to
many users over the Internet.[§]

Cloud computing makes the adaptation of DevOps easier by engaging each
progression of the software development lifecycle. Through the cloud, applications can
be built and tested on different conditions with different environments, OS versions and
devices emulated. Excluding the physical server, the test requirement ensures time
savings and cost reduction due to the on-demand nature of the cloud. Cloud computing

brings new possibilities in CI\CD and automation processes.The cloud offers to transfer
12

risks and improve overall IT infrastructure reliability through availability zones and the
geolocation model used by most popular cloud service providers.
The most usable cloud infrastructure providers are Amazon Web Services,
Google Cloud Platform, Microsoft Azure, IBM Cloud and Oracle Cloud Platform.
Five main Cloud Computing characteristics include:
e Self-service and on-demand
e Broad network access
e Resource pooling
e Rapid elasticity
e Measured service
Three models (IaaS, PaaS, SaaS) introduce a kind of abstraction level. It is a level
you don't think about. It's a level of generalization. If you simplify the picture given
below, you can say that the upper level is customer responsibilities, and the lower level
is the responsibilities of cloud providers or IT operation.
1.3 Continuous integration and continuous delivery/deployment
1.3.1 Baseline development lifecycle
The core phases of the development life cycle (Figure 1.2) typically include a planning
stage, followed by coding, building, integration, testing, release, and then deployment to

the production environment.

Spin up Test
Enwirorment
! |n.-| rlnr

IJ.:urum.k-

- J.-n-,l

Figure 1.2 Development life cycle

Within Agile methodology, which takes the iterative approach to software development,
by adding layer upon layer, building, or rather evolving, the application one sprint at a
time (Figure 1.3).

DRQDUCTION ENVIRONMENT

Figure 1.3 Development life cycle vs Development Environment
13

In terms of DevOps typically this methodology can overlap with Agile (Figure 1.4)

Spin up Test Integration
Environment

Monitor

Figure 1.4 Development life cycle vs DevOps methodology

But, there are a lot of people mentioning DevOps and CI\CD together. It is very
important to understand that these two concepts complement each other but don’t
replace each other.

While DevOps propose a culture/philosophy of team collaboration and work
transparency, CI/CD are the pillars that enable DevOps. CI/CD focuses on automation
of building, testing and deployment by properly setting up a CI/CD pipeline with
appropriate CI/CD tools.

1.3.2 Elements of a CI/CD pipeline for web application

Most web application releases go through a couple of typical stages:

Source stage: The common approach is triggers, which are customized depending
on needs. In some cases a pipeline run is triggered by a source code repository or can be
automatically scheduled or supported user-initiated workflow. Also it can be integrated
with additional tools like JIRA or Confluence in order to organize a full cycle for
documents management. In this stage several steps need to be performed in order to
improve quality code and speed of the market. Basically the operations performed in the
Local Development Environment. The steps can be followed: compilation, unit testing,
static code analysis and manual verification. After the feature is ready or on a daily
basis changes will push to the remote feature branch and move to the build stage.

Build stage : In this stage we combine the source code and its dependencies to
build a runnable instance of our product that we can potentially ship to end users.
Depending on languages, programs need to be compiled (for example Java, C/C++, Go)
or not (for example Ruby, Python and JavaScript). If concentrating on cloud-native

software, it is typically deployed with Docker and in this stage the application builds the

14

Docker containers. In remote feature branches static code analysis, compilation and unit
testing will run in order to check on the server's side. If automatic tests are passed,
changes will be pushed to the feature environment where next steps will be performed -
compilation, Auto API integration, testing, new feature testing and deployment. If code
is approved by the Product Owner or responsible person, merge requests created and
sent to code review.

Test stage: Here runs automated tests to validate code’s correctness and the
behavior of a web application. The main purpose of the stage is to prevent easily
reproducible bugs from reaching the end-users. After code review code pushes to the
Release branch for integration testing and unit testing. Taking into consideration that
testing is the one of the important parts of development and enhancement of quality,
testing in a UAT environment is important. In a UAT environment smoking and system
testing are performed and should be approved by business users.

Deploy stages: There are usually multiple deploy environments: Development,
QA, Staging and Production. Teams that have embraced the Agile model of
development: guided by tests and real-time monitoring: usually deploy
work-in-progress manually to a staging environment for additional manual testing and
review, and automatically deploy approved changes from the master branch to
production.

Performance testing is the process during which a product’s quality or its ability
to function in the required environment is evaluated. As a non-functional testing
technique, performance testing is conducted to evaluate a systems ability in terms of
responsiveness and stability under workload. This process is conducted on three major
attributes, which includes scalability, reliability and resource usage.

- A number of techniques can be used to check performance of a software or
hardware in a performance testing environment setup. This includes:

- Load testing is the simplest form of testing and is basically conducted to
understand the behaviour of the system under a specific load.

- Stress testing is conducted to check a system's ability to cope with the increased
load, if any. It is performed to determine the maximum capacity of the existing

system
15

- Soak testing, also known as endurance testing, is a type of testing done to verify a
system’s ability to perform in situations of continuous load.

- Spike testing is conducted by abruptly increasing the number of users of a system
and determining how the system performs under such load.
There are a number of simple ways in which one can ensure accuracy and better

results in the tests. [16]

1.3.3 CI/CD as a single pipeline for Web application

Continuous integration and delivery/deployment (CI/CD) is performed via a
single pipeline with high automation at every stage of the process.

For the purpose described above, the following apps can be used: Jenkins, Gradle,
GitLab CI, Travis CI, Bamboo CI, Teamcity, GitHub workflows, Circle CI, and Azure.
In terms of categories, applications are divided into several categories.

Installable software: The applications which can be installed and configured for
initial purpose. It can be open source or proprietary

SaaS: Services with a web interface provided by 3rd party (e.g., CircleCI, Azure
DevOps)) and can be self-hosted or in the cloud.

Integrated software: Most repositories (e.g. GitLab, GitHub, BitBucket) support
their own CI/CD web services that are integrated into their source code control systems.

Which category is chosen depends on the specific application and the
requirements under consideration.

The tools can be evaluated based on there are lot of criteria like hosting, free

version, price and integration possibilities (Figure 1.5)

16

Open source

Ease of use
& setup

Built-in features

Integration

Hosting

Free version

Build Agent
License Pricing

Supported 0Ss

9 Jenkins Dcircleci
Yes No
Medium Medium
3/5 4/5

* ®* * w* *

On premise & Cloud

Yes

Free

Windows, Linux,
mac0Ss, Unix-like 0S

On premise & Cloud

Yes

From $39
per month

Linux or Mac0S

H TeamCity

No
Medium

4/5

* & & &
On premise

Yes

From $299
one-off payment

Windows, Linux,
macQOs, Solaris,
FreeBSD and more

¢ Bamboo Ay GitLab
No No
Medium Medium
4/5 415

* * *

On premise &

Bitbucket as Cloud Spremize & Lioyd

Yes Yes

From $10
one-off payment

From $4
per month per user

Linux distributions:

Windows, Linux, Ubuntu, Debian,

macOs, Solaris

Cent0S, Oracle Linux

Figure 1.5 Top 5 CI/CD tools in 2020

1.4 Containerization and orchestration

Containers are popular among DevOps, because they offer a logical packaging
mechanism in which applications can be abstracted from the environment in which they
actually run. Orchestrators are the tools used to monitor and configure all the existing
containers Most often they come built into CI/CD pipelines as default tools or can be
plugged in as extensions. In web applications dozens of containers will be
interconnected making up the app.

Widely known providers for containers are Docker, Kubernetes, OpenShift.

Docker is a set of platform as a service (PaaS) products that use OS-level
virtualization to deliver software in packages called containers. Containers are isolated
from one another and bundle their own software, libraries and configuration files; they
can communicate with each other through well-defined channels.Because all of the
containers share the services of a single operating system kernel, they use fewer
resources than virtual machines. The service has both free and premium tiers. The
software that hosts the containers is called Docker Engine.It was first started in 2013
and is developed by Docker, Inc. [17]

Kubernetes is a portable, extensible, open-source platform for managing

containerized workloads and services, that facilitates both declarative configuration and
17

automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and
tools are widely available. The name Kubernetes originates from Greek, meaning
helmsman or pilot. K8s as an abbreviation results from counting the eight letters
between the "K" and the "s". Google open-sourced the Kubernetes project in 2014.
Kubernetes combines over 15 years of Google's experience running production
workloads at scale with best-of-breed ideas and practices from the community.[18]
OpenShift service built around Docker containers orchestrated and managed by
Kubernetes on a foundation of Red Hat Enterprise Linux. The family's other products
provide this platform through different environments: OKD serves as the
community-driven upstream (akin to the way that Fedora is upstream of Red Hat
Enterprise Linux), OpenShift Online is the platform offered as software as a service,
and Openshift Dedicated is the platform offered as a managed service. The OpenShift
Console has developer and administrator oriented views. Administrator views allow one
to monitor container resources and container health, manage users, work with operators,
etc. Developer views are oriented around working with application resources within a
namespace. OpenShift also provides a CLI that supports a superset of the actions that

the Kubernetes CLI provides. [19]

1.5 Monitoring and alerting

If one of the stages of CI\CD was failed or downgraded, all involved participants
should be aware regarding the problem. For this purpose exist a range of tools and
methods to application monitoring via a dedicated interface.

Performance monitoring gets more and more evolved as a necessary part of
business processes. The availability and reliability of the system have a direct impact on
a company's bottom line. Business wants to know how transactions are processed and
what's going on at certain application components.

Complex systems and applications face a lot of issues and technical problems
while working in production environments. The time to identify the problem may vary
from 30 seconds to 30 hours or even more. But there are ways to decrease this time and
improve the problem-solving of an IT System team. Monitoring is applied to handle and

tackle this kind of problem.
18

Monitoring is the systematic process of collecting, analyzing, and using the
information to track a program's progress toward reaching its objectives and guide
management decisions [14]

Businesses need to utilize monitoring techniques across their networks, physical
and virtual servers, and services. Gaining more visibility with monitoring, it is easier for
System engineering teams to pinpoint, assess, and fix a problem within an application.
Monitoring is also widely used in Security and Application performance management.
Businesses derive a lot of value from monitoring, especially to:

e Decrease the costs spent on problem identification.
e Reduce the amount of time to solve an issue.
e Minimize the risk of a data leak/breach.
e Reduce the amount of time to solve an issue.
e Increase the revenue because the application will be available more time, and
downtime will be reduced.
Four pillars (aka sources) of application monitoring:
e Business KPIs, Service-Level Agreement, web-environment data
e I[nfrastructure, technical equipment
e Databases, transaction, user requests
e Network data, user-behavior
The monitoring process consists of multiple steps. In order to obtain the value from it,
each of these steps should be implemented in the following order:
Gather information from data producers.
e Ingest it.
e Transform the data.
e Search and analyze.
e Perform data visualization.

Data for monitoring can be collected from multiple sources. Monitoring tools
enable appliances to configure many kinds of data inputs, including those specific to
particular application needs. Some products provide the user with an option to configure
any arbitrary data input types.

The most common data sources in Monitoring are:
19

e Directories and files
e Network events.

e Windows sources.

e Metadata.

Monitoring requires collecting and making the system observable. For that
purpose, various metrics are used. Monitoring is used by Developers, IT Operations
team, Security team, Technical Support, Business leaders. Monitoring can be augmented
with various tools and methods. One of the most popular now is AIOps. It uses artificial
intelligence to simplify IT operations management and accelerate and automate problem
resolution in complex modern IT environments.

Prometheus is an open-source systems monitoring and alerting toolkit originally
built at SoundCloud. Since its inception in 2012, many companies and organizations
have adopted Prometheus, and the project has a very active developer and user
community. It is now a standalone open source project and maintained independently of
any company. To emphasize this, and to clarify the project's governance structure,
Prometheus joined the Cloud Native Computing Foundation in 2016 as the second
hosted project, after Kubernetes.[15].

Prometheus supports the collection of four main metric types. Prometheus
architecture is modular and has some already available modules called exporters, which
capture metrics from a software. Prometheus architecture is modular and has some
already available modules called exporters, which capture metrics from a software.

As a communication channel following tools can be used:

Slack is a channel-based messaging platform which supports bots. A bot is a
nifty way to run code and automate tasks. The bot can be used for posting messages in
channels and reacting to members’ activity. In terms of CI/CD slack can send messages
to audiences who have subscriptions to the bot and notify regarding CI/CD processes
and release results.

Telegram is a freeware, cross-platform, cloud-based instant messaging (IM)
software and application service. The CI/CD can send messages directly to person or

use the bot, which notify about processes or errors which occur.

20

Email is a standard and common way of communication which the digital world
gets used to. Emails can potentially cause information overload. Some messages may be
dismissed or left unread, especially if there are a lot coming in.

For monitoring health of system next application with dedicate interface can be
used: Prometheus, Sensu GO, Nagios, Elastic Stack
1.6 Security and DevSecOps

1.6.1 Security development lifecycle
With the advances of cloud computing and automated pipelines, more security

vulnerabilities start to appear - what the developers are working on are the flaws and
vulnerabilities of the application itself. The direction SDL or SDLC - Security
development lifecycle - was developed by Microsoft (Figure 1.6).

Implemantation

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security Execute Incident
Training Gates [Bug Bars Surface Functions Testing Review Response Plan

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

Figure 1.6 Application Security

Application security and SDLC are not about detecting vulnerabilities, but about
preventing them from occurring. SDLC is detailed in various methodologies -
OpenSAMM, BSIMM, OWASP
1.6.2 Building Security In Maturity Model (BSIMM)

The methodology is based on dividing the Application Security process into 4
domains: Governance, Intelligence, SSDL Touchpoints, and Deployment. Each domain
has 12 practices with 112 activities. This methodology can be used as a framework for

security implementation (Figure 1.7)

21

=4C'):l BSI M Intelligence

Building Security In Maturity Model

O O I] 1 I 1 1 I

7. Architecture Analysis (AA)
SSDL Touchpoints 8. Code Review (CR)
9. Security Testing (ST)

10. Penetration Testing (PT)
Deployi‘nent 1. Software Environment (SE)
12. Configuration Management & Vulnerability Management (CMVM)

Figure 1.7 Development life cycle vs Development Environment

DevSecOps is an approach to discover the security of infrastructure and CNCD

pipeline. Codacy, SonarQube and Logz.io are commonly used for checking.

1.6.3 Web Application Security Risks (OWASP)

The OWASP Top 10 is a standard awareness document for developers and web

application security. It represents a broad consensus about the most critical security

risks to web applications.The standard includes next:

1.

Injection. Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a command or query.
Broken Authentication. Application functions related to authentication and
session management are often implemented incorrectly, allowing attackers to
compromise passwords, keys, or session tokens, or to exploit other
implementation flaws to assume other users’ identities temporarily or
permanently.

Sensitive Data Exposure. Many web applications and APIs do not properly
protect sensitive data, such as financial, healthcare, and PII.

XML External Entities (XXE). Many older or poorly configured XML processors
evaluate external entity references within XML documents. External entities can
be used to disclose internal files using the file URI handler, internal file shares,

internal port scanning, remote code execution, and denial of service attacks.

22

5. Broken Access Control. Restrictions on what authenticated users are allowed to
do are often not properly enforced.

6. Security Misconfiguration. Security misconfiguration is the most commonly seen
issue. This is commonly a result of insecure default configurations, incomplete or
ad hoc configurations, open cloud storage, misconfigured HTTP headers, and
verbose error messages containing sensitive information.

7. Cross-Site Scripting (XSS). XSS flaws occur whenever an application includes
untrusted data in a new web page without proper validation or escaping, or
updates an existing web page with user-supplied data using a browser API that
can create HTML or JavaScript.

8. Insecure Deserialization. Insecure deserialization often leads to remote code
execution.

9. Using Components with Known Vulnerabilities. Components, such as libraries,
frameworks, and other software modules, run with the same privileges as the
application.

10. Insufficient Logging & Monitoring. Insufficient logging and monitoring, coupled
with missing or ineffective integration with incident response, allows attackers to
further attack systems, maintain persistence, pivot to more systems, and tamper,

extract, or destroy data. [9]

1.6.4 Red and Blue Team Approach

The Red and Blue Team came from the military and was one of the first
approaches to test security. Where defenders or friendly forces were designated by the
Blue Team and the attacker's forces by the Red Team. And despite its 'offensive' nature,
the Red Team is an excellent defender. They enable organizations to better defend
themselves against hacker attacks as they try to simulate them with precision. But there
are not only 2 teams (Figure 1.8). In some situations, the efforts of both teams are

required, and this is how the Green, Yellow, Purple Team came about:

23

created

the creator modifies the
system or code based on
the knowledge of the

the creator modifies
the system or code
based on the

attacker Build Attack defender's knowledge
Defend

Red \ Surol / Blue

attack urp € defend

the defender modifies
the system or code
based on the attacker's
knowledge

Figure 1.8 Attack Defend

If we are talking about purple Team - combining the skills of Red and Blue Team.
Both teams work together to provide a complete audit. The red team provides detailed
logs of all the operations performed, and the blue team fully documents all corrective
actions that were taken to resolve the problems found during testing. The Purple Team
has become commonplace in the security world over the past few years. The Purple
Team can be a consulting group hired to conduct an audit, or company employees
directly, but they do not focus solely on offense or defense. In terms of Orange and

Green teams they are more related to soft developers.

24

2 CI\CD pipeline implementation for web applications

2.1 MVP: Web applications requirements

Overall Description : Web solutions provide the possibility to buy the defined set
of products to customers without going to the physical shop. From a seller perspective it

allows the seller to sell the product.

2.1.1 Functional requirements

EPICs:
1. Minimum steps to make a purchase.
Fact: More than 74% of online shoppers abscond before completing an online
transaction due to complex check-out process [1].
Feature: The streamlined shopping card with clear check - out process to
support single one page flow.
2. Robust Return Policy
Fact: 42% of online shoppers have returned an item they bought online and also
63% of online shoppers said that they would not purchase if they couldn’t find the
return policy. [1].
Feature: The separate page with return policy which easy to find and understand
3. Mobile-friendliness.
Fact: Mobile commerce sales comprised 63.5% of the total sales in ecommerce
in 2018.[1]
Feature: Mobile - friendly website with simple, defused and responsive design
including customizable themes (RWD) [2]
4. Content management system
Fact: Nearly 55% of marketers’ top priority will be content creation. 46% of
consumers want product comparisons and 42% of customers want more testimonials.
Along those same lines, 69% of online shoppers want more reviews. [1]
Feature: The tool allows CRUD [3] operation with site content including
product reviews.

5. Social media integration

25

Fact: 30% of online shoppers say they would be likely to purchase from a social
media network like Facebook, Pinterest, Instagram, Twitter or Snapchat.

Feature: Integrate social media to support cost effective way to promote and buy
the product

6. Customer Support and ChatBots

Fact: “When it comes to making a purchase, 64% of customers find customer
experience more important than price.” [1]

Feature: Provide an state-of-the-art interface to customers to get immediate

support when needed.

2.1.2 Nonfunctional requirements

Performance: The website’s load time should not be more than one second for
users.

Reliability: Users can access their backet 98% of the time without failure.

Availability: In the case of unplanned system downtime, all features will be
available again after one working day.

Maintainability: If the automated email services become unavailable, they can
be under maintenance for approximately three hours.

Recoverability: If a major incident happens on the website, the business must
take measures to go back to being fully operational within one days.

Capacity: Up to 5000 buyers can request for the one item. Up to 1,000,000 items

can be stored.

Serviceability: The user's automated emails can be edited and replaced by

uploading an XML file; there’s no need to recompile any code.

Security: Only the users with the role “site admin™ can view the users personal

data.

Manageability: When editing the code for applicants’ profile pages, the rest of

the site stays up and running.

26

Data integrity: The system shall maintain data integrity by keeping backups of

all updates to the database for every record transaction.

Interoperability: The website must follow the service-oriented architecture.

Usability: The website’s interface has to be user-friendly and easy to use.

2.2 CI\CD pipeline

2.2.1 Source Stage

Any development starts from business problems which need to be solved in order

to achieve business goals. For requirements management and issue tracking Jira and

Confluence can be used and should be integrated into our pipeline. In Figure 2.1 EPIC

was created and added issues and bugs which need to be solved in current sprint

& [oiP-2] Develop ecomm x4 B - o @
& c o @ & https:fydiplomtanya atlassian_net/browse/DIP-2 - @ Y + In D @ =
= & Jira Sofrware Your work Projects Filters Dashboards People ~ Apps ~ m Q E] ﬂ ﬁ ;

& 91 b o«
E] Diplom Projects (@ Diplom / B DIP-2 Labals MOne
Seftware oroject
| D'EVE[OP ecommerce site for veterinary. Priorlty t medium
DIP board
i Board v @ Attach & Createissueinepic ¢ Linkissue | v) .
Epic Hame E-Commerce site
=
& Rosdmdp Descripcion
. Story Painks None
B Becklog Add a description
[0 Activesprints original eztimaca om
Issues in this epic -
= Renorts o — 13% Done -Thw texkong No time logged
= & oir3 Create template For site + € nerocrEssv Components Mone
= Is5ues
B0 oipa Checkissue with Footer T ﬂ DONE w R
£ components i Sprint Ncne
B virs Develep back-end system Lo suppert content activi... T @ jonoy
o> Code Fix wersions NONE
Relegces 0 story ~
&= Release ~ show less
[l Praject pages Cancel
created 21 minebes ago 3 configure
You're In @ scompany-managed projest] Uipdated 21 minutes aon
N - ® Quickstart
ST Probipzpress M o comment

the

Figure 2.1 Jira Backlog view
Now the time to create a project and deploy it to the github repository to process

next stage for build and test. The main project was created in Atom IDE, where

easyling manages projects and source code in it.

Atom is a free and open-source text and source code editor for macOS, Linux,

and Microsoft Windows with support for plug-ins written in JavaScript, and embedded

27

Git Control, developed by GitHub. Atom is a desktop application built using web
technologies. Most of the extending packages have free software licenses and are
community-built and maintained. Atom is based on Electron (formerly known as Atom
Shell), a framework that enables cross-platform desktop applications using Chromium
and Node.js. Atom is written in CoffeeScript and Less, but much of it has been

converted to JavaScript. Atom was released from beta, as version 1.0, on 25 June 2015.

Its developers call it a "hackable text editor for the 21st Century". It is fully
customizable in HTML, CSS, and JavaScript. [10]

Project — ~/github/Diploma — Atom

File Edit View Selection Find Packages Help

Project

B indexhtml

Figure 2.2 Atom project view

As a basic IDE, it can be connected to any source control for this case GitHub is
used. GitHub, Inc. is a provider of Internet hosting for software development and
version control using Git. It offers the distributed version control and source code
management (SCM) functionality of Git, plus its own features. It provides access
control and several collaboration features such as bug tracking, feature requests, task
management, continuous integration and wikis for every project. Headquartered in
California, it has been a subsidiary of Microsoft since 2018. [11]

In order to connect Atom with GitHub. There are two easiest ways on how to
connect Atom and GitHub. First one is to create a repository within Atom itself and
push the repository to the GitHub account, which was created beforehand. Second
approach is easier and more appropriate, creating a repository in GitHub and clone it to
Atom. I used the second method, because it is much easier and more common (Figure

2.2).
28

First GitHub account needs to be created, it is free. After that a new repository
needs to be created. During creation, a new name should be assigned. It can be any
name, in my case my repository name is Diplom. In a free account, the repository can
be only public, it means that anyone can access and view the repository. After creating
the repository's link will be available and short instructions on how to create a new
repository on a common line will be available as well. Instruction describes how to push
an existing repository from the command line and how to import code from another
repository.

In order to connect Atom with GitHub I need to copy my Ilink -
https://github.com/Tetianal234567/Diploma.git. Next step is to open Atom and press

Ctrl + Shift + P at the same time in the popup window type Git clone command then
paste the GitHub repository link. To finish cloning, the Clone button need to be pressed.
After GitHub repository will be cloned and new files will be marked as green and

all changed need to be pushed in remote repository.

GitHub — ~/Desktop/dIPLOMA/Diploma-main — Atom

File Edit Wiew Selection Find Packages Help

Enter Token

Figure 2.3 GitHub connection

Next step to authorize GitHub to Atom in Figure 3.2, click on
https:\\github.atom.io\login to get a new authorization token for Atom after input

GitHub credential. One I have done it and copied a new token and go ahead and open

29

https://github.com/Tetiana1234567/Diploma.git

Atom. On the right corner I put my new token and press the login button After my
GitHub account and Atom connect.

After making some changes and saving them locally, the files with changes have
moved to the unstaged changes section. If new changes need to be investigated and
compared, these changes can be reviewed in an unstaged section. Unstaging files is very
beneficial : it can be used to separate files in different commits, or to do work on some
other modifications. From command line to get files in unstaged section following
command can be used:

git reset <commit> -- <path>
In this unstaged area new changes are located and are up to commits. Basically to move
files on stage area only one button should be pressed - Stage file. Alternative way to
right click and select from the popup menu Stage item.

Basically those files are queued and are ready for commnet and commit. In the
first commit I added initial comments and clin to create and deached comments.

Next step is branch creation. Git offers easier branch implementation compared to
other version control systems. Instead of copying files from directory to directory, Git
stores a branch as a commit link. It turns out that the branch is the top of a series of
commits, not a container for commits. The history of the branch spreads through
hierarchical relationships with other commits.

In Git a branch is simply a lightweight movable pointer to one of commits. If you
make changes and commit them, the next commit stores a pointer to a commit that came
before. The default branch name is master. When you make commits, you are given a
master branch that points to the latest commit made.

In order to create a new branch, I need to click on a master and then click on a
new branch and put some name which can be appropriate in this case. After publish
button should be pressed, eventually GitHub credentials will be promoted and selected
changes will go away from the stage area and initial commit was done.

To check the state of changes we can use the common line or just go directly to

GitHub public repository (Figure 2.4)

30

= & @ @ & hteps:/fgithub.com/Tetianal 23as67/Diploma s & oy + ILWMO & =

Pull requesis lssues Markelplace Explore

¢ Teliana1234567 / Diploma @ Unaaloh = oy Bar | € a
<3 Code Issuas 1 Pull iquesis Azlions] Projts T Wiki Sacurity Insights 32 Seltings
Poman+ P lomnch 0k @o fo file Add file = & Coda = About i
SHE.
Tetianai 234567 [niliation iozaate Sdays ago ¥ 1 commil

€85 nitiation 5 days aga

Releases

TSEE & NN MEate
3 aboulhtml E =

comiac. him! Inibataor days ago
Packages
galleryni nitiatian 5 days ago

index frtml Inikation 5 days ago UECHEN yoUr At packane

Help paople interested m {hs reposiony understand your project by adding s README Languages

a1 234567 /Diplams/puls

Figure 2.4 GitHub project

The other way to integrate changes from one branch into another is to use rebase
command. When I was working with git add not so carefully, I added files I don’t want
to commit. git rm command moves this file from the staging area and from the file
system, which may be not what I want. In this situation, make sure you remove only the
staged version and add the file to your .gitignore to avoid making the same mistake
again.

Other troubles which can be faced during GitHub usage: Sometimes faulty
commits make it into the repository. To avoid these situations, git revert can be used .
This command allows to revert single to multiple commits. On the other hand,
unfortunately, typos can happen. In the case of commit messages, it is possible to fix
them in an easy manner. To fix it, a git — amend command can be used. git -- amend
command allows to add and amend the previous comment. Take into account that --
amend creates a new commit to replace the previous one, so try not to use it to modify
commits that were already pushed to the repository. It is possible not to use this rule
only if no other developer has already checked out the previous version and based his
own work on it, in which case a forced push (git push --force) can be ok. The --force
option is necessary here as the tree’s history was locally modified. It means that the

push is rejected by the remote server since no fast-forward merge is possible.

2.2.2 Build Stage
31

This occurs when a source code and its associated dependencies are compiled to
build a runnable instance of the application product. To build this stage Jenkings
pipeline can be used.

Before using Jenkins, the application needs to be set up and configured.
Terraform is an open-source infrastructure as code software tool created by HashiCorp.
Users define and provide data center infrastructure using a declarative configuration
language known as HashiCorp Configuration Language (HCL), or optionally JSON.
Terraform manages external resources (such as public cloud infrastructure, private cloud
infrastructure, network appliances, software as a service, and platform as a service) with

"providers". [12]

Deploy Jenkins to AWS instances several steps need to be performed. Provider
configurations belong in the root module of a Terraform configuration.
A provider configuration is created using a provider block:
provider "aws" {
profile ="default"
region = "us-east-2"
access_key = "AKIXXXXWEZ37VXXC4R4R"
secret_key = "isaTYvCaLialt+k1142XXuk37hgXsq971Y XXXIEA" }
The name is the local name of the provider to configure. This provider should
already be included in a required providers block.
The body of the block (between { and }) contains configuration arguments for the
provider.
Next part of the configuration is the resource section. Provides an EC2 instance
resource. This allows instances to be created, updated, and deleted. Instances also
support provisioning.

resource "aws_instance" "Ubuntu" {

count =1
ami = "ami-0le7ca2ef94a0ae86"
instance_type = "t2.micro"

vpc_security group ids =["sg-05118f212a2ddd293"]
32

associate public_ip address = "true"
key name = "newkey"
provisioner "remote-exec" {
inline = [
"wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.i0.key | sudo apt-key
add -",
"sudo sh -c¢ 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list",
"sudo apt update -qq",
"sudo apt install -y default-jre",
"sudo apt install -y jenkins",
"sudo systemctl start jenkins",
"sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT
--to-port 8080",
"sudo sh -c \"iptables-save > /etc/iptables.rules\"",
"echo iptables-persistent iptables-persistent/autosave v4 boolean true | sudo
debconf-set-selections",
"echo iptables-persistent iptables-persistent/autosave v6 boolean true | sudo
debconf-set-selections",
"sudo apt-get -y install iptables-persistent",
"sudo ufw allow 8080",

]
b

The provisioner requires access to the remote resource via SSH, and expects a
nested connection block with details about how to connect.

connection {

type = "ssh"
host = self.public_ip
user = "ubuntu"

private key = file("newkey.pem")
33

b

When there are many resources (for example, instances, VCNs, load balancers,
and block volumes) across multiple compartments in tenancy, it can become difficult to
track resources used for specific purposes, or to aggregate them, report on them, or take
bulk actions on them. Tagging allows to define keys and values and associate them with
resources. The tags can be used to help organize and list resources based on business
needs.

There are two types of tags:

First one is defined tags are set up in tenancy by an administrator. Another one is
that free-form tags can be applied by any user with permissions on the resource.

tags = {
"Name" ="Jenkins Server"
"Terraform" = "true"
b
After installation is completed, Jenkins is available on the local host address with

default port 8080 like http://jenkings diplom:8080. In the first run, the Unlock Jenkins

window appears, which will show the location of the initial password. To view the key
cat command used to display password: $$ sudo cat initial Admin Password path. In the
same time the Jenkins console log indicates the location (in the Jenkins home directory)
where this password can also be obtained.Pipeline is a set of plugins, which supports
implementing and integrating continuous delivery. In the simplest and most common
use case, you can now make one job run only if several other, parallel jobs have
completed successfully. Fundamentally, a step tells Jenkins what to do at a particular
point in time for my case, to execute the shell command and make use of the build
number'. When a plugin extends the Pipeline DSL, that typically means the plugin has
implemented a new step.

Jenkins suggests installing some plugins in Figure 2.5. There are folders
plugins,build tools plugins such as Ant and Gradle. Plugins for work with Git and
GitHub and some plugins for pipeline. There are pipeline plugins, pipeline stages view,

pipeline GitHub Groove Libraries and plugins supporting SSH.

34

http://jenkings_diplom:8080

All appliances have started, and getting started form will appear for creating a
power user. In form name, password and other data need to be filled in. After Jenkings

URL needs to be provided and after the last button with "Start using Jenkings'' can tap.

= jenkins =] logout

Dashboard

S New ltem Manage Jenkins

a, People 5 .
System Configuration
= Build History)
r?ﬁ‘: Configure System el Global Tool Configuration 7= Manage Plugins
e Manage Jenkins u-.l:r< configure global settings and f Configure tools, their locations and |50 Add, remo
paths automatic installers. plugins that c

wchionality
a‘ My Views functionality of Jen

lisable or enable
=xtend the

,.g Open Blue Ocean .’1 Manage Nodes and Clouds
= —ay Add, remove, control and monitor
o y
the various nodes that Jenkins

-
@ Lockable Resources
runs jobs on.

B Hew View
Security
Bulld Queue A = x x = x - - .
1l Configure Global Security Manage Credentials 4 Configure Credential
Mo builds in the queus | | secure Jenkins; define who s Q Configure credentizls “ Providers
allowed to access{use the system. Configure the credential providers
and types
Build Executor Status ~

D200

i+ Manaae Users In-process Scriot Approval

Figure 2.5 Jenkins main page

In order to configure the pipeline it needs to perform several steps. The
configuration consists of credential setup and plugin configuration including basic
properties.

Plugins are the primary means of enhancing the functionality of a Jenkins
environment to suit organization- or user-specific needs. There are over a thousand
different plugins that can be installed on a Jenkins master and to integrate various build
tools, cloud providers, analysis tools, and much more. Plugins can be automatically
downloaded, with their dependencies, from the Update Center. The Update Center is a
service operated by the Jenkins project, which provides an inventory of open-source
plugins developed and maintained by various members of the Jenkins community. The
plugins are packaged as self-contained .hpi files, which have all the necessary code,
images, and other resources which the plugin needs to operate successfully. [13]

After installation via web or command line, each plugin needs to be configured

separately, depending on what and how this plugin will be used for the pipeline.

35

Next step is to create freestyle jobs to automate pipelines from scratch. First one
Control Version needs to be added as a source of code like

https://github.com/Tetianal234567/Diploma. Second step build triggers need to be

configured depending on necessity and technical requirements Figure 2.6.

Ganeral Build Triggers Advanced Project Options Pipetine

Jab

Besaiption

General Source Code Management Bulld Triggers Bulld

B Erecute concurrent builds if necessary cararsl| SouneCeieMeRaaeet: | mantd
Build Triggers
[Plain text] Preview Source Code Management Trigger builds remotely (e.g,, From scripts)
tira site o Bulld after other projects are built

Build periodically
Schedule

https://diplomtanya.stlsssian net/ O ci

Repositories
Discard old builds [P r—

M aE Repasitory URL
hitps://github.com/Tetlana1234567 /Diploma. git
Eredentials

| Would lask have run at Wednesday, May 5, 2021 at?
- none o[e 44040 PM Eastern European Summer Time

GitHub hook trigger far Girsem palling

Pall SCH
R TEr S R S
General Source Cade Management Build Triggers Build Envirenme=*
— T Generd Sourse Code Managament Build Trigagrs Build Envirenment Build

Bu"'d Execute SonanQube Scanner
Taskto run €
Execute shell
Cammand
echo “-—-- - -Build Started------ ox @
13 -1a [Inherit From Job)
L L
T R S Bulld Findlshed- - -c—occcer. " Pathlo project properties @

= Analysis properties @

B unique project identifien {reguired)
sonar praject Kex=Ninloma

¥ project metadaca (used to be required, eprional since SonarQube 6.1)
sonar projectame=Diploma
sonar.proectWersion=1.0

1 pathto source directories {required)
somarsourtes=. |

Figure 2.6 Jenkins main page

As a result each jobs have logs:

Jobs logs:

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/workspace/Job
The recommended git tool is: NONE
No credentials specified
> git rev-parse --resolve-git-dir /var/lib/jenkins/workspace/Job/.git # timeout=10
36

https://github.com/Tetiana1234567/Diploma

Fetching changes from the remote Git repository

> git config remote.origin.url https://github.com/Tetianal234567/Diploma.git #
timeout=10

Fetching upstream changes from https://github.com/Tetianal1234567/Diploma.git

> git --version # timeout=10

> git --version # 'git version 2.25.1'

> git fetch --tags --force --progress -- https://github.com/Tetianal234567/Diploma.git
+refs/heads/*:refs/remotes/origin/* # timeout=10

> git rev-parse refs/remotes/origin/main” {commit} # timeout=10

Checking out Revision eea08f02f2b0b3423d2180e5492af97b57a895e0
(refs/remotes/origin/main)

> git config core.sparsecheckout # timeout=10

> git checkout -f eea08{02f2b0b3423d2180e5492af97b57a895¢0 # timeout=10
Commit message: "Update README.md"

> git rev-list --no-walk 62a886567{6f3bea58fd835fc487e¢90667223¢cd7 # timeout=10
[Job] $ /bin/sh -xe /tmp/jenkins14857247871819482941.sh

+ echo --------—---—-—- Build Started-------------
——————————————— Build Started-------------

+Is -la

total 84

drwxr-xr-x 7 jenkins jenkins 4096 tpa 27 00:25 .

drwxr-xr-x 4 jenkins jenkins 4096 tpa 5 20:35 ..

-rw-r--1-- 1 jenkins jenkins 8244 tpa 27 00:25 about.html
-rw-r--1-- 1 jenkins jenkins 9936 kBi 29 22:29 contact.html
drwxr-xr-x 2 jenkins jenkins 4096 tpa 27 00:25 css
-rw-r--r-- 1 jenkins jenkins 11264 kBi 29 22:29 gallery.html
drwxr-xr-x 8 jenkins jenkins 4096 tpa 27 00:25 .git
drwxr-xr-x 2 jenkins jenkins 4096 kBi 29 22:29 images
-tw-r--1-- 1 jenkins jenkins 14575 kBi 29 22:29 index.html
drwxr-xr-x 2 jenkins jenkins 4096 kBi 29 22:29 js

-rw-r--r-- 1 jenkins jenkins 440 tpa 27 00:25 README.md
drwxr-xr-x 3 jenkins jenkins 4096 tpa 7 01:55 .scannerwork

Git Build Data
Revision: eea08f02f2b0b3423d2180e5492af97b57a895¢0

refs/remotes/origin/main

Changes:

37

Summary

Add Codacy badge (details)
Commit (details)

Commit (details)

Update README.md (details)

Commit 4968e9c044789734d34aa288b9c1dd623a4f0d6e by badger
Add Codacy badge

The file was modified = README.md (diff)
Commit a41718ea4dc76352d04{88eadc162da64ab92d11 by skapustasertey

Commit

The file was modified about.html (diff)
Commit 2c94face3a0416296dab6d030c0ec9c6508598a2 by tanyasoft

Commit

The file was modified css/nice-select.css (diff)
The file was modified about.html (diff)
Commit eea08f02f2b0b3423d2180e5492af97b57a895¢0 by noreply

Update README.md

The file was modified =~ README.md (diff)

Build result:
Build #175 (27 May 2021, 00:25:00)
add description

Changes

Add Codacy badge (details / githubweb)
Commit (details / githubweb)

Commit (details / githubweb)

Update README.md (details / githubweb)

38

Started by timer
Revision: eea08f022b0b3423d2180e5492af97b57a895¢0

refs/remotes/origin/main
Built Branches

refs/remotes/origin/main: Build #175 of Revision
eea08f02f2b0b3423d2180e5492af97b57a895e0 (refs/remotes/origin/main)

Complex systems and applications face a lot of issues and technical problems
while working in production environments. The time to identify the problem may vary
from 30 seconds to 30 hours or even more. But there are ways to decrease this time and

improve the problem-solving of an IT System team.

2.2.3 Test Stage

This is one of the most important aspects of the CI/CD pipeline; using automated
tests to validate the code’s correctness and viability. For this purpose there are a lot of
tools that can be used for. For code review, code quality analysis and security code
analysis codacy and coverity can be used.

In order to integrate these tools on-premises and local installation can be
proposed to discover. To check code, the codacy.com site can help to analyse the project
data. Registration comes first, the basic project property needs to be configured and set
up. My Github repository was added to the codacy -
https://github.com/Tetianal234567/Diploma. The initial setup consists of several steps

including cloning repository, detecting languages and other properties, running code
patterns and the last step is finalizing analysis with detailed reposts.

Codacy triggers analysis for every commit of the repository. It allows us to
review the evolution and progress of the setup. To apply two ways integration webhooks
should be configured with some private key like
https://app.codacy.com/events/github/3391b874154043429740a0eadbe840db (Figure
2.7)

39

https://github.com/Tetiana1234567/Diploma
https://app.codacy.com/events/github/3391b874f54043429740a0eadbe840db

Webhooks Add webhook

Webhooks allow external services to be notified when certain evenis happen. When the specified events happen, we'll send a POST reguest to
each of the URLs you provide. Leamn more in our Webhooks Guide.

+ httpsi/fapp.codacy.com/events/g... (pull_request, push, andr...) Edit = Delste

+ hitps.//app.codacy.com/events/g... (all events) Edit Delete

Figure 2.7 Web hooks setup
After reviewing the badge can be assigned to the project and can be updated
automatically based on review results in Figure 2.8

In email following notification will be sent:

You can view, comment on, or merge this pull request online at:

https://github.com/Tetianal234567/Diploma/pull/2

Commit Summary

e Add Codacy badge

File Changes

e M README.md (1)

Patch Links:

e https://github.com/Tetianal234567/Diploma/pull/2.patch
e https://github.com/Tetianal234567/Diploma/pull/2.diff

You are receiving this because you are subscribed to this thread.

Reply to this email directly, view it on GitHub, or unsubscribe.

40

https://github.com/Tetiana1234567/Diploma/pull/2
https://github.com/Tetiana1234567/Diploma/pull/2/files#diff-b335630551682c19a781afebcf4d07bf978fb1f8ac04c6bf87428ed5106870f5
https://github.com/Tetiana1234567/Diploma/pull/2.patch
https://github.com/Tetiana1234567/Diploma/pull/2.diff
https://github.com/Tetiana1234567/Diploma/pull/2
https://github.com/notifications/unsubscribe-auth/AT4PFQDZE5ZQP2V35F75FYLTPVOOBANCNFSM45S3V3AQ

[index.html Initiation 27 days ago

README.md 2

Diploma

£3 code quality B

coverity | pemnding

Figure 2.8 Code quality badge
For notification slack (Figure 2.9) can be used and configured. Incoming webhooks can
be added to the basic configuration with Webhook key like
https://hooks.slack.com/services/T023J8JKUU9/B0235LHL7EE/tDW4eDQA7F9skcE

GsdpSnnOT
#diplom <
T 2 + Add
Add a topic .n - @
TatesHa Topba 11:40 P
T . ; ; Today ~
added an integration to this channe..___" ___.Z-webhook
: = MNew
#'%, Codacy APP 11:41 PM
el Codacy just analysed commit a34dfde2 of codacy
Codacy Committer
Good work! A perfect commit.
Issues Metrics
10 errors added More 14% covered
Codacy just analysed commit a34dfde2 of codacy
Codacy Committer
Good work! A perfect commit.
Issues Metrics
10 errors added More 14% covered
First order of business... What's everyone working on today? x

Figure 2.9 Slack notification

41

https://hooks.slack.com/services/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
https://hooks.slack.com/services/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

2.2.4 Deploy Stage

After the built runnable instance has passed all its tests, then the next phase in the

pipeline is deployment. Deploy stage is the main phase in CI\CD pipeline, because this

last stage delivers the main business value to the business and to the customers. For web

hosting I used AWS S3. In order to create the S3 stage, several steps need to be done

beforehand:

- Create an S3 bucket in the AWS console (Figure 2.10)

- Configure Jenkins to deploy artifacts to the static local storage

- Upload assets into the bucket and configure it for static hosting.

In order to create static web hosting, logging to AWS console as root user. After

in the main menu S3 items need to be chosen. When Amazon S3 successfully creates

the chosen bucket, the console displays an empty bucket in the Buckets pane.

Services ¥

Amazon 53 Create bucket

Create bucket

Buckets are containers for data stored in S3. Learn more [4

General configuration

Bucket name

WWW.IMYS ite—devops.con‘d

Bucket name must be unigue and must not contain spaces or uppercase letters. See rules for bucket naming E
AWS Region
US East (Ohio) us-east-2 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied

Choose bucket

Figure 2.10 AWS S3 configuration

The basic static website hosting starts from the configuration part. Several

options need to be configured during the bucket setup, some of them can be changed

during exploitation. To enable web hosting in S3 bucket hosting needs to be selected

and enabled (Figure 2.11)

42

Static website hosting

Use this bucket to host a website or redirect requests. Learn more E

Static website hosting

Enabled

Hosting type

Bucket hosting

Bucket website endpoint

When you configure your bucket as a static website, the website is available at the AWS Region-specific website endpoint of

http:/ fwww.mysite-devops.com.s3-website.us-east-2.amazonaws.com [4

Figure 2.11 Hosting setup in S3

The next step is configuring static main hosting namely to allow public access to

the storage. By default, Amazon S3 blocks public access static web hosting and needs to

be granted additionally (Figure 2.12).

Block public access (bucket settings)

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order to ensure that p
53 buckets and objects is blocked, turn on Block all public access. These settings apply only to this bucket and its access points. AWS recommends that
public access, but before applying any of these settings, ensure that your applications will work correctly without public access. If you reguire some ley

your buckets or objects within, you can customize the individual settings below to suit your specific storage use cases. Learn more E
Edit

Block all public access

A Off
Block public access to buckets and objects granted through new access control lists (ACLs)
A Off
Block public access to buckets and objects granted through any access control lists (ACLs)
A\ Off
— Block public access to buckets and objects granted through new public bucket or access point policies
A\ Off

Block public and cross-account access to buckets and objects through any public bucket or access point policies

A\ Off

Figure 2.12 Access rights configuration

In order to provide access to the objects in the bucket, following code need to be

added to the policy:

{

"Version": "2021-05-17",

"Statement": [

{
"Sid": "PublicReadGetObject",

"Effect": "Allow",

"Principal"; "*",

43

"Action": "s3:GetObject",

n,.n

"Resource": "arn:aws:s3:::www.mysite-devops.com/*"

b
From the other side, AWS accounts need to be added to the policy. That’s why

Access Control list (ACL) needs to be managed properly and CRUD operation needs to
be managed and controlled from different users’ side like Bucket owner, Public access,
Authenticated users group from AWS side and S3 log delivery group.

In order to log web traffic from AWS side, separate buckets need to be created
and be updated automatically every two hours (Figure). The logs will record whole
requests that are made to the static web hosting.

{

"Version": "2020-10-17",

"Statement": [

{

"Sid": "PublicReadGetObject",

"Effect": "Allow",

"Principal": "*",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::logs.mysite.com/*"
b

Edit server access logging

Server access logging
) requests For avcess to your buckst

D When vour source bucket and taroet bucket are the same. additional loas are created for the loas that are

44

Figure 2.13 AWS Server access logging
After creating and setting all necessary settings from AWS side, deploy tool
should be configured accordingly with additional plugin Figure 2.14

| X)
Publish artifacts to 53 Bucket Y
53 profile
S3Deploy w

Files to upload

Source @
i

Exclude

Destination bucket @
www.mysite-devops.com

Storage class

STANDARD »

Figure 2.14 Jenkins S3 plugin

The log of execution can be following:

Publish artifacts to S3 Bucket Build is still running

Publish artifacts to S3 Bucket Using S3 profile: S3Deploy

Publish artifacts to S3 Bucket bucket=www.mysite-devops.com, file=.sonar lock
region=us-east-2, will be uploaded from slave=false managed=false , server encryption

false

Finished: SUCCESS
As a result, after publishing content into bucket, web site will be available via

http://www.mysite-devops.com.s3-website.us-east-2.amazonaws.com/ link and logs

will be avalible in sepatate hosting in Figure 2.15.

Amazon 53
» Account snapshot View Storage Lens dashboard
Storage lens provides visibility into storage usage and activity trends. Learm more E
Buckets (2) | c |
Buckets are contaners for data Stored in S3. Learn mare [

Q 1 @
Name & AWS Region v Access v Creation date v
logs.mysite.com US East {Ohio) us-east-2 @__Fl-:_h__.l_lg May 26, 2021, 17:46:3% (UTC+03:00)

W, mysite-devops.com S East [Ohia) us-east-2 A Public March 18, 2021, 00:21:51 (UTC+02:00)

45

http://www.mysite-devops.com.s3-website.us-east-2.amazonaws.com/

Figure 2.15 AWS S3
The example of code:
<Error>
<Code>AccessDenied</Code>
<Message>Access Denied</Message>
<Requestld>187MRE14TBFEBPN X</Requestld>
<Hostld>
tNYIsF3mHvFvv+Afv2zqY80s1r1zXy/SyGDXqlaNMG8WFd9X3L8aglGKzLnlKCcc
AHL3Ty3R/+s=
</Hostld>
</Error>

Click on the link below to access the main page of the site (Figure 2.16).

Shop

consectetur adipiscing elit, sed

do eiusmod tempor incidid

Figure 2.16 Web application hosted on S3 bucket
By further expanding the capabilities of the web site, this site can make requests
to other systems to obtain additional data, as well as implement additional actions
necessary for the operation of the system. For example geo location or additional SEO

activities like advertisement or customer preferences.

2.2.5 Monitoring

Monitoring will be supported by Prometheus and Grafana. In order to integrate

tools below additional add ons should be installed in Jenkins.

46

For monitoring I used docker containers to get servers up and running. After

services run, export data from Jenkings passing it to Prometheus and then to Grafana.

As 1 mentioned, Prometheus docker is up and run after basic docker
configuration. Default post for Prometeus is 9090. Installation was done by command

docker run -d --name diplom_prometheus -p 9090:9090
prom/diplom_prometheus.

An additional plugin was added to the pipeline. Plugin exposes an endpoint with
metrix, where Prometheus Server can scrape logs. The output of plugin looks like:

jvm_info{version="11.0.11+9-Ubuntu-Oubuntu2.20.04",vendor="Ubuntu",runtim
e="OpenJDK Runtime Environment",} 1.0

HELP default jenkins builds duration milliseconds summary Summary of
Jenkins build times in milliseconds by Job

TYPE default jenkins builds duration milliseconds summary
summarydefault jenkins builds duration milliseconds summary count{jenkins job="
Diplom",repo="NA",}
1.0default jenkins builds duration milliseconds summary sum {jenkins job="Diplom
"repo="NA",}
5432.0default jenkins builds duration milliseconds summary count{jenkins job="Jo
b",repo="NA",}
2.0default jenkins builds duration milliseconds summary sum{jenkins job="Job", re
po="NA",} 674973.0

HELP default jenkins builds success build count Successful build count

= TYPE default jenkins builds success build count
counterdefault jenkins builds success build count{jenkins job="Diplom",repo="NA"
,; 1.0default jenkins builds success build count{jenkins job="Job",repo="NA",} 2.0

HELP default jenkins builds_health _score Health score of a job

TYPE default jenkins builds health score
gaugedefault jenkins builds health score{jenkins job="Diplom",repo="NA",}
100.0default_jenkins builds health score{jenkins job="Job",repo="NA",} 100.0

HELP default jenkins builds last build result ordinal Build status of a job.

47

TYPE default jenkins builds last build result ordinal
gaugedefault jenkins builds last build result ordinal{jenkins job="Diplom",repo="N
A"j
0.0default jenkins builds last build result ordinal{jenkins job="Job",repo="NA",}
0.0

HELP default jenkins builds last build result Build status of a job as a
boolean (0 or 1)

it TYPE default_jenkins builds last build result
gaugedefault jenkins builds last build result{jenkins job="Diplom",repo="NA",}
1.0default jenkins builds last build result{jenkins job="Job",repo="NA",} 1.0

HELP default jenkins builds last build duration milliseconds Build times in
milliseconds of last build

TYPE default jenkins builds last build duration milliseconds
gaugedefault jenkins builds last build duration milliseconds{jenkins job="Diplom",
repo="NA",}
5432.0default jenkins builds last build duration milliseconds{jenkins job="Job",rep
o="NA",} 338198.0

HELP default jenkins builds last build start time milliseconds Last build
start timestamp in milliseconds

TYPE default jenkins builds last build start time milliseconds
gaugedefault jenkins builds last build start time milliseconds{jenkins job="Diplom
"repo="NA",}
1.620147476553E12default_jenkins builds last build start time milliseconds {jenkins
_job="Job",repo="NA",} 1.622409964268E12

HELP default jenkins builds last stage duration milliseconds summary
Summary of Jenkins build times by Job and Stage in the last build

TYPE default jenkins builds last stage duration milliseconds summary
summarydefault jenkins builds last stage duration milliseconds summary count{jen
kins_job="Diplom",repo="NA",stage="Hello",}
1.0default jenkins builds last stage duration milliseconds summary sum{jenkins jo

b="Diplom",repo="NA", stage="Hello",} 219.0
48

To configure monitoring server, some yml file needs to be updated with next
code:

- job_name: ‘jenkins’

metrics_path: /prometheus

static_configs:

- targets: [‘http:\\jenkings\prometheus:9090’]

As a result a comprehensive dashboard can be created and will be available for

everyone.

49

CONCLUSION

In the first section industry research and impact analysis was discovered. The
advantages and disadvantages of different approaches are highlighted, which makes it
possible to take into account the results of the review in further development in order to
develop and create an improved architecture taking into account these results. The
second part of the first section is devoted to the analysis of approaches to the
development of the architecture, investigating software products that can be used as
components in the architecture, in particular their capabilities and methods of
integration.

The second section describes the practical implementation of CI\CD pipeline,
which is based on the developed architecture. Jenkins Server was used to support basic
postulates, testing tools to install quality gates and AWS cloud to ensure product
availability to a wide range of users. At the same time all these components integrated
in one pipeline and implemented the ability to work with pipelines based on triggers and
schedules. Behind monitoring system setup and configured in order to monitor and
improve the problem solving time for business.

The resulting architecture can be further expanded with new components as
needed. In particular, pipeline stage notification components may be added. In addition,
significant potential for expansion exists in the testing phase, as this stage may include
different types of testing and systems that support them. In particular, support for
integration tests can be added. Depending on chosen programming languages different
tools and approaches can be used. But the main focus should always be on business
value and speed of market.

In general, the created CI\CD pipeline confirms the relevance and effectiveness of
this architecture, and can serve as a prototype for further expansion and used for web
application development. To expand the possible approaches external systems and
addons can be used.

Information technology is one of the most dynamic and directions are constantly
appearing, so opportunities for change and development exist for any software solution.

Because of this, improving and adding new features to the developed architecture may

50

be part of future work, and may focus on implementing additional stages and phases to
the pipeline.

For example Docker and Kubernetes can be one of the areas of improvement.
That approach expands the CI\CD pipeline and brings new vision in the continuous
integration sphere. On the other hand, investigation and enhancement can consider the
expansion of communication channels. For example viber, telegram or any other
corporate messengers can be added to the pipeline to send notification in an appropriate

way to appropriate people.

51

REFERENCES

. 10 Essential Ecommerce Website Requirements and Best-in-class Features, 18

June 2020,

https://www.purchasecommerce.com/blog/10-essential-ecommerce-requirement-
best-in-class-feature, Accessed May 24 2021.
. Jenna Erickson, “Adaptive Vs. Responsive Design” , 2021

https://usabilitygeek.com/adaptive-vs-responsive-design/ Accessed May 24 2021.

. Wikipedia, https://en.wikipedia.org/wiki/Create,_read. update_and_delete,
2021Accessed May 24 2021.
. Manish Mathuria, “The Road to CI/CD — A Short History of Agile

Development”, 2016,

pment/ Accessed May 24 2021.

. “Wikipedia”, https://en.wikipedia.org/wiki/Continuous_delivery , 2021, Accessed
May 24 2021.

. Sten Pitten, “What is Continuous Deployment?”, 2020,

https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=

Continuous%?20Deployment%20(CD)%201s%20a.cycle%20has%20evolved%20
over%?20time, Accessed May 24 2021.

. “Top IDE index”, https://pypl.github.io/IDE.html, April, 2020, Accessed May 24
2021.

. “Wikipedia”, https://en.wikipedia.org/wiki/Cloud computing, 2021,Accessed
May 24 2021.

. “OWASP Top Ten”, https://owasp.org/www-project-top-ten/,April, 2021,
Accessed May 24 2021.

10.“Wikipedia”, https://en.wikipedia.org/wiki/Atom_(text editor),2020, Accessed

May 24 2021.

11.“Wikipedia”, https://en.wikipedia.org/wiki/GitHub ,2021,Accessed May 24 2021.

12.“Wikipedia”, https://en.wikipedia.org/wiki/Terraform_(software), 2021,Accessed

May 24 2021.

52

https://www.purchasecommerce.com/blog/10-essential-ecommerce-requirement-best-in-class-feature
https://www.purchasecommerce.com/blog/10-essential-ecommerce-requirement-best-in-class-feature
https://usabilitygeek.com/adaptive-vs-responsive-design/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://www.infostretch.com/blog/the-road-to-cicd-a-short-history-of-agile-development/
https://www.infostretch.com/blog/the-road-to-cicd-a-short-history-of-agile-development/
https://en.wikipedia.org/wiki/Continuous_delivery
https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=Continuous%20Deployment%20(CD)%20is%20a,cycle%20has%20evolved%20over%20time
https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=Continuous%20Deployment%20(CD)%20is%20a,cycle%20has%20evolved%20over%20time
https://www.atlassian.com/continuous-delivery/continuous-deployment#:~:text=Continuous%20Deployment%20(CD)%20is%20a,cycle%20has%20evolved%20over%20time
https://pypl.github.io/IDE.html
https://en.wikipedia.org/wiki/Cloud_computing
https://owasp.org/www-project-top-ten/
https://en.wikipedia.org/wiki/Atom_(text_editor)
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Terraform_(software)

13.“Managing Plugins”, 2021, https://www.jenkins.io/doc/book/managing/plugins/,
Accessed May 24 2021.

14.“Monitoring, Evaluation & Learning”, 2021,

https://www.ri.org/content/uploads/2019/08/relief-international-monitoring-evalu

ation-learning.pdf, Accessed May 24 2021.

15.“What is Prometheus?”, 2021, https://prometheus.io/docs/introduction/overview/,
Accessed May 24 2021.

16.5 Tips to Setup a Better Performance Testing Environment”, 2017,
https://www.testbytes.net/blog/performance-testing-environment/, Accessed May

24 2021.

17. “Wikipedia”, https://en.wikipedia.org/wiki/Docker (software), 2021,Accessed
May 24 2021.
18.“What is Kubernetes?” April 30, 2021,

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/, Accessed May
24 2021.

19.“Wikipedia”, https://en.wikipedia.org/wiki/OpenShift, 2020, Accessed May 24
2021.

53

https://www.jenkins.io/doc/book/managing/plugins/
https://www.ri.org/content/uploads/2019/08/relief-international-monitoring-evaluation-learning.pdf
https://www.ri.org/content/uploads/2019/08/relief-international-monitoring-evaluation-learning.pdf
https://prometheus.io/docs/introduction/overview/
https://www.testbytes.net/blog/performance-testing-environment/
https://en.wikipedia.org/wiki/Docker_(software)
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://en.wikipedia.org/wiki/OpenShift

ABBREVIATIONS AND TERMS

CI - continuous integration
CD - continuous Delivery
CRUD - create read update delete

54

APPENDIX 1

Started by user jenkins
Running as SYSTEM
Building in workspace /var/lib/jenkins/workspace/Job
The recommended git tool is: NONE
No credentials specified

> git rev-parse --resolve-git-dir /var/lib/jenkins/workspace/Job/.git # timeout=10
Fetching changes from the remote Git repository

> git config remote.origin.url https://github.com/Tetianal234567/Diploma.git #

timeout=10
Fetching upstream changes from https://github.com/Tetianal234567/Diploma.git

> git --version # timeout=10

> git --version # 'git version 2.25.1'

> git fetch --tags --force --progress -- https://github.com/Tetianal234567/Diploma.git
+refs/heads/*:refs/remotes/origin/* # timeout=10

> git rev-parse refs/remotes/origin/main” {commit} # timeout=10
Checking out Revision 7d55a9¢7f1e5¢c4024a215e59015969462¢9262¢3
(refs/remotes/origin/main)

> g1t config core.sparsecheckout # timeout=10

> git checkout -f 7d55a9¢7f1e5¢c4024a25e590f5969462e9262c3 # timeout=10
Commit message: "Initiation"

> git rev-list --no-walk 7d55a9e7f1e5¢4024a2£5e59015969462e9262¢3 # timeout=10
[Job] $ /bin/sh -xe /tmp/jenkins15679617849493207118.sh

+ echo --------------- Build Started-------------
——————————————— Build Started-------------

+1Is -la

total 80

drwxr-xr-x 7 jenkins jenkins 4096 tpa 3 20:50 .
drwxr-xr-x 4 jenkins jenkins 4096 tpa 5 20:35 ..

-rw-r--1-- 1 jenkins jenkins 8292 kBi 29 22:29 about.html
-rw-r--1-- 1 jenkins jenkins 9936 kBi 29 22:29 contact.html
drwxr-xr-x 2 jenkins jenkins 4096 kBi 29 22:29 css
-rw-r--r-- 1 jenkins jenkins 11264 kBi 29 22:29 gallery.html
drwxr-xr-x 8 jenkins jenkins 4096 tpa 5 21:38 .git
drwxr-xr-x 2 jenkins jenkins 4096 xBi 29 22:29 images
-rw-r--r-- 1 jenkins jenkins 14575 xBi 29 22:29 index.html
drwxr-xr-x 2 jenkins jenkins 4096 kBi 29 22:29 js
drwxr-xr-x 3 jenkins jenkins 4096 tpa 5 21:25 .scannerwork
+ echo This build is number: 86

This build is number: 86

+ echo Name of the build is: #86

Name of the build is: #86

55

[Job] $
/var/lib/jenkins/tools/hudson.plugins.sonar.SonarRunnerInstallation/Sonarscanner/bin/so

nar-scanner -Dsonar.host.url=http://localhost:9000 ook ok
-Dsonar.projectKey=Diploma -Dsonar.projectName=Diploma
-Dsonar.projectVersion=1.0 -Dsonar.sources=.
-Dsonar.projectBaseDir=/var/lib/jenkins/workspace/Job

INFO: Scanner configuration file:

/var/lib/jenkins/tools/hudson.plugins.sonar.SonarRunnerlnstallation/Sonarscanner/conf/s
onar-scanner.properties

INFO: Project root configuration file: NONE

INFO: SonarScanner 4.6.1.2450

INFO: Java 11.0.11 Ubuntu (64-bit)

INFO: Linux 5.8.0-50-generic amd64

INFO: User cache: /var/lib/jenkins/.sonar/cache

INFO: Scanner configuration file:
/var/lib/jenkins/tools/hudson.plugins.sonar.SonarRunnerInstallation/Sonarscanner/conf/s
onar-scanner.properties

INFO: Project root configuration file: NONE

INFO: Analyzing on SonarQube server 8.8.0

INFO: Default locale: "en US", source code encoding: "UTF-8" (analysis is platform
dependent)

INFO: Load global settings

INFO: Load global settings (done) | time=72ms

INFO: Server id: BF41A1F2-AXkyEzeA7vbvpllIflj;7

INFO: User cache: /var/lib/jenkins/.sonar/cache

INFO: Load/download plugins

INFO: Load plugins index

INFO: Load plugins index (done) | time=42ms

INFO: Load/download plugins (done) | time=127ms

INFO: Process project properties

INFO: Process project properties (done) | time=8ms

INFO: Execute project builders

INFO: Execute project builders (done) | time=Ims

INFO: Project key: Diploma

INFO: Base dir: /var/lib/jenkins/workspace/Job

INFO: Working dir: /var/lib/jenkins/workspace/Job/.scannerwork

INFO: Load project settings for component key: 'Diploma'’

INFO: Load project settings for component key: 'Diploma’ (done) | time=14ms

INFO: Auto-configuring with CI 'Jenkins'

INFO: Load quality profiles

INFO: Load quality profiles (done) | time=48ms

INFO: Auto-configuring with CI 'Jenkins'

INFO: Load active rules

INFO: Load active rules (done) | time=1390ms

INFO: Indexing files...

INFO: Project configuration:

56

INFO: Load project repositories

INFO: Load project repositories (done) | time=14ms

WARN: Invalid character encountered in file /var/lib/jenkins/workspace/Job/js/plugin.js
at line 128 for encoding UTF-8. Please fix file content or configure the encoding to be
used using property 'sonar.sourceEncoding’.

INFO: 37 files indexed

INFO: 0 files ignored because of scm ignore settings

INFO: Quality profile for css: Sonar way

INFO: Quality profile for js: Sonar way

INFO: Quality profile for web: Sonar way

INFO: ------mmmmem- Run sensors on module Diploma

INFO: Load metrics repository

INFO: Load metrics repository (done) | time=31ms

INFO: Sensor CSS Metrics [cssfamily]

INFO: Sensor CSS Metrics [cssfamily] (done) | time=358ms

INFO: Sensor CSS Rules [cssfamily]

INFO: Sensor CSS Rules [cssfamily] (done) | time=661ms

INFO: Sensor JaCoCo XML Report Importer [jacoco]

INFO: 'sonar.coverage.jacoco.xmlReportPaths' is not defined. Using default locations:
target/site/jacoco/jacoco.xml,target/site/jacoco-it/jacoco.xml,build/reports/jacoco/test/ja
cocoTestReport.xml

INFO: No report imported, no coverage information will be imported by JaCoCo XML
Report Importer

INFO: Sensor JaCoCo XML Report Importer [jacoco] (done) | time=4ms

INFO: Sensor JavaScript analysis [javascript]

INFO: Sensor JavaScript analysis [javascript] (done) | time=1192ms

INFO: Sensor C# Project Type Information [csharp]

INFO: Sensor C# Project Type Information [csharp] (done) | time=2ms

INFO: Sensor C# Properties [csharp]

INFO: Sensor C# Properties [csharp] (done) | time=1ms

INFO: Sensor JavaXmlSensor [java]

INFO: Sensor JavaXmlSensor [java] (done) | time=3ms

INFO: Sensor HTML [web]

INFO: Sensor HTML [web] (done) | time=472ms

INFO: Sensor VB.NET Project Type Information [vbnet]

INFO: Sensor VB.NET Project Type Information [vbnet] (done) | time=I1ms

INFO: Sensor VB.NET Properties [vbnet]

INFO: Sensor VB.NET Properties [vbnet] (done) | time=1ms

INFO: ------------- Run sensors on project

INFO: Sensor Zero Coverage Sensor

INFO: Sensor Zero Coverage Sensor (done) | time=1ms

INFO: CPD Executor Calculating CPD for 4 files

INFO: CPD Executor CPD calculation finished (done) | time=41ms

INFO: Analysis report generated in 94ms, dir size=386 KB

INFO: Analysis report compressed in 53ms, zip size=101 KB

INFO: Analysis report uploaded in 72ms

57

INFO: ANALYSIS SUCCESSFUL, you can browse
http://localhost:9000/dashboard?id=Diploma

INFO: Note that you will be able to access the updated dashboard once the server has
processed the submitted analysis report

INFO: More about the report processing at
http://localhost:9000/api/ce/task?id=A Xk90rc47vbvplIfloms

INFO: Analysis total time: 7.042 s

INF O mmmm e e

INFO: EXECUTION SUCCESS

INFO: Total time: 8.272s

INFO: Final Memory: 7M/37M

INFO: mmm e m oo
Publish artifacts to S3 Bucket Build is still running

FINISHED: SUCCESS

58

APPENDIX 2

provider "aws" {
profile = "default"
region = "us-east-2"
access key = "AKIAYQUWEZ37V2VC4R4R"
secret_key = "isaTYvCaLialt+tk1142XEuk37hgYsq971YJJUIEA"

resource "aws_instance" "Ubuntu" {

count =1
ami = "ami-0le7ca2ef94a0ae86"
instance_type = "t2.micro"

vpe_security group ids =["sg-05118f212a2ddd293"]
associate public_ip address = "true"
key name = "newkey"

provisioner "remote-exec" {
inline = [
"wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key | sudo apt-key add

"

b

"sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list",

"sudo apt update -qq",

"sudo apt install -y default-jre",

"sudo apt install -y jenkins",

"sudo systemctl start jenkins",

"sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port
8080",

"sudo sh -c \"iptables-save > /etc/iptables.rules\"",

"echo iptables-persistent iptables-persistent/autosave v4 boolean true | sudo
debconf-set-selections",

"echo iptables-persistent iptables-persistent/autosave v6 boolean true | sudo
debconf-set-selections",

"sudo apt-get -y install iptables-persistent",

"sudo ufw allow 8080",

]
b

59

connection {

type = "ssh"
host = self.public_ip
user = "ubuntu"
private key = file("newkey.pem")
}
tags = {
"Name" ="Jenkins_ Server"
"Terraform" = "true"
h
h
resource "aws_instance" "Jira" {
count =1
ami ="ami-01e7ca2ef94a0ae86"
instance type = "t2.micro"

vpe_security group ids =["sg-05118f212a2ddd293"]
associate public ip address = "true"
key name = "newkey"

60

Local Development
Environment

[Compilation e

(Unlt testing

Static Code
Iysi

Mum'.ml verification|

maily or Feature Ready

Automatically Unit test passed, static code analysis passed

i
§
]

iCompilstion

g uto API Intagration
testing

Mew Feahire Tasting
D pluyment

Feature Envirenment

QA approved Unit test passed, Static code analysis passed, feature tested on env

U:g,rz request

Merge request approved Code Review Passed

Development
Branch

Static Code
Analysis

Unit Teating
Intogration testing

Customer approved scope All tests passed

| TRelease Branch
ic code Analysiz

QA sign off All test passed

Wik Testing

fotogration sting_

On customer demand All test passed, ne critical performance and security issues

Froduction
loy
b

Master Branch

Static Code
Analysis:
Compilation
Unik testing
[ntogration tosting
isuild

Fr—Performance / Security 0A pull No critical functional issues

0 sign off All tests passed

Performance Testing
Environment
peplay

Performance testing
Stress testing

Lond tosting

[Becurity testing

61

Continuous Deployment

Continuous Delivery

Aoolication lifecycle

Continuous Integration

Build Automation Release Creation Test Automation

Application Release

Management Automation
Project, Feature Version Control Containerize Manage test Data Deployment
I I I | |
User Stories Code Review Assemble Artifacts Regression Test Orchestrate Deploy
| [: [| [
Develop Build Package Create Releases Record New Test Monitor Live Apps
| I | |
Feedback Auto Unit Test Manage Configs Create Feedback

I

Phases

Artifacts

Servises

63

