
Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF KYIV-MOHYLA ACADEMY

Department of Informatics of the Faculty of Informatics

USE OF AUGMENTED REALITY TO BUILD AN INTERACTIVE

INTERIOR ON THE IOS MOBILE PLATFORM

Text part to thesis in the specialty

"Software Engineering"

Supervisor of the thesis

Ph.D. art. Off. Frankiv O. A.

(signature)

"____" _________ 2022

Made by student Babii V. K.

"____" _________ 2022

Kyiv 2020

 2

Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF KYIV-MOHYLA ACADEMY

Department of Informatics of the Faculty of Informatics

Approved

Head of Department of Informatics,

Associate Professor, Ph.D.

_____________ S. S. Gorokhovsky

(signature) "______________ 2022.

INDIVIDUAL TASK

for thesis

student Babii Veronika 4th year of the Faculty of Informatics

TOPIC: USE OF AUGMENTED REALITY TO BUILD AN INTERACTIVE

INTERIOR ON THE IOS MOBILE PLATFORM

The content of the PM to the thesis:

Abstract

Introduction

Section 1. Analysis of the problem.

Section 2. Theoretical information.

Section 3. Description of practical research.

Conclusions and analysis of opportunities for further development

List of sources

Glossary

Applications

Date of issue "___" _________

2022 Supervisor________________

Task received ______________

 3

Schedule of thesis

Topic: Use of augmented reality to build an interactive interior on the iOS

mobile platform.

No

p/p

Name of the stage of the thesis Deadline for the

stage

Note

1. Getting a task for coursework. October 2021

2. Review of literature on the topic of work. November -

December 2021

3. Analysis of programs that solve the

problem.

January 2022

4. Research on possible approaches. January - February

2022

5. Writing preprocessing part – point cloud

and 3D ply model creation.

February 2022

6. Writing postprocessing part – 3D mesh

reconstruction.

February 2022

7. Writing the text part of the thesis. April - May 2022

8. Thesis presentation creation. May 2022

9. Thesis statement. May 2022

 4

Content

Abstract .. 5

Introduction ... 6

Section 1. Analysis of the subject area and setting the task of course work 8

1. Analysis of the problem. .. 8

2. Analysis of the features of scanning applications and existing analogues of the application. 9

3. Analysis of possible approaches to create 3D model in iOS environment. 11

4. Setting the task of course work ... 12

Section 2. Theoretical information ... 13

1. Depth estimation. ... 13

2. True Depth camera.. 13

3. LiDAR scanner. ... 14

4. ARKit. .. 15

5. Point cloud. .. 15

6. Rendering pipeline... 16

7. Metal Shading Language. .. 17

8. File formats. ... 18

9. 3D surface reconstruction. .. 21

10. Open3D library. ... 24

Section 3. Description of practical research ... 25

1. Practical research on possible approaches to create 3D model. ... 25

2. Point cloud creation. .. 29

3. Surface reconstruction of the point cloud. .. 32

Conclusions and analysis of opportunities for further development 37

List of used literature ... 38

Glossary.. 41

Applications .. 42

Appendix A. Points placement preparation ... 42

Appendix B. Coordinates unprojection .. 43

Appendix C. More points accumulation in case of camera rotation .. 44

Appendix D. Saving point cloud model to a .ply file. ... 45

Appendix E. Common surface reconstruction pipeline. [26] ... 46

 5

Abstract

The thesis is devoted to the study of possibilities of the 3D object creation

from the real-life surroundings on the Apple iOS platform.

The research is based on the development of a mobile application for the

iOS operating system for 3D model creation of the surroundings via the help of

the LiDAR Scanner.

Keywords: mobile application development, iOS operating system, Swift

programming language, augmented reality, ARKit, RealityKit, MetalKit, depth

data, LiDAR Scanner, point cloud, mesh, 3D model, shader, CPU, GPU,

open3D library, mesh reconstruction, Metal shading language, normals

estimation, point cloud downsampling, BPA algorithm, Poisson algorithm,

objects formats: .obj, .ply, .dae, .usdz.

 6

Introduction

 Augmented reality technologies swiftly enter all spheres of everyday life

due to the popularity of AR/VR market, the rapid development of technological

capabilities, and the convenience of the usage of augmented reality technologies

in order to simplify everyday tasks. Virtualization brings the everyday life into

the mobile devices and makes a lot of things available from anywhere in the

world.

One of the popular topics nowadays is creation of 3D models of real-world

objects and environments for the further use. With the help of the Apple devices’

cameras and the brand-new LiDAR scanner technology it is possible to obtain

detailed information about the depth of the objects at the distance up to 5 meters.

That makes it possible to create a precise 3D model of the real-life environments,

such as premises, apartments or streets.

This technology has many potential use cases, such as 3D models creation

of the apartments for virtual navigation in them, the placement of another virtual

models inside the scanned virtual environments, convenient storage of detailed

plans of the rooms or apartments, creation of the 3D models of technical rooms

for virtual training inside them, and so on. The wide range of applications of this

solution and the rapid development of AR technologies allow to judge about the

relevance of this approach and its usefulness in both everyday life and business

solutions.

Scientific significance of the thesis lies in the conduction of the

comprehensive research on all possible ways to create 3D model with the help of

mobile device camera using iOS technologies available as per 2022 year.

Practical significance is in the development of the app that can create a 3D point

cloud model out of scene depth information and the script to reconstruct a full-

fledged 3D model from the point cloud in .ply format.

The purpose of the thesis is to study ways to create interactive 3D model

and to develop an iOS mobile application based on the chosen approach.

 7

Tasks of the thesis:

1. Research on the technologies and approaches on how to create 3D model

from the camera image.

2. Compare possible solutions and explore chosen one.

3. Develop an iOS app with the implementation of the chosen approach.

The object of the research is an approach for obtaining a 3D model with

the camera of a mobile device using modern solutions available on the iOS

platform.

The subject of the study is a mobile iOS application for creation an

interactive 3D model by scanning surroundings via mobile device camera.

The practical importance of the work is the possibility of further use of the

developed application in order to obtain a 3D model from the depth information

from the LiDAR Scanner or to conduct further research based on the provided

solution.

Thesis consists of three sections.

The first section studies the problem of creation of 3D model on the mobile

device, analysis of scanning applications and setting the task of course work.

The second section is devoted to theoretical information about the Lidar

scanner, its capabilities to get information about the depth in the scene, to point

cloud creation, Apple frameworks and possible solutions that can solve the

problem of 3d model creation.

The third section describes the process of the application implementation

that can gain depth information and form a full-fledged 3D model from it.

 8

Section 1. Analysis of the subject area and setting the task of

course work

1. Analysis of the problem.

 Replicating the structure and appearance of a real-life object by creating its

3D model is a hot topic and became even hotter with the evolution of AR/VR

sphere in the last years and game industry during the past decade. Quality of game

meshes and virtual surrounding are getting more advanced every year and

computing power of the mobile devices too. This opens a wide range of

opportunities for instant use of scanned real-life objects or surroundings in a

games or projects, without the necessity to hire a 3D modelers team in order to

recreate a specific object. Created 3D model can be immersed into the game

virtual reality directly after its scanning, or otherwise - scanned surroundings can

be used as game map instantly after scanning - without the need in the post-

processing.

3D object scanning has a great potential and become more applicable in

different spheres of everyday life or corporate business. For example, scanned

flats can be successfully used in such spheres as interior design or real estate.

Recreation of the flats as an interactive 3D models would ease the life of realtors,

because customers can see real sized rooms and all details inside them, and even

navigate themselves inside these flats’ models.

In order to successfully enter the market, this solution of a clear 3D model

creation, firstly, should be possible with basic iOS device for the use of ordinary

users. Secondly, the time it takes to create the model should be within the

appropriate limits. The format of the model should be suitable for further use, and

the quality of the model should be high enough to see the details, but at the same

time the size of the generated file should not exceed the adequate limits. In this

paper we will consider approaches to meet these requirements.

 9

2. Analysis of the features of scanning applications and existing analogues

of the application.

 During the last few years, due to the rapidly growing computational power

of mobile devices and constant improvements of their cameras, on the market

appear more and more applications that open the new possibilities of these

devices. One such popular direction is the work with the augmented reality on

mobile devices, and especially an immersion of the virtual objects into the real

environment, or, conversely, the creation of virtual interactive models from the

real environment.

Previously, the creation of a model of the scanned object was only possible

with massive and expensive scanners, which were mainly used only in large

enterprises. That is not convenient for everyday usage of an average customer.

Figure 1. Shining 3D scanner and result of its work.

 10

With the introduction of the LiDAR Scanner in the cameras of the new

generations of Apple devices, the massive scanners have been put on the back

burner. Since the LiDAR scanner has made it possible to obtain clear information

about the depth to the object at a greater distance. This innovation opened a wide

range of opportunities for more studies and development in this area for

developers and to the greater use of developed applications for users.

There are already applications on the market that use LiDAR sensors along

with the device’s cameras to create 3D model of objects, such as Polycam and 3D

Scanner.

Figure 2. 3D Scanner iOS application.

 The problem in the mentioned above apps is that they use custom

approaches with the usage of the hard computations and integrations that might

involve a solid team of developers, such solutions are mostly written in C++

programming language and such projects as theirs are closed private B2B

solutions. Therefore, these apps either fully paid, or include purchases inside an

app.

 The research will focus on finding an uncomplicated solution that does not

require a large budget or a team of developers to create and maintain it, and on

Apple iOS devices market, and therefore the native iOS technologies and

 11

approaches that might provide solution for the creation of the 3D model via

scanning real life object.

3. Analysis of possible approaches to create 3D model in iOS environment.

 The computing power of today's devices allows for the effective

implementation of augmented reality elements in both iOS and Android solutions.

The native frameworks of both platforms support the latest features in the field

of AR. But still, Apple devices are superior to Android in terms of the speed of

development of their device's hardware and especially the camera. From 2020

Apple began to add high-tech LiDAR scanners to their devices that allow to work

better with the depth of the real-world objects at a greater distance. In this paper,

the emphasis will be placed on the study of possible approaches to work with the

augmented reality on the Apple platform using the new LiDAR scanner, namely

the creation of a 3D model of the scanned environment.

Apple provides two frameworks for working with augmented reality -

ARKit and RealityKit. ARKit is SDK that provides and processes sensor data

necessary for AR experiences to work. While RealityKit is a higher-level SDK

that provides some game engine functionality for AR apps, like input,

multiplayer, audio, etc.

RealityKit framework offers Object Capture API that is able to create 3D

model from photos taken from many different angles using a photogrammetry. It

analyses the overlap area between different images to match up landmarks, and

then produces a 3D model of the photographed object. API only works on macOS,

so it’s not an option for the research because processing cannot be done on a

mobile device.

ARKit framework offers three approaches.

First one is Scene Reconstruction API. It doesn’t provide an ability to

export created mesh with the object texture, therefore it’s not suitable for proper

3D model creation.

 12

Second possible approach to look at is an .arobject creation. API recognizes

features of the user’s environment and use them to trigger the appearance of

virtual content. Created .arobject model doesn’t contain any 3D geometry

information and cannot be displayed in any way later.

Third approach is a point cloud creation by presenting a visualization of

the physical environment by placing points based a scene’s depth data. This

solution meets goals of the work as with this solution it is possible to gather

structured point cloud, that later can be reconstructed in proper 3D mesh.

4. Setting the task of course work

 After analyzing popular trends on the market, technological capabilities of

modern devices and software development trends, it was decided to investigate

the possibility of creating virtual environments for the iPhone mobile platform

based on the new generation of devices with a LiDAR scanner.

The task of the thesis is to investigate the possibilities of creating a 3D

model on a mobile device using native iOS solutions and to create a

corresponding application based on a chosen approach.

 13

Section 2. Theoretical information

1. Depth estimation.

 Our eyes estimate depth by comparing the image obtained by our left and

right eye. The minor displacement between both viewpoints is enough to

calculate an approximate depth map. We refer to the pair of images our eyes

receive as a stereo pair. This, combined with our lens with variable focal length,

and general "seeing things" experience, allows us to have a seamless 3D vision.

 In 3D computer graphics and computer vision, a depth data is a map of per-

pixel data containing depth-related information.

 Some devices have two cameras separated by a small distance, such as

iPhone 7 and 8, to capture images from different viewpoints. These two images

form a stereo pair that is used to compute depth information. iOS devices with a

back-facing dual camera or a front-facing TrueDepth camera can capture this

depth data. [1]

2. True Depth camera.

The TrueDepth refers to front-facing cameras with a dot projector in the

Apple devices. It provides depth data in a real time that allows to determine the

distance of a pixel from the front-facing camera. Camera projects an infrared light

pattern in front of itself and images that pattern with an infrared camera. By

observing how the pattern is distorted by objects in the scene, the capture system

can calculate the distance from the camera to each point in the image. [2]

TrueDepth cameras were first introduced in the iPhone X in November

2017. They support Portrait Mode photography and Face ID facial recognition on

the iPhone X and later, and the 3rd generation iPad Pro and later.

Dual cameras on earlier models, such as the iPhone 7 Plus and 8 Plus, were

able to be used to calculate depth data to support some of the features, such as

Portrait Mode, but this only was applicable to the rear-facing cameras. [3]

Apple AVFoundation framework introduced depth data capture for photos

and video in iOS 11. The data it provides is suitable for many apps but may not

 14

meet the needs of those that require greater precision depth. Starting in iOS 15.4,

it is possible to access the LiDAR camera on the supporting hardware that offers

high-precision depth data suitable for use cases like room scanning and

measurement. [4]

3. LiDAR scanner.

A good alternative to multiple cameras is to use sensors that can infer

distance, such as LiDAR, which stands for Light Detection And Ranging. It uses

pulsed laser to send out pulses of light, and receiver to pick them up that gives

accurate depth information. LiDAR can measure a variable distances to

surrounding objects up to 5.0 meters away. It operates at nano-second speed —

from 0.2 to 5 ns — that means there are hundreds of millions of pulses per second.

[5]

In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with

novel build-in LiDAR sensors. The technology uses a similar method to its

famous Face ID face recognition, but somehow differs in a lot of ways. LiDAR

Scanner is composed of two modules with its lens mounted overlapping one

another. Consisting of a transmitter and a receiver sensor, with the first emits a

series of points in the infrared which are detected by the sensor. The depth

mapping LiDAR is capable of, is made purposefully for a larger range depth

mapping over a wider range, instead of a more in-depth and finer measurements

for scanning a face. [6]

In recent years many Android devices were equipped with iToFs that can

be useful in ARCore apps. Apple’s LiDAR is basically a direct Time-of-Flight

(dToF) sensor. The main difference between direct Time-of-Flight and indirect

Time-of-Flight image sensors is in that iToF sensor sends out continuous and

modulated light and measures the phase of the reflected light for calculating a

distance to an object, whereas dToF sensor sends out short pulses of light that last

just a few nanoseconds and then measures the time it takes for some of the emitted

 15

light to come back. iToF measures the phase shift, while dToF measures the direct

time of flight. So dToF has a considerably higher accuracy than iToF. [7]

Devices such as the iPhone 12 and 13 Pro and Pro Max, and iPad Pro can

use the LiDAR Scanner to calculate the distance of real-world objects from the

user. In world-tracking experiences on iOS 14, ARKit provides a buffer that

describes the objects’ distance from the device in meters.

4. ARKit.

If frameSemantics of the ARWorldTrackingConfiguration for ARSession

is set to .sceneDepth or .smoothedSceneDepth - ARKit provides a the depth

buffer (depthMap) as a CVPixelBuffer on the current frame’s sceneDepth or

smoothedSceneDepth property, depending on the enabled frame semantics.

Every pixel in the depth buffer maps to a region of the visible scene, which

defines that region’s distance from the device in meters.

The raw depth values in sceneDepth can create the impression of a flicker

effect, but the process of averaging the depth differences across frames - via

.smoothedSceneDepth option - smooths the visual effect. [8]

5. Point cloud.

A 3D point cloud is a set of points in three-dimensional space. The point

cloud represents the surface of an object in 3D. Each point consists of three

coordinates that uniquely identify its location. Additional information such as

RGB color values and surface normal can be embedded as point attributes.

 According to depth information from the device’s LiDAR Scanner for

every distance sample in the session’s periodic depth reading, information about

every pixel in depthMap such as its position and depth is recorded and can be

linked with appropriate pixel color information from capturedImage. Each vertex

calculates its x and y location in the camera image by converting its position in

the one-dimensional vertex array, to a 2D position in the depth texture. Therefore

object's point cloud is created.

 16

6. Rendering pipeline.

3D point cloud is made up of vertices. Each vertex refers to a point in 3D

space, made up of x, y and z values. These vertices will be read in by a 3D

renderer and then passed to the GPU, where shader functions will process them

to create the final image or texture to be sent back to the CPU and displayed on

the screen.

 Rendering - the processing of an outline image using color and shading to

make it appear solid and three-dimensional. The entire process from importing a

model’s vertices to generating the final image on your screen, is commonly

known as a rendering pipeline. The rendering pipeline is a list of commands sent

to the GPU, along with resources such as vertices, materials and lights that make

up the final image.

All computers have a Central Processing Unit (CPU) that drives the

operations and manages the resources on a computer. And a Graphics Processing

Unit (GPU) that is a specialized hardware component that can process images,

videos and massive amounts of data really fast. Because it has a highly

parallelized architecture, specialized in doing the same task repeatedly, and with

little or no data transfers, it’s able to process larger amounts of data. A CPU, on

the other hand, can’t handle massive amounts of data really fast, but it can process

many sequential tasks really fast.

 Also, the CPU typically only has a handful of cores while the GPU has

hundreds — even thousands of cores. With more cores, the GPU can split the

problem into many smaller parts, each running on a separate core in parallel. At

the end of processing, the partial results are combined and the final result returned

to the CPU.

GPU cores have special circuitry for processing geometry and are often

called shader cores that writes a whole frame at a time to fit the entire rendering

window and then proceed to rendering the next frame as quickly as possible to

maintain a good frame rate. Each frame consists of commands that CPU issues to

 17

the GPU. These commands is being wrapped in a render command encoder.

Command encoders are being organized by command buffers that stand in a

command queue. [10]

Figure 3. Rendering pipeline.

7. Metal Shading Language.

After the point cloud vertices are passed to the GPU, shader can process

the vertices via shader functions in order to create the final image to be

displayed. Shader functions are small programs that run on the GPU that are

written in the Metal Shading Language.

 Metal was announced at WWDC 2014 and was initially made available

only on A7 or newer GPUs. Apple created a new language to program the GPU

directly via shader functions. This is the Metal Shading Language (MSL) based

on the C++11 specification. A year later at WWDC 2015, Apple announced two

Metal sub-frameworks: MetalKit and Metal Performance Shaders (MPS). The

API has continued to evolve, and WWDC 2017 introduced an exciting new

version of the API: Metal 2. Metal 2 adds support for Virtual Reality (VR),

Augmented Reality (AR) and accelerated machine learning (ML), among many

new features.

 In Metal, code that runs on GPUs is called a shader, because historically

they were first used to calculate colors in 3D graphics. There are two types of

shader functions in metal - vertex and fragment. The vertex function is where

 18

you usually manipulate vertex positions, and the fragment function is where you

specify the pixel color.

 In order to pass created function to the processing on the GPU, you need

to assign it to the pipeline descriptor. It holds all sorts of information that the

GPU needs - the vertex and fragment functions that you just created and such

information as which pixel format it should use and whether it should render

with depth. Then from the pipeline descriptor, pipeline state is being created for

its use of the GPU. [11]

After final image of point cloud dots is positioned on the scene, in order

to save scanned object as a point cloud 3D model for further processing, its

coordinates should be converted from scene space to the world space and saved

with its colors. While user camera is being rotated, pixel buffer gains more

information about the scanned object. Therefore, the world space points should

be copied from the buffer and appended to an array, this process is repeated for

each frame in order to create 3D point cloud from all sides. Then, this point

cloud vertices array should be written to a file with all necessary accompanying

data.

8. File formats.

There are a number of standard 3D file formats that can be used for

convenient object storing.

1) .obj - Wavefront OBJ format developed by Wavefront Technologies.

Contains only a single model. Materials, tsuch as extures and surface properties,

can be specified using an accompanying .mtl file.

Format:

- mtllib - name of the accompanying .mtl file that holds the material and

texture file names for the model;

- g - starts a group of vertices;

- v - vertex;

- vn - surface normal - a vector that points orthogonally;

 19

- vt - uv coordinate for textures;

- usemtl - name of a material providing the surface information that is

defined in the accompanying .mtl file;

- f - faces. Each face has three elements consisting of a

vertex/texture/normal index;

- s - smoothing.

The .mtl file contains the model’s materials that describe how the 3D renderer

should color the vertex.

Format:

- newmtl material_1 - group that contains all of the vertices;

- Kd - diffuse color of the surface;

- Ka: ambient color;

- Ks: The specular color reflected from a highlight;

- Other properties, such as ao, subsurface, metallic, specularTint,

roughness, anisotropicRotation, sheen, sheenTint, clearCoat,

clearCoatGloss.

3) USD is a format devised by Pixar, which can hold massive scenes with

textures, animation and lighting information. There are various file extensions:

- .usd - a Universal Scene Description (USD) file that consists of assets or

links to assets. The file can contain mesh geometry, shading information,

models, cameras and lighting;

- .usdz - a single archive file that contains all the files - not just links;

- .usda - the USD file in text format;

- .usdc - the USD file in binary format. [12]

4) .glTF - GL Transmission Format is a relatively new open sourced format that

supports static models, animation, and moving scenes.

A GLB file (.glb), which stands for “GL Transmission Format Binary

file”, is a standardized file format used to share 3D data. Precisely, it can

 20

contain information about 3D scenes, models, lighting, materials, node

hierarchy and animations.

The GLB format is a version of the GLTF file. GLB format is a binary

file format while the GLTF is based on JSON (JavaScript Object Notation). The

GLB locates all of the elements of a 3D scene, including materials, node

hierarchy and cameras in one single compressed file. In comparison, the GLTF

file requires external processing file formats, such as for textures, shaders and

animation data. [13][14]

5) STL is a file format native to the stereolithography CAD software created by

3D Systems. STL has several backronyms such as "Standard Triangle

Language" and "Standard Tessellation Language". It is widely used for rapid

prototyping, 3D printing and computer-aided manufacturing. STL files describe

only the surface geometry of a three-dimensional object without any

representation of color, texture or other common CAD model attributes. The

STL format specifies both ASCII and binary representations. [15]

5) PLY is a computer file format known as the Polygon File Format or the

Stanford Triangle Format. It was principally designed to store three-dimensional

data from 3D scanners. The data storage format supports a relatively simple

description of a single object as a list of nominally flat polygons. A variety of

properties can be stored, including color and transparency, surface normals,

texture coordinates and data confidence values. There are two versions of the

file format, one in ASCII, the other in binary. [16]

 21

Figure 4. PLY file format. [17]

The .ply format is commonly used to store point cloud data. In order to

get 3D mesh from the point cloud, it needs to be reconstructed via surface

reconstruction algorithms that run on the point cloud to generate a watertight

surface over points.

9. 3D surface reconstruction.

 In many scenarios the goal is to generate a dense 3D geometry, i.e., a

triangle mesh. However, from a depth sensor we only obtain an unstructured

point cloud. To get a triangle mesh from this unstructured input it's necessary,

firstly, to preprocess the input point cloud and then perform surface

reconstruction on it. [18]

Preprocessing:

- Voxel downsampling is often used as a pre-processing step for many

point cloud processing tasks. It uses a regular voxel grid to create a

uniformly downsampled point cloud from an input point cloud. The

algorithm operates in two steps:

o Points are bucketed into voxels.

o Each occupied voxel generates exactly one point by averaging all

points inside.

 22

- Normal estimation. Surface normals are important properties of a

geometric surface. Oriented normals are required for many reconstruction

algorithms. The most popular approach is to orient every point’s normal

perpendicular to its face surface towards camera position.

Figure 5. A simple 3D data processing task: load a point cloud, downsample it, and estimate

normals.

Algorithms for surface reconstruction:

- Alpha shapes algorithm - is a generalization of a convex hull of a point

cloud that is the smallest convex set that contains all points. [19]

Figure 6. Convex hull. [19]

- The Ball Pivoting algorithm (BPA) is a surface reconstruction method

which is related to alpha shapes. The idea behind the BPA is to simulate

the use of a virtual ball to generate a mesh from a point cloud. Algorithm

process is similar to rolling a tiny ball across the point cloud “surface”.

This tiny ball is dependent on the scale of the mesh, and should be

slightly larger than the average space between points. When a ball is

 23

dropped onto the surface of points, the ball will get caught and settle upon

three points that will form the seed triangle. From that location, the ball

rolls along the triangle edge formed from two points.

Figure 7. Pivoting ball. [20]

The ball then settles in a new location: a new triangle is formed

from two of the previous vertices and one new triangle is added to the

mesh. As we continue rolling and pivoting the ball, new triangles are

formed and added to the mesh. The ball continues rolling and rolling until

the mesh is fully formed. This algorithm assumes that the point cloud has

normals.

Figure 8. Point cloud surface reconstruction.

- The Poisson surface reconstruction method - solves a regularized

optimization problem to obtain a smooth surface. It is known as an

implicit meshing method, that’s goal is to fit a watertight surface from the

original point set by creating an entirely new point set representing an

 24

isosurface linked to the normals. Therefore, the algorithm assumes that

the point cloud has normals. [18]

Poisson surface reconstruction will also create triangles in areas of

low point density. A low density value means that the vertex is only

supported by a low number of points from the input point cloud. After

density indication for each vertex, vertices and triangles that have a low

support can be removed. [21]

Easily work with mesh reconstruction algorithms allows Open3D library.

10. Open3D library.

 Open3D is an open-source library designed for processing 3D data. It was

introduced by Qian-Yi Zhou, Jaesik Park and Vladlen Koltun – researchers at

Intel Labs. It allows the use of a set of efficient data structures and algorithms

for 3D data processing. Library provides a C++ interface and an easier Python-

based interface.

 Among library features - it enables 3D visualization and a physically

based rendering (PBR) approach of computer graphics; the reconstruction of 3D

scenes and alignment of surfaces; supports PyTorch and TensorFlow machine

learning frameworks.

Figure 9. Open3D library included modules.

 25

Section 3. Description of practical research

1. Practical research on possible approaches to create 3D model.

Approaches with the usage of native iOS technologies that were

considered in order to create 3D model via scanning real life object:

1) Object Capture API in RealityKit framework.

API is possible to test via Photogrammetry Apple Sample Project. [22]

RealityKit offers Object Capture API that can create 3D model from photos

taken from many different angles using a photogrammetry. It analyses the

overlap area between different images to match up landmarks, and then

produces a 3D model of the photographed object. API only works on macOS, so

not an option for this research as processing cannot be done on mobile device.

Hardware requirements:

- Mac for post-processing:

o Mac with M1 chip or Intel 16GB RAM and AMD 4GB VRAM

GPU.

o macOS version is Monterey or later.

o XCode version is 13 or later.

- Device for taking pictures:

o iPhone or iPad with a dual-lens rear camera (and preferably a

LiDAR scanner, although not required). [23]

Input: Object photos with depth information from different angles.

Output: Model in .usdz format.

Outtakes:

- Quality of produces result is high.

- Processing is taking approximately 3-5 minutes depending on the model

and quantity of photos.

- Object processing is only possible on macOS devices, especially on the

newest ones.

 26

Figure 10. Result of Object Capture API.

2) ARKit Scene Reconstruction

In the sample project ARKit uses the LiDAR Scanner to create a polygonal

model of the physical environment. The LiDAR Scanner quickly retrieves depth

information from a wide area in front of the user, so ARKit can estimate the

shape of the real world without requiring the user to move. ARKit converts the

depth information into a series of vertices that connect to form a mesh. [24]

Steps:

- ARMeshGeometry object is being retrieved from current AR view.

Figure 11. Get ARMeshGeometry anchors.

- ARMeshGeometry anchors is being converted to MDLMesh anchors.

- MDLMesh anchors are being exported as .obj file.

 27

Figure 12. Export ARMeshGeometry as MDLMesh.

- After scanning texture information is not available. Attempted to assign

appropriate color to the object of specific type specified by

ARMeshClassification.

Figure 13. Mesh with colors applied by ARMeshClassification.

The sample project is presenting the mesh with colors on scene by

leveraging the debug method, which is not publicly accessible -

arView.debugOptions.insert(.showSceneUnderstanding). It leverages RealityKit

 28

for rendering AR content, which does not have a method to generate a mesh

from the ARMeshGeometry and texture it.

Hardware requirements - device with LiDAR scanner.

Input: Object's depth data by LiDAR scanner.

Output: Model in .obj/.usdz format without color information.

Outtakes:

- Impossible to extract object mesh with texture.

3) Scanning And Detecting 3D Objects sample project by Apple.

Input: Depth information from regular camera.

Output: Model in .arobject format.

Process:

- Object is scanned from the different angles.

- It is possible to share the object as a file with .arobject extension.

Outtakes:

Received .arobject doesn’t contain 3D geometry information and cannot be

displayed in any way later. File in .arobject file is just a reference object with 2D and

cloud points. It cannot be converted to any format that contains 3D information or be

used later. .arobject file contains only the spatial feature information needed to

recognize a scanned real-world object, it is not a displayable 3D reconstruction mesh

of that object. [25]

4) Export object's point cloud as .ply model and create 3D mesh from it.

Present a visualization of the physical environment by placing points

based a scene’s depth data. Then form dense point cloud data to structured point

cloud object. Solution is based on Displaying a Point Cloud Using Scene Depth

sample project by Apple.

Hardware requirements: Apple device with LiDAR scanner.

Input: Depth information of the physical environment by the LiDAR

scanner.

 29

Output: Scanned object with texture as point cloud in .ply format without

normals.

Outtakes:

- Good result quality.

- It is possible to create full-fledged 3D model from the gathered point

cloud.

2. Point cloud creation.

To recreate physical surroundings as a point cloud model, depth

information about each pixel on the current frame if needed to position them

and camera capture data - to color each pixel from depth data buffer.

1. From the device's LiDAR scanner get frame’s depthMap - depth data for each

pixel from the frame; pixel buffer of the estimated distances from the device to

the environment.

- Check for LiDAR availability in order to get access to the .sceneDepth

and .smoothedSceneDepth options of the

ARWorldTrackingConfiguration.frameSemantics.

Figure 14. SceneDepth availability check.

- Get depthMap. After configuration of the .sceneDepth property -

depthMap is accessible for the ARSession's currentFrame.

Figure 15. Get depthMap of the frame.

 30

2. Assign pixel data from the camera image to each point from the depthMap.

- Access ARKit camera feed - capturedImage property on frame — pixel

buffer containing the image captured by the camera.

Figure 16. Get capturedImage of the frame.

For every point in the depth map - check the corresponding pixel in the

camera image and assign the pixel's color to the point by sampling that depth map

value’s position in the camera image. Each vertex calculates its x and y location in

the camera image by converting its position in the one-dimensional vertex array, to a

2D position in the depth texture. Checking and assigning are done on the GPU

side via shaders.

capturedImage represents data in the YUV format, while the GPU color

format is RGBA, so it's necessary to convert the camera data from YUV to

RGBA.

Figure 17. YCbCr translation matrix.

3. Place dot onto physical environment surface for each pixel from depthMap

pixel buffer with pixel color.

- Draw dots on the surface. Points on the scene are being drawn using

Metal shading language on the GPU side (appendix A).

For positioning of points its coordinates need to be translated from world

to screen via projection matrix.

 31

4. Repeating the same process and enlarging depth buffer via checking

confidenceMap (depth confidence values) while camera is being rotated in order

to create full 3D point cloud.

5. Create 3D model in .ply format from point cloud.

- Scene coordinates of the points should be translated (unprojected) to the

world space coordinates (appendix B).

- Store world space points with its color in a MTLBuffer.

- While camera is being rotated, buffer gains more information about the

scanned object. Therefore, the world space points should be copied from

the buffer and appended to an array, this process is repeated for each

frame in order to create 3D point cloud from all sides (appendix C).

- Extended point cloud vertices buffer should be written to a file with all

necessary accompanying data (appendix D).

Figure 22. Result of 3D point cloud model creation in .ply file

 32

3. Surface reconstruction of the point cloud.

For point cloud post-processing Open3D framework, namely Python API, was

chosen because of its ease of use and extensive functionality.

Prerequisites: Open3D package is compatible with python versions: 2.7, 3.5 or 3.6.

Input: structured point cloud in .ply file without normals.

Output: .ply file of reconstructed 3D textured mesh.

Point cloud pre-processing and reconstruction process using Open3D library

(appendix E):

- Load created point cloud in the .ply format to the script.

path = "/Users/veronika/Desktop/input_data.ply"

pcd = o3d.io.read_point_cloud(path)

Figure 23. Visualization of initial point cloud.

- Downsample the point cloud with a voxel of size 0.01

downpcd = pcd.voxel_down_sample(voxel_size=0.01)

 33

Figure 24. Visualization of the downsampled point cloud.

- Recompute the normal of the downsampled point cloud.

downpcd.estimate_normals(search_param=o3d.geometry.KDTreeSearc

hParamHybrid(radius=0.1, max_nn=30))

 Normals is needed for both BPA and Poisson surface reconstruction

algorithms. Therefore, produced mesh without properly oriented normals is

distorted.

Figure 25. Poisson reconstruction result without oriented normals.

 34

- Orient computed normals towards camera location.

downpcd.orient_normals_towards_camera_location(camera_location

=np.array([0., 0., 0.]))

Figure 26. Visualization of the point cloud with oriented normals.

- Reconstruct the point cloud surface via Poisson algorythm.

with

o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel

.Debug) as cm:

 mesh, densities =

o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(down

pcd, depth=9)

 35

Figure 27. Poisson reconstruction result.

Point cloud surface reconstruction via Open3D framework is also possible with

BPA algorithm. But produced results are worse than ones via Poisson algorithm.

Figure 28. BPA point cloud reconstruction result.

 36

- Identify and remove low density vertices.

vertices_to_remove = densities < np.quantile(densities, 0.01)

mesh.remove_vertices_by_mask(vertices_to_remove)

Figure 29. Low densities areas visualization.

- Save produced mesh to a file.

o3d.io.write_triangle_mesh("/Users/veronika/Desktop/poisson_ou

tput_mesh.ply", mesh)

Figure 30. Poisson mesh after low density area removal.

 37

Conclusions and analysis of opportunities for further

development

 In the thesis, native iOS approaches for real-life object’s 3D model creation

were studied. The analysis of found solutions were carried in order to choose the

most suitable approach.

 The result of the research is an app for structured point cloud creation from

scene depth information and Python script for surface reconstruction of the point

cloud in order to get full-fledged 3D model of real-life object.

 Further development opportunities:

Among the possibilities for further enhancement of the developed solution

is rewriting point cloud post-processing script to C++ programming language and

embedment of it in the current Swift project in order to carry out all the

computations on the device. Therefore, app and algorithms optimizations should

be considered.

 38

List of used literature

1. Depth estimation [Electronic resource]: https://beyondminds.ai/blog/depth-

estimation/

2. Capturing photos with depth [Electronic resource]:

https://developer.apple.com/documentation/avfoundation/cameras_and_media_

capture/capturing_photos_with_depth

3. TrueDepth [Electronic resource]: https://apple.fandom.com/wiki/TrueDepth

4. Capturing depth using the LiDAR camera [Electronic resource]:

https://developer.apple.com/documentation/avfoundation/cameras_and_media_

capture/capturing_depth_using_the_lidar_camera

5. Scene Reconstruction with a LiDAR scanner [Electronic resource]:

https://medium.com/macoclock/arkit-911-scene-reconstruction-with-a-lidar-

scanner-57ff0a8b247e

6. How LiDAR differs from ‘TrueDepth’ Face ID [Electronic resource]:

https://www.eyerys.com/articles/how-apples-lidar-sensor-differs-one-its-

truedepth-face-id

7. Time-Of-Flight and LiDAR sensors [Electronic resource]:

https://www.eyerys.com/articles/time-flight-and-lidar-sensors-how-depth-

sensing-cameras-go-mobile

8. Creating a fog effect using scene depth [Electronic resource]:

https://developer.apple.com/documentation/arkit/environmental_analysis/creatin

g_a_fog_effect_using_scene_depth

9. Displaying a point cloud using scene depth [Electronic resource]:

https://developer.apple.com/documentation/arkit/environmental_analysis/displa

ying_a_point_cloud_using_scene_depth

10. Begbie C. Queues, buffers and encoders / Caroline Begbie // Metal by

Tutorials / Caroline Begbie., 2019. – P. 34.

11. Begbie C. How did Metal come to life? / Caroline Begbie // Metal by

Tutorials / Caroline Begbie., 2019. – P. 23

https://beyondminds.ai/blog/depth-estimation/
https://beyondminds.ai/blog/depth-estimation/
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_photos_with_depth
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_photos_with_depth
https://apple.fandom.com/wiki/TrueDepth
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_depth_using_the_lidar_camera
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/capturing_depth_using_the_lidar_camera
https://medium.com/macoclock/arkit-911-scene-reconstruction-with-a-lidar-scanner-57ff0a8b247e
https://medium.com/macoclock/arkit-911-scene-reconstruction-with-a-lidar-scanner-57ff0a8b247e
https://www.eyerys.com/articles/how-apples-lidar-sensor-differs-one-its-truedepth-face-id
https://www.eyerys.com/articles/how-apples-lidar-sensor-differs-one-its-truedepth-face-id
https://www.eyerys.com/articles/time-flight-and-lidar-sensors-how-depth-sensing-cameras-go-mobile
https://www.eyerys.com/articles/time-flight-and-lidar-sensors-how-depth-sensing-cameras-go-mobile
https://developer.apple.com/documentation/arkit/environmental_analysis/creating_a_fog_effect_using_scene_depth
https://developer.apple.com/documentation/arkit/environmental_analysis/creating_a_fog_effect_using_scene_depth
https://developer.apple.com/documentation/arkit/environmental_analysis/displaying_a_point_cloud_using_scene_depth
https://developer.apple.com/documentation/arkit/environmental_analysis/displaying_a_point_cloud_using_scene_depth

 39

12. Begbie C. 3D file formats / Caroline Begbie // Metal by Tutorials / Caroline

Begbie., 2019. – P. 47

13. Everything you need to know about glTF files [Electronic resource]:

https://www.marxentlabs.com/gltf-files/

14. What is a GLB file? [Electronic resource]: https://visao.ca/what-is-glb-file/

15. STL (file format) [Electronic resource]:

https://en.wikipedia.org/wiki/STL_(file_format)

16. PLY (file format) [Electronic resource]:

https://en.wikipedia.org/wiki/PLY_(file_format)

17. Polygon file format [Electronic resource]:

http://paulbourke.net/dataformats/ply/

18. Open3D – Surface reconstruction [Electronic resource]:

http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.ht

ml

19. Open3D – Point cloud [Electronic resource]:

http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html

20. Point cloud to mesh [Electronic resource]:

https://cs184team.github.io/cs184-final/writeup.html

21. Generate 3D mesh from point cloud s[Electronic resource]:

https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-

point-clouds-with-python-36bad397d8ba

22. Creating a Photogrammetry command-line app [Electronic resource]:

https://developer.apple.com/documentation/realitykit/creating_a_photogrammet

ry_command-line_app/

23. Object Capture API [Electronic resource]:

https://9to5mac.com/2021/06/09/hands-on-macos-12-brings-new-object-

capture-api-for-creating-3d-models-using-iphone-camera/

https://www.marxentlabs.com/gltf-files/
https://visao.ca/what-is-glb-file/
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)
http://paulbourke.net/dataformats/ply/
http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html
http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html
http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html
https://cs184team.github.io/cs184-final/writeup.html
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://developer.apple.com/documentation/realitykit/creating_a_photogrammetry_command-line_app/
https://developer.apple.com/documentation/realitykit/creating_a_photogrammetry_command-line_app/
https://9to5mac.com/2021/06/09/hands-on-macos-12-brings-new-object-capture-api-for-creating-3d-models-using-iphone-camera/
https://9to5mac.com/2021/06/09/hands-on-macos-12-brings-new-object-capture-api-for-creating-3d-models-using-iphone-camera/

 40

24. Visualizing and interacting with a reconstructed scene [Electronic resource]:

https://developer.apple.com/documentation/arkit/content_anchors/visualizing_a

nd_interacting_with_a_reconstructed_scene

25. Scanning and detecting 3D objects [Electronic resource]:

https://developer.apple.com/documentation/arkit/content_anchors/scanning_and

_detecting_3d_objects

26. CGAL 5.4 - Poisson Surface Reconstruction [Electronic resource]:

https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html

https://developer.apple.com/documentation/arkit/content_anchors/visualizing_and_interacting_with_a_reconstructed_scene
https://developer.apple.com/documentation/arkit/content_anchors/visualizing_and_interacting_with_a_reconstructed_scene
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html

 41

Glossary

AR – Augmented Reality

3D – three-dimensional.

Open3D – library that supports development of software that deals with 3D

data.

API – Application Programming Interface.

True Depth - Apple's camera system that replaces the front facing camera on the

iPhone X and later.

LiDAR - Light Detection and Ranging - a remote sensing method.

 42

Applications

Appendix A. Points placement preparation

 43

Appendix B. Coordinates unprojection

 44

Appendix C. More points accumulation in case of camera rotation

 45

Appendix D. Saving point cloud model to a .ply file.

 46

Appendix E. Common surface reconstruction pipeline. [26]

	Abstract
	Introduction
	Section 1. Analysis of the subject area and setting the task of course work
	1. Analysis of the problem.
	2. Analysis of the features of scanning applications and existing analogues of the application.
	3. Analysis of possible approaches to create 3D model in iOS environment.
	4. Setting the task of course work

	Section 2. Theoretical information
	1. Depth estimation.
	2. True Depth camera.
	3. LiDAR scanner.
	4. ARKit.
	5. Point cloud.
	6. Rendering pipeline.
	7. Metal Shading Language.
	8. File formats.
	9. 3D surface reconstruction.
	10. Open3D library.

	Section 3. Description of practical research
	1. Practical research on possible approaches to create 3D model.
	2. Point cloud creation.
	3. Surface reconstruction of the point cloud.

	Conclusions and analysis of opportunities for further development
	List of used literature
	Glossary
	Applications
	Appendix C. More points accumulation in case of camera rotation
	Appendix D. Saving point cloud model to a .ply file.
	Appendix E. Common surface reconstruction pipeline. [26]

