
Ministry of Education and Science of Ukraine
National University of Kyiv-Mohyla Academy

Faculty of Computer Sciences
Department of Mathematics

Qualification work
Bachelor’s degree

on the theme: "Non linear stochastic models for time series analysis of stock
volatilities"

By the student of 4th year
Degree program
“Applied mathematics”
Speciality
113 “Applied mathematics”
Fisun Yelyzaveta

Supervisor:
PhD, Docent, Shchestyuk N.Yu.

Reviewer:
Dr.Sc., Aryasova O.V.

Qualification work is defended
with a grade of:

Secretary of EC:

(signature)

“ ” 2022

Kyiv – 2022



Ministry of Education and Science of Ukraine
National University of Kyiv-Mohyla Academy

Faculty of Computer Sciences
Department of Mathematics

APPROVED
Head of Department of Mathematics,

Prof., PhD, Oliynyk B.V.

(signature)

“ ” 2021

INDIVIDUAL TASK
for Qualification work

of the student of 4th year of Computer Sciences faculty
Fisun Yelyzaveta

Theme: Non linear stochastic models for time series analysis of stock volatilities.
Output data: Studied non linear stochastic models for financial time series
Text part content of the thesis:

Individual task
Introduction
1 Nonlinear stochastic models: ARCH, GARCH
1.1 Stochastic processes, model and examples
1.2 ARCH model and its properties
1.3 GARCH model and its properties
2 Numerical results for ARCH and GARCH models
2.1 Application of ARCH model
2.2 Application of GARCH model
2.3 Model diagnostic
Conclusion
Bibliography
Appendix

Date of issue “ ” 2021 Supervisor
(signature)

Task resieved
(signature)

2



Topic: "Non linear stochastic models for time series analysis of stock volatilities".

Timestamps:

Name of the step Deadline Signature
1. Discussion of the topic.

01.10.2021
2. Review of literature.

01.11.2021
3. Study important

concepts. 01.12.2021
4. Writing the main chapter.

01.04.2022
5. Typography work.

01.05.2022
6. Preliminary analysis.

Corrections. 01.06.2022
8. Predefence of the thesis.

15.06.2022
9. Final corrections.

25.06.2022
10. Defence of the thesis.

05.07.2022

3



Contents

Анотацiя 5

Introduction 6

1 Nonlinear stochastic models: ARCH, GARCH 7
1.1 Stochastic processes, model and examples . . . . . . . . . . . . . . . . . 7
1.2 ARCH model and its properties . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 GARCH model and its properties . . . . . . . . . . . . . . . . . . . . . . 16

2 Numerical results for ARCH and GARCH models 19
2.1 Application of ARCH model . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Application of GARCH model . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Model diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Conclusion 31

Bibliography 32

Appendix 33

4



Анотацiя
У фiнансовiй математицi ми дуже часто стикаємось з такими поняттями,

як невизначенiсть та мiнливiсть, а отже спостерiгаємо деякий ризик у кожному
припущеннi. Стохастичне моделювання є важливим iнструментом для аналiзу,
прогнозу реальних фiнансових даних. Вибiр “кращої” моделi, яка адекватно
описуватиме данi є досить непростою задачею в аналiзi часових рядiв. Бiльшiсть
класичних та детально дослiджених економетричних моделей є лiнiйними за пара-
метрами, наприклад такi як AR(p), MA(q), ARMA(p,q). Їх перевагою є простота
та невелика кiлькiсть параметрiв, що дозволяють достатньо добре апроксимувати
часовi ряди, якi за припущенням вважаються стацiонарними. Однак, у реальному
життiфiнансовi показники змiнюються дуженепередбачувано, томупостає проблема
змiнної варiацiї, яка не може бути описана простими лiнiйними моделями. Загалом
моделювання та прогнозування волатильностi на фондовому ринку стало прiори-
тетним завданням прикладних дослiджень останнiх рокiв.

Квалiфiкацiйну роботу присвячено застосуванню теоретичних основ нелiнiйних
стохастичних моделей, а саме ARCH(p), GARCH(p,q) на реальних фiнансових даних.
У роботi проведена оцiнка методом моментiв та методом максимальної вiрогiдностi,
їх порiвняння та симуляцiя моделей. Спрогнозована поведiнка волатильностi акцiй
на певний перiод.

Ключовi слова: умовна варiацiя, волатильнiсть, стохастична величина,
ARCH(p), GARCH(p,q)
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Introduction
Commonmethods ofmodelling time series (e.g. ARIMA) operate under an assumption

of constant variance. However, a lot of financial processes have a change in variance
or volatility that can cause problems while modelling. If the variance has an explicit
increasing trend, this property of series is called heteroskedasticity. In this case linear
models explain and forecast certain economic behavior or economic performance in a
relatively poor way, therefore we need another approach to model data.

Nonlinear models are applied in order to explain several phenomena in financial
statistics and economics such as "cluster property" of prices, their "disastrous" jumps and
downfalls, "heavy tails" of the distributions of the variables ℎ𝑛 = ln 𝑆𝑛

𝑆𝑛−1
that cannot be

covered in the scope of linear models. Many macroeconomic indicators (the volumes
of production, investment, the general level of prices) and also microeconomic indexes
(current prices, the volume of traded stocks) fluctuate with a very high frequency or can be
extremely irregular, so nonlinear stochastic models describe recessions and expansions,
catastrophic behavior[1].

The ARCH(p) process (Autoregressive Conditional Heteroscedastic) introduced by
Engle (1982) allows the conditional variance to change over time as a function of past
errors leaving the unconditional variance constant[2]. For such processes, the recent past
gives information about the one-period forecast variance[3]. A lag parameter 𝑝 defines
the number of prior residual errors that should be included in the conditional variance
equation in order to take account of the long memory effect that is observed in empirical
work. Estimating of high-order model leads to the violation of of the non-negativity
constraints.

As an extension of ARCH model, GARCH(p,q) (Generalized Autoregressive Condi-
tional Heteroskedastic), was introduced by Bollerslev (1986). It remains modelling not
only with a long-memory property but also have more flexible lag structure. The GARCH
model combines both the moving average together with autoregressive component.

The main objective of this thesis is the application of theoretical background to real
financial time series. This is achieved through the following steps that are implemented
manually and in Python:
1. Transforming data in order to follow property of stationarity (unconditional variance).

2. Testing if my data has ARCH/GARCH effects.

3. Determination of order the model.

4. Applying different methods of estimation and comparing results.

5. Simulation of volatility and log returns.

6. Forecast of volatility.
The work consists of two main chapters, a summary, a bibliography and an appendix. The
first chapter describes definitions and properties of these models, the second one focuses
on numerical results on the real dataset.
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1 Nonlinear stochastic models: ARCH, GARCH

1.1 Stochastic processes, model and examples
Analysing time series of the evolution of financial (economic, social) indexes, we strive

to find "best" model that fits our data, which actually can be rather a complicated task. Let
identify the following main components of statistical data:[1]

• a slowly changing trend component;

• periodic or aperiodic cycles;

• a fluctuating ("stochastic" or "chaotic") component.
The main objectives of financial indexes analysis are to predict the "future dynamics

of prices" or to come up with a right investment decision. Facing with uncertainty and
variability we definitely observe a risk in every assumption we make. Therefore, in this
chapter we introduce essential theoretical background that allows us to design nonlinear
stochastic models. (see [4])
Definition 1.1

Let 𝑇 be the index set, (Ω,ℱ ,P) a probability space and (𝐸,𝒢) a measurable space.
A stochastic process is a sequence of random variables 𝑋 = 𝑋𝑡; 𝑡 ∈ 𝑇 where for each
fixed 𝑡 ∈ 𝑇 , 𝑋𝑡 is a random variable from (Ω,ℱ ,P) to (𝐸,𝒢). Ω is known as the sample
space, where 𝐸 is the state space of the stochastic process 𝑋𝑡.
The index set 𝑇 of the stochastic process is often some subset of the real line, such as
natural numbers or an interval, giving the set 𝑇 the interpretation of time.
The state space𝐸 defines the values that the stochastic process can take (integers, real line etc.).
A stochastic process can also be written as𝑋(𝑡, 𝜔) : 𝑡 ∈ 𝑇 to emphasize that it is actually
function of two variables, 𝑡 ∈ 𝑇 and 𝜔 ∈ Ω.
Definition 1.2

If 𝑋(𝑡, 𝑤) : 𝑡 ∈ 𝑇 is a stochastic process, then for any point 𝜔 ∈ Ω, the mapping
𝑋(·, 𝜔) : 𝑇 → 𝑆,

is called a sample function (path) of the stochastic process 𝑋(𝑡, 𝑤) : 𝑡 ∈ 𝑇 .
This type of modelling introduces and predicts outcomes that take to consideration certain
levels of unpredictability or randomness. To understand this concept we can compare it
to its opposite, deterministic modelling, which in turn gives the same exact results for a
particular set of inputs, no matter how many times you re-calculate the model.[6]
The application of stochastic models is commonly used in financial sector, one of the
famous examples is Monte Carlo simulation. It models how a portfolio may perform
based on the probability distribution of individual stock returns.
Examples of stochastic processes
1. White noise. We call 𝜀 a white-noise process if

E(𝜀𝑡) =0,∀𝑡,
𝑣𝑎𝑟(𝜀𝑡) =𝜎2,∀𝑡,

𝑐𝑜𝑣(𝜀𝑡, 𝜀𝑡−𝑠) =0,∀𝑠 ̸= 0

(1)
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A time series is a white noise if the variables are independent and identically distributed
with a mean of zero and the same variance (𝜎2) and each value has a zero correlation with
all other values in the series.[24]

Figure 1: White noise

In fact, white noise is a sequence of random variables and cannot be predicted. In addition,
if series follows Gaussian distribution 𝜀𝑡 ∼ 𝒩 (0, 1), we call it Gaussian white noise.
2. Martingale. A discrete-time stochastic process (sequence of random variables)
𝑥1, 𝑥2, ..., 𝑥𝑡 is called martingale if it satisfies the following conditions:

E(|𝑋𝑡|) < ∞,

E(𝑋𝑡+1|𝑋1, ..., 𝑋𝑡) =𝑋𝑡
(2)

Conditional expected value of the next observation, given all the past observations, is
equal to the most recent observation.
Furthermore, it is essential to define martingale difference sequence (MDS). A stochastic
series 𝑋𝑡 is MDS if it satisfies the following conditions:

E(|𝑋𝑡|) < ∞,

E[𝑋𝑡|ℱ𝑡−1] = 0,∀𝑡 (3)

This denotes if 𝑌𝑡 is a martingale, then 𝑋𝑡 = 𝑌𝑡 − 𝑌𝑡−1 will be martingale difference
sequence [23].
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Figure 2: Martingale

Definition 1.3
Atime series 𝑟𝑡 isweakly stationary if𝐸(𝑟𝑡) = 𝜇, which is constant and𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑙) = 𝛾𝑙

which only depends on 𝑙, (time-invariant). So, the time plot of the data should show that
values fluctuate with constant variance. Implicitly in the condition of weak stationarity,
we assume that the first two moments of 𝑟𝑡 are finite.
The covariance 𝛾𝑙 = 𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑙) is called the lag-l autocovariance of 𝑟𝑡.
Correlation and autocorrelation function
Definition 1.4

The correlation coefficient between two random variables 𝑋 and 𝑌 is defined as

𝜌𝑥,𝑦 =
𝐶𝑜𝑣(𝑋, 𝑌 )√︀

𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )
=

E[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)]√︀
E(𝑋 − 𝜇𝑥)2E(𝑌 − 𝜇𝑦)2

,

where 𝜇𝑥 and 𝜇𝑦 are the mean of𝑋 and 𝑌 , respectively, and it is assumed that the variance
exists.
This coefficient measures the strength of linear dependence between 𝑋 and 𝑌 , and it can
be shown that−1 ≤ 𝜌𝑥,𝑦 ≤ 1 and 𝜌𝑥,𝑦 = 𝜌𝑦,𝑥. The two random variables are uncorrelated
if 𝜌𝑥,𝑦 = 0. Furthermore, if both 𝑋 and 𝑌 are normal random variables, then 𝜌𝑥,𝑦 = 0 iff
𝑋 and 𝑌 are independent.
Definition 1.5

The correlation coefficient between 𝑟𝑡 and 𝑟𝑡−𝑙 is called the lag-𝑙 autorrelation of 𝑟𝑡,
which under the weak stationarity assumption is a function of 𝑙 only. Specifically, we
define

𝜌𝑙 =
𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑙)√︀

𝑉 𝑎𝑟(𝑟𝑡)𝑉 𝑎𝑟(𝑟𝑡−𝑙)
=

𝑐𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑙)

𝑉 𝑎𝑟(𝑟𝑡)
=

𝛾𝑙
𝛾0

Autoregressive model
Forecasting stock prices, investor makes an assumption if new buyers or sellers of that
stock are impacted by recent market transactions.
Autoregressive models based on the assumption that past values have an effect on current
values.
A sequence 𝑟𝑡 = (𝑟𝑡)𝑡≥1 called autoregressive model 𝐴𝑅(𝑝) of order 𝑝 if:

𝑟𝑡 = 𝛼0 + 𝛼1𝑟𝑡−1 + 𝛼2𝑟𝑡−2 + ...+ 𝛼𝑟𝑦𝑡−𝑝 + 𝜀𝑡

9



where 𝜀𝑡 is a white noise. We consider lagged values of ℎ𝑛−𝑖 as predictors.
For effective use of AR models it is essential to study its basic properties. Consider case
of AR(1) the contribution in 𝑟𝑡 is made only by the closest in time variable 𝑟𝑡−1.

𝑟𝑡 = 𝛼0 + 𝛼1𝑟𝑡−1 + 𝜀𝑡 (4)
AR(1) model implies that, conditional on the past observation ℎ𝑛−1, we have:

E(𝑟𝑡 | 𝑟𝑡−1) = 𝛼0 + 𝛼1𝑟𝑡−1, 𝑉 𝑎𝑟(𝑟𝑡 | 𝑟𝑡−1) = 𝑉 𝑎𝑟(𝜀𝑡) = 𝜎2
𝑒 .

That is, given the past observation 𝑟𝑡−1, the current observation is centered around 𝛼0 +
𝛼1𝑟𝑡−1 with variability 𝜎2

𝑒 . This is Markov property such that conditional on 𝑟𝑡−1, the
value of 𝑟𝑡 is not correlated with 𝑟𝑡−𝑖 for 𝑖 > 1.
We usually restrict AR models with the sufficient and necessary condition for weak
stationarity.
1. Expectation of AR(1)
Assuming that we have:

E(𝑟𝑡) = 𝜇, 𝑉 𝑎𝑟(𝑟𝑡) = 𝛾0, and 𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑗) = 𝛾𝑗,

where 𝜇 and 𝛾0 are constant and 𝛾𝑗 is a function of 𝑗, not 𝑡. −1 < 𝛼1 < 1
Taking the expectation of Eq.(4) and because E(𝜀𝑡 = 0), we obtain

E(𝑟𝑡) = 𝛼0 + 𝛼1E(𝑟𝑡−1). (5)

Under assumption of stationarity, E(𝑟𝑡) = E(𝑟𝑡−1) = 𝜇. Substituting this into the
previous equation, we get

E(𝑟𝑡) = 𝜇 =
𝛼0

1− 𝛼1
. (6)

Note, the mean of 𝑟𝑡 esists if 𝛼1 ̸= 1 and the mean of 𝑟𝑡 is zero if and only if 𝛼0 = 0.
2. Variance of AR(1)
Using Eq(6) we have 𝛼0 = (1− 𝛼1)𝜇, the AR(1) can be rewritten as

𝑟𝑡 − 𝜇 = 𝛼1(𝑟𝑡−1 − 𝜇) + 𝜀𝑡. (7)

By repeated substitutions, the previous equation implies that

𝑟𝑡 − 𝜇 = 𝜀𝑡 + 𝛼1𝜀𝑡−1 + 𝛼2
1𝜀𝑡−2 + ...

=
∞∑︁
𝑖=0

𝛼1
1𝜀𝑡−1.

(8)

Thus, 𝑟𝑡 − 𝜇 is a linear function of 𝜀𝑡−1 for 𝑖 ≥ 0. With help of linearity and the
independence of the series 𝜀𝑡, we obtain E[(𝑟𝑡 − 𝜇)𝜀𝑡+1] = 0. With the assumption of
stationarity we have 𝐶𝑜𝑣(𝑟𝑡−1, 𝜀𝑡) = E[(𝑟𝑡−1 − 𝜇)𝜀𝑡] = 0.
Taking square and expectation of Eq.(7)

𝑉 𝑎𝑟(𝑟𝑡) = 𝛼2
1𝑉 𝑎𝑟(𝑟𝑡−1) + 𝜎2

𝜀
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Under the stationary assumption, 𝑉 𝑎𝑟(𝑟𝑡 = 𝑉 𝑎𝑟(𝑟𝑡−1)), so that

𝑉 𝑎𝑟(𝑟𝑡) =
𝜎2
𝜀

1− 𝛼2
1

. (9)

In order the variance to be finite and satisfy non-negativity, 𝛼2
1 < 1. Hence, weak

stationary of AR(1) implies that −1 < 𝛼1 < 1 and guarantees the mean and variance of
𝑟𝑡 to be finite.
Autocorrelation function of AR(1) model
MultiplyingEq.(7) by 𝜀𝑡 consider independence between 𝜀𝑡 and 𝑟𝑡−1 and taking expectation,
we obtain

E[𝜀𝑡(𝑟 − 𝑡− 𝜇)] = E[𝜀𝑡(𝑟𝑡−1 − 𝜇)] + E(𝜀2𝑡 ) = 𝜎2
𝜀 ,

where 𝜎2
𝜀 is the variance of 𝜀𝑡.

Multiplying Eq.(7) by (𝑟𝑡−𝑙−𝜇), taking expectation and applying the prior result, we have

𝛾𝑙 =

{︃
𝛼1𝛾1 + 𝜎2

𝜀 if 𝑙 = 0

𝛼1𝛾𝑙−1 if 𝑙 > 0,

where we use 𝛾𝑙 = 𝛾−𝑙. Consequently, for a weakly stationary AR(1) model, we have

𝑉 𝑎𝑟(𝑟𝑡) = 𝛾0 =
𝜎2

1− 𝛼2
1

and 𝛾𝑙 = 𝛼1𝛾𝑙−1, for 𝑙 > 0

From the last equation, the ACF of 𝑟𝑡 satisfies

𝜌𝑙 = 𝛼1𝜌𝑙−1, for 𝑙 ≥ 0

𝜌0 = 1 then 𝜌𝑙 = 𝛼𝑙
1. This result says that ACF of a weakly stationary AR(1) [22] series

decays exponentially with rate 𝛼1 and starting value 𝜌0 = 1.

Figure 3: ACF of AR(1) for 𝛼1 = 0.6

Why do we model log returns?
Representing financial data in log difference is very common [9]. Calculating simple
returns is done using:

𝑅 =
𝑃𝑖 − 𝑃𝑗

𝑃𝑗
. (10)
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𝑅-is market return,𝑃𝑖 - is ending price, 𝑃𝑗- isstarting price.
Mostly total value of a return consists of 𝑛 sub-periods, so we need to compound the
growth of each period:

𝑃𝑓 = 𝑃0(1 +𝑅1)(1 +𝑅2)...(1 +𝑅𝑛).

where 𝑃𝑓 - is final price, 𝑃0- is initial price, 𝑅𝑥- is return for each sub-period.
We could write this formula in a simplified exponential way if𝑅𝑥 were evenly distributed,
but in reality it never happens. Because of this we should take to account a logarithmic
form of returns. In this case we are focusing more on relative value rather than absolute
one, logarithmic returns show the rate of exponential growth.
Therefore if you earn 𝑟% interest that is compounded continuously, at the end of the year
your money will be:

𝑃2 = 𝑃1 lim
𝑥→∞

(1 +
𝑟

𝑛
)𝑛 = 𝑃1𝑒

𝑟

or grown by a factor:
𝑃2

𝑃1
= 𝑒𝑟

Taking natural logarithm we obtain

𝑟 = 𝑙𝑛(
𝑃2

𝑃1
)

The following equation is derived from Eq.(10)

𝑙𝑛(𝑅𝑖 + 1) = 𝑙𝑛(
𝑃𝑖

𝑃𝑗
)

Such representation of an asset return ensures weak-stationary property.

1.2 ARCH model and its properties
The nature of financial data is often as follows:[25]

• The distribution of average and variance over time is not followed under normal law
and density function, is characterized by a more elevated critical zone (the presence of
so-called thick tails). In other words, most financial time series has such distributions
of values in which extreme values of the indicator occur more often than it is provided
by the normal distribution.

• In financial processes there is a clustering of volatility: spontaneous strong shocks of
an indicator do not subside, and proceed still some time.

Further we declare several nonlinear stochastic models that are popular in financial math-
ematics and statistics.
The ARCH(p) process (Autoregressive Conditional Heteroscedastic) was introduced by
Engle (1982).[1,3]
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• AR (Autoregressive) means past financial data influences future data

• CH (Conditional Heteroscedastic) identifies nonconstant volatility related to prior
period’s high or low volatility.

Let (Ω,ℱ , 𝑃 ) be the original probability space and let 𝜀 = (𝜀𝑛)𝑛≥1 be a sequence of inde-
pendent, normally distributed random variables (𝜀𝑛 ∼ 𝒩 (0, 1)) simulating "randomness",
"uncertainty" in the models that we consider below.
By ℱ𝑛 we shall mean the 𝜎-algebra 𝜎(𝜀1, .., 𝜀𝑛); we set ℱ0 = {∅,Ω}.
We shall interpret 𝑆𝑛 = 𝑆𝑛(𝑤) as the price (or an exchange rate) at time 𝑛 = 0, 1.... Here
time can be measured in years, months so on.
To describe the evolution of the variables

ℎ𝑛 = 𝑙𝑛
𝑆𝑛

𝑆𝑛−1
. (11)

R.Engle considered the conditionally Gaussian model with

ℎ𝑛 = 𝜎𝑛𝜀𝑛. (12)

The volatilities 𝜎𝑛 are defined as follows:

𝜎2
𝑛 = 𝛼0 +

𝑝∑︁
𝑖=0

𝛼𝑖ℎ
2
𝑛−𝑖. (13)

where 𝛼0 > 0, 𝛼𝑖 ≥ 0, in order to guarantee positive variance and ℎ0 = ℎ0(𝑤) is a random
variable independent of 𝜀 = (𝜀𝑛)𝑛≥1.
We see that 𝜎𝑛 are predictable functions of (past) functions ℎ2

𝑛−1, ℎ
2
𝑛−2, ..., so we can

consider that large (small) values of ℎ2
𝑛−𝑖 imply large (small) respectively values of 𝜎2

𝑛.[4]
Consequently, ℎ𝑛 tends to assume high value, it means that probability of obtaining large
shocks is greater.[16]
Shown above nonlinear models can give an interpretation of such phenomena as "cluster
property", namely periods of large movements in prices alternate with periods during
which prices hardly change. Because of this conditions, the assumption of a constant
variance (homoscedasticity) is inappropriate.[8]
For simplicity, we consider 𝑝 = 1:

𝜎2
𝑛 = 𝛼0 + 𝛼1ℎ

2
𝑛−1. (14)

The following properties of the ℎ𝑛 = 𝜎𝑛𝜀𝑛 are:
1) Expectation of log-returns (First moment)
By applying Theorem of iterated expectations, conditional expectation of measurable
random variable and mean of white noise, (see Appendix) we derive

Eℎ𝑛 = E[E[(𝜎𝑛𝜀𝑛) | ℱ𝑛−1]] = E[𝜎𝑛E(𝜀𝑛)] = 0 (15)

2) Variance (Second moment)

𝑉 𝑎𝑟(ℎ𝑛) = Eℎ2
𝑛 − E(ℎ𝑛)

2 = E[E[(𝜎2
𝑛𝜀

2
𝑛 | ℱ𝑛−1)]] = E(𝛼0 + 𝛼1ℎ

2
𝑛−1) =

= 𝛼0 + 𝛼1Eℎ2
𝑛−1,

(16)
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E(ℎ2
𝑛) | ℱ𝑛−1) = 𝜎2

𝑛 = 𝛼0 + 𝛼1ℎ
2
𝑛−1. (17)

If
0 < 𝛼1 < 1

and assume that equation (16) has unique stationary solution, namely Eℎ2
𝑛−1 = Eℎ2

𝑛 we
derive

Eℎ2
𝑛 ≡ 𝛼0

1− 𝛼1
, 𝑛 ≥ 0. (18)

3) Fourth moment

Eℎ4
𝑛 = E𝜎4

𝑛E𝜀4𝑛 = 3E𝜎4
𝑛 = 3E(𝛼0 + 𝛼1ℎ

2
𝑛−1)

2 = 3(𝛼2
0 + 2𝛼0𝛼1Eℎ2

𝑛−1 + 𝛼2
1Eℎ4

𝑛−1) =

=
3𝛼2

0(1 + 𝛼1)

1− 𝛼1
+ 3𝛼2

1Eℎ4
𝑛−1.

(19)

Assuming that 0 < 𝛼1 < 1 and 3𝛼2
1 < 1 we can obtain following solution in case

(Eℎ4
𝑛 = 𝑐𝑜𝑛𝑠𝑡)

Eℎ4
𝑛 =

3𝛼2
0(1 + 𝛼1)

(1− 𝛼1)(1− 3𝛼2
1)

(20)

4) Excess kurtosis
The value of excess kurtosis is

𝐾 ≡ Eℎ4
𝑛

(Eℎ2
𝑛)

2
− 3 =

6𝛼2
1

1− 3𝛼2
1

. (21)

Kurtosis measures how fat a distribution’s tail is when compared to the center of the
distribution. Excess kurtosis helps determine how much risk is involved in a specific
investment. We compare excess kurtosis regarding to normal distribution, that’s why we
substract 3 in (21) (as excess kurtosis of normal distribution equals 0). The values of excess
kurtosis can be either negative or positive. When the value of an excess kurtosis is negative,
the distribution is called platykurtic.This kind of distribution has a tail that’s thinner than
a normal distribution. When excess kurtosis is positive, it has a leptokurtic distribution.
The tails on this distribution is heavier than that of a normal distribution, indicating a
heavy degree of risk. The returns on an investment with a leptokurtic distribution or
positive excess kurtosis will likely have extreme values. Excess kurtosis can be at or near
zero as well, so the chance of an extreme outcome is rare. This is known as a mesokurtic
distribution.[10]
So, in our case kurtosis is positive, whichmeans thatwe observe heavy tails and distribution
of the variables ℎ𝑛 has a peak near the mean value.(see [20])
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Figure 4: Kurtosis

5) Structure of correlation relationship in ℎ𝑛

The sequence ℎ = ℎ𝑛, ℎ𝑛 = 𝜎𝑛𝜀𝑛 is serially uncorrelated process.
E(ℎ𝑛ℎ𝑛−1) = E[E(ℎ𝑛ℎ𝑛−1 | ℎ𝑛−1, ℎ𝑛−2, ...)] = E[ℎ𝑛−1E(ℎ𝑛 | ℎ𝑛−1, ℎ𝑛−2, ...)] =
= E[ℎ𝑛−1 · 0] = 0.
𝐶𝑜𝑣(ℎ𝑛, ℎ𝑛−1) = E(ℎ𝑛ℎ𝑛−1)− E(ℎ𝑛)E(ℎ𝑛−1) = 0.
If two variables are uncorrelated, there is no linear relationship between them, but it
doesn’t mean that they are independent.
We can prove it considering correlation relationship between squares of ℎ2

𝑛, ℎ
2
𝑛−1 or their

abs |ℎ𝑛, |ℎ𝑛−1||.

𝐷ℎ2
𝑛 =

2

1− 3𝛼2
1

(
𝛼0

1− 𝛼1

2
). (22)

Eℎ2
𝑛ℎ

2
𝑛−1 =

1 + 3𝛼1

1− 3𝛼2
1

· 𝛼2
0

1− 𝛼1
. (23)

Therefore,

𝑝(1) = 𝐶𝑜𝑟𝑟(ℎ2
𝑛, ℎ

2
𝑛−1) =

𝐶𝑜𝑣(ℎ2
𝑛, ℎ

2
𝑛−1)√︁

𝐷ℎ2
𝑛𝐷ℎ2

𝑛−1

= 𝛼1.

Estimation of model using Method of Moments [1]
Firstly, we need to find empirical values of second and fourth moments assuming that they
are finite and ℎ𝑛 follows stationary condition.
Eℎ2

𝑛 = Eℎ2
𝑛 − (Eℎ𝑛)

2

Eℎ4
𝑛 = E(ℎ4

𝑛)− 4E(ℎ𝑛)E(ℎ3
𝑛) + 6E(ℎ𝑛)

2E(ℎ2
𝑛)− 3E(ℎ𝑛)

4

Consider the following system of equations:{︃
Eℎ2

𝑛 = 𝛼0

1−𝛼1
,

Eℎ4
𝑛 = 3𝛼2

0(1=𝛼1)
(1−𝛼1)(1−3𝛼2

1)
.

(24)

15



Then 𝛼0, 𝛼1 can be derived as:

𝛼0 = Eℎ2
𝑛 · (1− 𝛼1), (25)

3(𝐸ℎ2
𝑛)

2

Eℎ4
𝑛

=
1− 3𝛼2

1

1− 𝛼2
1

. (26)

Forecasting [1]
Financial analysts are interested in predicting future behavior of prices. As I have already
mentioned sequence ℎ = (ℎ𝑛) is martingale difference, so it can not be predicted by prior
values E(ℎ𝑛+𝑚 | ℱℎ

𝑛 ) = 0.
So, we will forecast nonlinear function of ℎ𝑛+𝑚, namely ℎ2

𝑛+𝑚

^ℎ2
𝑛+𝑚 = Eℎ2

𝑛+𝑚 | ℱℎ
𝑛 = E𝜎2

𝑛+𝑚𝜀
2
𝑛+𝑚 | ℱℎ

𝑛 =

= E[E(𝜎2
𝑛+𝑚𝜀

2
𝑛+𝑚 | ℱ 𝜀

𝑛+𝑚−1) | ℱℎ
𝑛 ] = E𝜎2

𝑛+𝑚 | ℱℎ
𝑛 = ^𝜎2

𝑛+𝑚

(27)

^ℎ2
𝑛+𝑚 = 𝛼0

1− 𝛼𝑚
1

1− 𝛼1
+ 𝛼𝑚

1 ℎ
2
𝑛

if𝑚 → ∞, ^ℎ2
𝑛+𝑚 → Eℎ2

𝑛 = 𝛼0

1−𝛼1

Although ARCH model can model different economic phenomena it has a number of
disadvantages.[16]
1. Firstly, analysing structure of the model, it is assumed that positive and negative shocks
have the same effects on volatility, because of the squares of previous shocks. However,
in practice price of an asset reacts differently to positive and negative shocks.
2. The ARCH model is rather limited. For example, 𝛼2

1 of ARCH(1) should be in interval
[0, 13 ] provided that series has finite fourth moment.
3. The ARCH model doesn’t explain reasons why conditional variance has such behavior.
4.ARCH models are likely to overpredict the volatility because they respond slowly to
large isolated shocks to the return series.[16]

1.3 GARCH model and its properties
Since ARCH model was introduced, it became an incentive to generate different

variation of itself. One extension known as generalized ARCHwas proposed by Bollerslev
(1986). Very often fitting financial data for ARCHmodel requires many lags to adequately
describe the volatility process, for instance, consider returns of SP 500 index, ARCH(9)
should be applied to model volatility. More complex structure of GARCHmodel is a good
alternative to solve this problem.[1,16]
Then ℎ𝑛 follows a GARCH(p,q) model if

ℎ𝑛 = 𝜎𝑛𝜀𝑛, 𝜎2
𝑛 = 𝛼0 +

𝑝∑︁
𝑖=1

𝛼𝑖ℎ
2
𝑛−𝑖 +

𝑞∑︁
𝑗=1

𝛽𝑗𝜎
2
𝑛−𝑗, (28)
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where again 𝜀𝑛 is a sequence of i.i.d. random variables with mean 0 and variance 1,
𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, and

∑︀𝑚𝑎𝑥(𝑝,𝑞)
𝑖=1 (𝛼𝑖 + 𝛽𝑗) < 1. Here it is understood that 𝛼𝑖 = 0

for 𝑖 > 𝑝 and 𝛽𝑗 ≥ 0, for 𝑗 > 𝑞. The last constraint on 𝛼𝑖+𝛽𝑗 is needed for unconditional
variance of ℎ𝑛 to be finite, whereas its conditional variance 𝜎2

𝑛 evolves over time.
For 𝑞 = 0 the process reduces to the ARCH(p), and for 𝑝 = 𝑞 = 0, is simply white noise.
In the ARCH(p) process the conditional variance is specified as a function of past sample
variances only, whereas the GARCH(p,q) process allows lagged conditional variances to
enter as well. This corresponds to some sort of adaptive learning mechanism.

Structure and properties of GARCH(1,1)

ℎ𝑛 = 𝜎𝑛𝜀𝑛, 𝜎2
𝑛 = 𝛼0 + 𝛼1ℎ

2
𝑛−1𝛽1𝜎

2
𝑛−1, (29)

where 𝛼0 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0

Eℎ2
𝑛 = 𝛼0 + (𝛼1 + 𝛽1)

2
𝑛−1

First, a large ℎ2
𝑛−1 gives rise to large 𝜎2

𝑡 . This means that a large ℎ2
𝑛−1 tends to be followed

by another large ℎ2
𝑛, generating again, the well-known behavior of volatility clustering in

financial time series. provided that 𝛼1 + 𝛽1 < 1 then stationary solution of Eℎ2
𝑛 is

Eℎ2
𝑛 =

𝛼0

1− 𝛼1 − 𝛽1
.

If 3𝛼2
1 + 2𝛼1𝛽1 + 𝛽2

1 < 1 then stationary solution for fourth moment is

Eℎ4
𝑛 =

3𝛼2
0(1 + 𝛼1 + 𝛽1)

(1− 𝛼1 − 𝛽1)(1− 𝛽2
1)− 2𝛼1𝛽1− 3𝛼2

1

Excess kurtosis is
𝐾 =

Eℎ4
𝑛

(𝐸ℎ2
𝑛)

2
− 3 =

6𝛼2
1

1− 𝛽2
1 − 2𝛼1𝛽1 − 𝛽2

1

Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1) process is
heavier than that of a normal distribution.
Estimation of GARCH(1,1) based on ARMA representation. [17]
We can assume, that 𝑥𝑡 ≡ ℎ2

𝑛 as

𝑥𝑡 = 𝜔 + 𝜑𝑥𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1

where 𝜀𝑡 = 𝑥𝑡−𝜎2
𝑡 is a martingale difference sequence with respect to ℱ𝑡, 𝜑 = 𝛼+𝛽 > 0

and 𝜃 = −𝛽 < 0. We shall also assume that 𝜑 < 1 in order to guarantee E[𝑥𝑡] < ∞.
The covariance function is defined as:

𝛾(𝑘) = E[(𝑥𝑡+𝑘 − E[𝑥𝑡])(𝑥𝑡 − E[𝑥𝑡])]

Suppose, 𝑥𝑡 is stationarywith 2ndmoment. For stationary process autocorrelation function
is 𝑝(𝑘) = 𝛾(𝑘)/𝛾(0)
According to the following set of Yule-walker equations Harvey (1993).

𝑝(𝑘) = 𝜑𝑝(𝑘 − 1), 𝑘 = 2, 3..., (30)
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𝑝(1) =
(1 + 𝜑𝜃)(𝜑+ 𝜃)

1 + 𝜃2 + 2𝜑𝜃
(31)

Let 𝑏 = 𝜑2+1−2𝑝(1)𝜑
𝜑−𝑝(1) , 𝜑 ̸= 𝑝(1) and express eq.20 in 𝜃, 𝜃2 + 𝑏𝜃 + 1 = 0

The solution to quadratic equation is

𝜃 =
−𝑏+

√
𝑏2 − 4

2

We observe that
𝜔 = 𝜎2(1− 𝜑), 𝜎2 = E(𝑦2𝑡 ).

First, we can estimate 𝜑 by 𝜑 =
ˆ𝑝(2)
ˆ𝑝(1)

Substitute and obtain estimator of 𝜃

𝜃 =
−𝑏̂+

√︀
𝑏̂2 − 4

2
, 𝑏̂ =

𝜑2 + 1− 2𝑝(1)𝜑

𝜑− 𝑝(1)

This leads to the following estimators of 𝜆 = (𝛼, 𝛽, 𝜔)

𝛼̂ = 𝜃 + 𝜑, 𝛽 = −𝜃, 𝜔̂ = 𝜎̂2(1− 𝜑) (32)

The literature on GARCH models is enormous; see Bollerslev, Chou, and Kroner (1992),
Bollerslev, Engle, and Nelson (1994), and the references therein. The model encounters
the same weaknesses as the ARCH model. For instance, it responds equally to positive
and negative shocks.
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2 Numerical results for ARCH and GARCH models
In this chapter I will illustrate an application of ARCH model on real dataset of

Toronto Stock Exchange (TSX).[12] It is canadian stock exchange located in Toronto,
Ontario, founded in 1861, the TSX is Canada’s premier stock exchange with more than
1,500 listed companies, including those from the energy, mining, technology, and real
estate sectors. It is the 11th largest exchange in the world and the third largest in North
America based on market capitalization.[13]
We will consider Adjusted Close price in Canadian dollars for the last 5 years from
02/08/2016-30/07/2021. The adjusted closing price factors is anything that might affect
the stock price after the market closes. A stock’s price is typically affected by supply and
demand of market participants. However, some corporate actions, such as stock splits,
dividends, and rights offerings, affect a stock’s price. Adjustments allow investors to
obtain an accurate record of the stock’s performance.[14]

Firstly, we plot our raw data.

Figure 5: Adj Close price of TSX

Analysing this plot we can assume that non stationarity is present in our data. Firstly,
we are tracking positive trend, but in the beginning of 2020 due to covid pandemic we
observe a really big drop and afterwards the evolution of stock proceeds with its growth.
To make sure that it is true we will apply statistical Augmented Dickey-Fuller. The ADF
test is a type of statistical test called a unit root test, because it technically checks if value
of 𝛼 in equation below equals 1 or not.

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑢𝑡,

where 𝑢𝑡 - is a noise
The null hypothesis (H0) of the test is that the time series is not stationary, 𝛼 = 1 (has
some time-dependent structure).
The alternate hypothesis (H1) is that the time series is stationary, doesn’t have a unit root.
We interpret this result using the p-value from the test.
If p-value is below a threshold (such as 5% or 1%), we reject the null hypothesis (data
is stationary), otherwise a p-value above the threshold suggests we fail to reject the null
hypothesis (data is non-stationary). We can also compare ADF Statistic with critical
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values, if ADF Statistic is less than critical one we are likely to reject null hypothesis (so
stationary data), otherwise we come up with nonstationary data.

p-value: 0.46 > 0.05, we fail to reject null hypothesis, so our data is definitely nonsta-
tionary.
ADF Statistic: -1.63 > -3.41 - non stationary.
The results obtained by using non-stationary time series may be spurious in that they may
indicate a relationship between two variables where one does not exist.
In order to receive consistent, reliable results, the non-stationary data needs to be trans-
formed into stationary data. [15]
In our case we will use log difference approach and represent data as:

ℎ𝑛 = 𝑙𝑛
𝑆𝑛

𝑆𝑛−1
.

Figure 6: Log-returns

We can see that now our data is more likely to be stationary, except non constant variance
at the begining of 2020.
Results of ADF test:

p-value: 0.0 < 0.05, we reject null hypothesis, so our data is definetely stationary.

20



ADF Statistic: -8.34 < -2.86 - stationary.
Testing for ARCH effects
The squared series ℎ2

𝑛 is used to check for conditional heteroscedasticity, where ℎ𝑛 =
𝑟𝑛−𝜇𝑛 is the residual of ARMAmodel. F-statistic can be used to find the joint significance
of multiple independent variables. So for the given regression equation:

ℎ2
𝑛 = 𝛼0 + 𝛼1ℎ

2
𝑛−1 + ...+ 𝛼𝑚ℎ

2
𝑛−𝑚 + 𝜀𝑛, 𝑡 = 𝑚+ 1, ..., 𝑇,

where 𝜀𝑛 denotes the error term, 𝑚 is a prespecified positive integer, and 𝑇 is the sample
size.
The null hypothesis 𝐻0 would be:𝛼1 = 𝛼2 = ...− 𝛼𝑚 = 0
Alternative hypothesis 𝐻1 would be: 𝛼𝑖 ̸= 0
So, if even one of the coefficients is significant, then there is a high possibility of re-
jecting the null hypothesis as the coefficients are not jointly insignificant anymore. Here
the two models can be an unrestricted model which contains all the predictor variables
or a restricted model in which we are restricting the number of predictor (for example
intercept-only).
Let𝑆𝑆𝑅0 =

∑︀𝑇
𝑡=𝑚+1(ℎ

2
𝑛−𝜔̄)2, where 𝜔̄ is the samplemean of ℎ2

𝑛 -sum square of residuals
of the restricted model
and 𝑆𝑆𝑅1 =

∑︀𝑇
𝑡=𝑚+1 𝜀

2
𝑛, where 𝜀2𝑛 is the least squares residual of the prior linear regres-

sion. It is sum square of residuals of the unrestricted model. Then we have

𝐹 =
(𝑆𝑆𝑅0 − 𝑆𝑆𝑅1)/𝑚

𝑆𝑆𝑅1/(𝑇 − 2𝑚− 1)

Denote:
𝑑𝑓1 = 𝑚: degree of freedom 1,
𝑑𝑓2 = 𝑇 − 2𝑚− 1: degree of freedom 2.
The distribution we are gonna compare it with is called the F-distribution. We usually
take a confidence interval of 95% which translates to an alpha value of 0.05. Based on the
values of the two degrees of freedom and the alpha value we can find the F-critical value
on the F-distribution. See table of F-critical values in appendix. If the F-statistic value is
greater than the F-critical, we reject the null hypothesis.
So, given model got a F-statistic score of 288.473, 𝑑𝑓1 = 1, 𝑑𝑓2 = 1.25𝑒+ 03. F-critical
value for 𝛼 = 0.05 is 3.85. Since, 𝐹 − 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is much lower than our 𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐,
we reject the null hypothesis, which means that the independent variables are jointly
significant in explaining the variance of the dependent variable. We can also check the
𝑝− 𝑣𝑎𝑙𝑢𝑒 in the summary to determine whether to reject or accept the null hypothesis or
not. In our case, 𝑝− 𝑣𝑎𝑙𝑢𝑒 = 2.232 · 10−58 is much lower than 𝛼 = 0.05, so we reject the
null hypothesis.
Order determination
In order to determine order of the model, we need build partial autocorrelation plot, which
is a summary of the relationship between an observation in a time series with observations
at prior time steps, but only the direct effect is shown (all intermediary effects are omitted).
As I have already mentioned variables ℎ𝑛 and ℎ𝑛−1 are uncorrelated, but their squares are
correlated and can be predicted.
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Figure 7: PACF of squared log-returns

We can observe that the first three lags are very significant. So, it is better to use
ARCH(3) for this financial data.

2.1 Application of ARCH model
In this paper are covered two different method of estimation the model. First method

is the method of moments, but it is difficult to apply it for ARCH model of higher order,
so for simplicity I will demonstrate this approach on ARCH(1) model.
Empirical values of moments are:

Eℎ2
𝑛 =0.000113,

Eℎ4
𝑛 =7.0885 · 10−5.

Applying Equations (17-19) from Chapter 1 we obtain the following estimations for
coefficients:

𝛼0 = 0.000049.

Solving Eq.(19) we obtain two roots:

𝛼11 =− 0.56655,

𝛼12 =0.56655.

First one we don’t consider, because it is less than zero and the coefficients 𝛼𝑖 ought to be
positive. Simulated returns of ARCH(1) are shown in the following plot.
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Figure 8: ℎ𝑛 =
√︁
0.000049 + 0.56655ℎ2

𝑛−1𝜀𝑛

Also was simulated volatility for ARCH(1).

Figure 9: 𝜎2
𝑛 = 0.000049 + 0.56655ℎ2

𝑛−1

Empirical value of excess kurtosis is𝐾 = 51.973 that confirms presence of heavy-tails in
the data.
Maximum of Likelihood function estimation (MLE) [16]
MLE is a probabilistic framework for solving the problem of density estimation. It involves
maximizing a likelihood function (optimization problem) in order to find the probability
distribution and parameters that best explain the observed data. What we want to calculate
is the total probability of observing all of the data, i.e. the joint probability distribution
of all observed data points. To do this we would need to calculate some conditional
probabilities, which can get very difficult. So, we assume that each data point is generated
independently of the others. Thus if the events are independent, then the total probability
of observing all of data is the product of observing each data point individually. Here, I
am briefly explaining main concepts of algorithm.
Let 𝜀1, ..., 𝜀𝑇 be an independent and identically distributed sample with probability density
function (pdf) 𝑓(𝜀𝑡; Θ), whereΘ is a 𝑘×1 vector of parameters that characterize 𝑓(𝜀𝑡; Θ).
In our case we consider that, 𝜀𝑡 ∼ 𝒩 (𝜇, 𝜎2) then pdf is defined as:

𝑓(𝜀𝑡 | Θ) =
1√︀
2𝜋𝜎2

𝑡

exp−
1

2𝜎2
(𝜀𝑡−𝜇)2 𝑎𝑛𝑑Θ = (𝜇, 𝜎2).
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The joint probability density of the sample is:

𝑓(𝜀1, ..., 𝜀𝑡 | 𝜃) = 𝑓(𝜀1 | Θ)...𝑓(𝜀𝑡 | 𝜃) =
𝑇∏︁
𝑡=1

𝑓(𝜀𝑡; Θ).

The common approach to find maxima (minima) of the function is to apply differentiation.
But the above equation is quite difficult to differentiate, so we can simplify it by taking the
natural logarithm of the expression. This is absolutely fine because the natural logarithm
is a monotonically increasing function. This is important because it ensures that the
maximum value of the log of the probability occurs at the same point as the original
probability function. The log-likelihood function 𝑙(𝛼0, 𝛼1) can be written as a function of
the parameters 𝛼0 and 𝛼1:

𝑙(𝜀𝑡 | 𝛼0, 𝛼1) =
𝑛∑︁

𝑡=2

𝑙𝑡(𝛼0, 𝛼1) + 𝑙𝑛𝑓𝜀(𝜀1)

=
𝑛∑︁

𝑡=2

𝑙𝑜𝑔𝑓(𝜀𝑡 | ℱ𝑡−1) + 𝑙𝑛𝑓𝜀(𝜀1)

=− 𝑛− 1

2
𝑙𝑜𝑔(2𝜋)− 1

2

𝑛∑︁
𝑡=2

𝑙𝑜𝑔(𝛼0 + 𝛼1𝜀
2
𝑡−1)

− 1

2

𝑛∑︁
𝑡=2

𝜀2𝑡
𝛼0 + 𝛼1𝜀2𝑡−1

+ 𝑙𝑜𝑔𝑝𝜀(𝜀1),

(33)

where 𝑓𝜀 is the stationarymarginal density of 𝜀𝑡. A problem is that the analytical expression
for 𝑓𝜀 is unknown inARCHmodels thus can not be calculated. In the conditional likelihood
function 𝑙𝑏 = 𝑙𝑛𝑓(𝜀𝑛, ..., 𝜀2 |)𝜀1 the expression 𝑙𝑛𝑓𝜀(𝜀1) dissapears:

𝑙𝑏(𝛼0, 𝛼1) =
𝑛∑︁

𝑡=2

𝑙𝑡(𝛼0, 𝛼1)

=
𝑛∑︁

𝑡=2

𝑙𝑛𝑓(𝜀𝑡 | ℱ𝑡−1)

=− 𝑛− 1

2
𝑙𝑛(2𝜋)− 1

2

𝑛∑︁
𝑡=2

𝑙𝑛(𝛼0 + 𝛼1𝜀
2
𝑡−1)−

1

2

𝑛∑︁
𝑡=2

𝜖2𝑡
𝛼0 + 𝛼1𝜀2𝑡−1

(34)

Applying this algorithm, we obtain the following coefficients for ARCH(1) model

Figure 10: Estimation of ARCH(1) with MLE
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Estimations for parameters of model obtained via two different methods on simulated
values appeared to be similar.
It is shown plot of realised and conditional volatility for ARCH(1).

Figure 11: Realised vs conditional volatility

Then it is shown estimation for ARCH(3).

Figure 12: Estimation of ARCH(3) with MLE

Simulation for log-returns and volatility of ARCH(3) model.

Figure 13: ℎ𝑛 =
√︁

1.6444 · 10−5 + 0.2557ℎ2
𝑛−1 + 0.2547ℎ2

𝑛−2 + 0.2547ℎ2
𝑛−3𝜀𝑛
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Figure 14: 𝜎2
𝑛 = 1.6444 · 10−5 + 0.2557ℎ2

𝑛−1 + 0.2547ℎ2
𝑛−2 + 0.2547ℎ2

𝑛−3

Forecast
Applying Eq.(26) from Chapter 1 to 𝑚 = 100 I obtain that ^ℎ2

𝑛+𝑚 = 0.000113 that is
literally equal to Eℎ2

𝑛 = 0.000113
Forecast with python (test/train sample)
I divided our sample into train and test one in order to predict the last 7 values of volatility
of returns. Firstly, I fitted ARCH(1) model on train sample, then applied forecast method
on it and added plot of actual and predicted volatility.

Figure 15: Forecast of volatility for ARCH(1)

2.2 Application of GARCH model
Firstly, I calculated coefficients manually, using Eq.(30) and obtained such results:

𝑝(1) = 0.55210036, 𝑝(2) = 0.57086614, so 𝜑 = 0.9671, 𝑏̂ = 2.097, 𝜃 = −0.733

𝜔̂ = 3.715 · 10−6, 𝛼̂ = 0.234, 𝛽 = 0.733

𝜎2
𝑛 = 3.715 · 10−6 + 0.234ℎ2

𝑛−1 + 0.733𝜎2
𝑛−1

Estimation with Python (MLE)
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Simulated returns and volatility for GARCH(1)

Figure 16: ℎ𝑛 =
√︁

2.2711 · 10−6 + 0.2ℎ2
𝑛−1 + 0.78𝜎2

𝑛−1𝜀𝑛

Figure 17: 𝜎2
𝑛 = 2.2711 · 10−6 + 0.2ℎ2

𝑛−1 + 0.78𝜎2
𝑛−1

2.3 Model diagnostic
In ARCH model standardized shocks 𝑎𝑡 = 𝑎𝑡

𝜎𝑡
are independent identically distributed

random variables following either normal or standardized Student-t distribution. It is
common way to apply the Ljung-Box statistics of 𝑎𝑡 to check adequacy of mean equation
and 𝑎2𝑡 in order to check if the volatility equation is valid. In addition, it can be useful to
analyse QQ-plot, ACF plot and value of skewness, kurtosis.[16]
The Ljung-Box test is a statistical test that checks if autocorrelation exists in a time series.
The null hypothesis defines that residuals independently distributed.
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The alternative hypothesis is that residuals are not independently distributed.
If the p-value is less than some threshold, you can reject the null hypothesis and conclude
that the residuals are not independently distributed, otherwise they are iid.
For ARCH(1) we obtain such results:
Ljung-Box statistics 𝑠𝑡𝑎𝑡 = 0.114188, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.735426, then p-value is quite large
from alpha level and we accept null hypothesis.

Figure 18: ACF of residuals ARCH(1)

We can observe that residuals are serially uncorrelated, no any significant lags are
present.

Figure 19: QQ-plot

In general, most values follow law of normal distribution, except on the tails they
deviate. Calculated value of excess kurtosis is 𝐾 = 0.9015 it is bigger than kurtosis of
Gaussian distribution, hence the distribution may have heavy tails that is shown in the
following histogram.
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Figure 20: Histogram of residuals ARCH(1)

Analysing GARCH(1,1) we obtain the following results:
Ljung-Box statistics 𝑠𝑡𝑎𝑡 = 0.335288, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.562562, then p-value is quite large
from alpha level and we accept null hypothesis.

Figure 21: ACF of residuals GARCH(1,1)

Residuals are serially uncorrelated, no any significant lags are present.

29



Figure 22: QQ-plot

In general, most values follow law of normal distribution, except on the tails they
deviate.

Figure 23: Histogram of residuals GARCH(1,1)

In order to find "best" model we can apply Akaike Information Criterion.[21] The
formula for the AIC score is as follows:

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(ℒ),

where 𝑘 - is the number of model parameters, ℒ - is the maximum value of the likelihood
function of the model.
Themodel with the lowest AIC offers the best fit. The absolute value of theAIC value is not
important, it can be positive or negative. In our case for ARCH(1) 𝐴𝐼𝐶 = −8943.95, for
ARCH(3) -−9113.80, for GARCH(1) -−9176.03 respectively. Therefore, for GARCH(1)
model AIC criterion is the lowest, so it is appropriate model.
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Conclusion
ARCH / GARCH models belong to the class of nonlinear models with conditional

variance.
In this work were implemented the following steps:

• Prices of stocks were transformed intomore common representation such as difference
of log returns in order to follow weak stationary assumption.

• By the means of F-statistic it was tested and proven that residual series of the model
contain ARCH effects, namely conditional heteroscedasticity. The F-statistic was
significant, so ARCH model can adequately describe financial time series.

• PACF plot of squared returns ℎ2
𝑛 was used to determine order of ARCH. It was defined

that the first three lags are significant.

• In order to estimate the model was used Method of Moments that provided the
following coefficients: 𝛼0 = 0.000049, 𝛼1 = 0.56655, thus the obtained equation of
returns is ℎ𝑛 =

√︁
0.000049 + 0.56655ℎ2

𝑛−1𝜀𝑛. In addition, parameters were evaluated
with Maximum Likelihood approach in Python, such that 𝛼0 = 0.0000267, 𝛼1 =
0.6743, regarding to quite low level of p-value parameters of model are significant.
Consequently, with simulated values estimations of two methods are very similar.

• Volatitility and log-returns were simulated for ARCH(1) and ARCH(3).

• It was confirmed that forecasting log-returns ^ℎ2
𝑛+𝑚 for a large step 𝑚 is striving to

second moment under assumption of weak stationarity.

• Ultimately, it was predicted volatility of ARCH(1) for 7 days.

Additionally, I have estimated GARCH(1,1) using both methods, so log-returns are de-
fined with the following equation ℎ𝑛 =

√︁
2.2711 · 10−6 + 0.2ℎ2

𝑛−1 + 0.78𝜎2
𝑛−1𝜀𝑛. It was

simulated volatility and log returns for GARCH(1,1). Finally, it was predicted volatility
of GARCH(1,1) for 7 days. In order to choose the "best" model was applied Akaike Infor-
mation Criterion which showed that GARCH(1,1) fits data better than other modifications
of model.
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Appendix
Definition 1.1

𝜔1, ..., 𝜔𝑁 is called elementary events and finite set Ω = {𝜔1, ..., 𝜔𝑁} is called space
of elementary events.
Definition 1.2

𝐿𝑒𝑡 𝑋 be some set, and let 𝑃 (𝑋) represent its power set. Then a subset ℱ ⊆ 𝑃 (𝑋)
is called 𝜎-algebra if it satisfies the following properties:
1. 𝑋 is in ℱ .
2.ℱ is closed under complementation: if 𝒜 is in ℱ , then so is its complement X ∖𝒜 is in ℱ .

3.ℱ is closed under countable unions: if 𝒜1,𝒜2,𝒜3... are in ℱ , then so
∞⋃︀
𝑖=1

𝒜𝑖 is in ℱ .

Definition 1.3
Anordered triple (Ω,ℱ ,𝒫)whereΩ is a set of points 𝜔,ℱ is 𝜎 -algebra of subsets of Ω,

𝒫 is a probability on ℱ is called probabilistic model or a probability space.
Definition 1.4

Borel 𝜎 algebra on topological space X is the smallest 𝜎-algebra containing all open
sets (or equivalently all closed sets).
Definition 1.5

A random variable is a function X:Ω → R. It is said to be measurable w.r.t ℱ
if for every Borel set 𝐵 ∈ ℬ(R)

𝑋−1(𝐵) := {𝜔 ∈ 𝜔 : 𝑋(𝜔) ∈ 𝐵} ∈ ℱ

Definition 1.6
Let X be a set. Let𝒜,ℬ be 𝜎-algebras on X. Then ℬ is said to be a sub-sigma-algebra

of 𝒜 if and only if ℬ ⊆ 𝒜.
Definition 1.7

Let 𝒢 be a sub-𝜎-algebra of ℱ , and let 𝑋 ∈ ℒ1 be a random variable. We say that the
random variable 𝜉 is the conditional expectation of X with respect to 𝒢 - and denote it by
E[𝑋|𝒢] if
1. 𝜉 ∈ ℒ1

2. 𝜉 is 𝒢 -measurable,
3.E[𝜉1𝐴] = E[𝑋1𝐴], for all A ∈ 𝒢
Definition 1.8

For discrete random variables, the conditional probability mass function of Y given
X=x can be written according to its definition as:

𝑝𝑌 |𝑋(𝑦 | 𝑥) = 𝑃 (𝑌 = 𝑦 | 𝑋 = 𝑥) =
𝑃 ({𝑋 = 𝑥} ∩ {𝑌 = 𝑦})

𝑃 (𝑋 = 𝑥)

Definition 1.9
The joint probability mass function of two discrete random variables X,Y is:

𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑃 (𝑋 = 𝑥 and 𝑌 = 𝑦)
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or written in terms of conditional distributions

𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑃 (𝑌 = 𝑦 | 𝑋 = 𝑥) · 𝑃 (𝑋 = 𝑥) = 𝑃 (𝑋 = 𝑥 | 𝑌 = 𝑦) · 𝑃 (𝑌 = 𝑦)

𝜉(𝜔) = 1
P[𝐴]E[𝑋1𝐴] =

∑︀
𝜔∈𝐴

𝑋(𝑤)P[{𝜔} | 𝐴], or all 𝜔 ∈ 𝐴.

Definition 1.11
If𝑋 and 𝑌 are discrete random variables, the conditional expectation of𝑋 given 𝑌 is

E(𝑋 | 𝑌 = 𝑦) =
∑︁
𝑥

𝑥𝑃 (𝑋 = 𝑥 | 𝑌 = 𝑦) =
∑︁
𝑥

𝑥
𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃 (𝑌 = 𝑦)

where 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) is joint probability mass function of 𝑋 and 𝑌 .
Statement 1 Law of the unconscious statistician

Let 𝑋 be a random variable and let 𝑌 = 𝑔(𝑋) be a function of this random variable.
If 𝑋 is a discrete random variable and 𝑝𝑋(𝑥), the expected value of 𝑔(𝑋) is

E[𝑔(𝑋)] =
∑︁
𝑥∈𝒳

𝑔(𝑥)𝑝𝑋(𝑥).

Properties of conditional expectation
Taking out what is known

If 𝑋 is ℋ-measurable, then E(𝑋𝑌 | ℋ) = 𝑋E(𝑌 | ℋ).
Theorem 1(Law of Iterated Expectations, "Adam’s Law")

For any random element X ∈ 𝒳 and random variable Y ∈ 𝒴 ⊂ R,

E[E[𝑋 | 𝑌 ]] = E𝑋

E[E[𝑋 | 𝑌 ]] =
∑︀
𝑦
E[𝑋 | 𝑌 = 𝑦]𝑃 (𝑌 = 𝑦) =

∑︀
𝑦

∑︀
𝑥
𝑥𝑃 (𝑋 = 𝑥 | 𝑌 = 𝑦)𝑃 (𝑌 = 𝑦)

=
∑︀
𝑦

∑︀
𝑥
𝑥𝑃 (𝑌 = 𝑦 | 𝑋 = 𝑥)𝑃 (𝑋 = 𝑥) =

∑︀
𝑥
𝑥𝑃 (𝑋 = 𝑥)

∑︀
𝑦
𝑃 (𝑌 = 𝑦 | 𝑋 = 𝑥) =∑︀

𝑥
𝑃 (𝑋 = 𝑥) = E[𝑋]

In the first step let 𝑓(𝑥) = E[𝑋 | 𝑌 ] and apply LOTUS (Statement 1).
Projection interpretation

If we consider E[𝑋 | 𝑌 ] as prediction for𝑋 given 𝑌 then𝑋−E[𝑋 | 𝑌 ] is the residual
of that prediction.
Theorem 2 (Projection interpretation)

For any ℎ : 𝑌 → R,E[(𝑌 − E[𝑌 | 𝑋])ℎ(𝑌 )] = 0
Proof
By linearity of conditional expectation we have E[𝑋ℎ(𝑌 )] − E[E[𝑋 | 𝑌 ]ℎ(𝑌 )] =
E[𝑋ℎ(𝑌 )]− E[E[𝑋 | 𝑌 ]ℎ(𝑌 ) =
E[𝑋ℎ(𝑌 )]− E[E[𝑋ℎ(𝑌 ) | 𝑌 ]] = E[𝑋ℎ(𝑌 )]− E[𝑋ℎ(𝑌 )] = 0
Definition 1.12

The covariance of random variable 𝑋 and 𝑌 is defined
𝐶𝑜𝑣(𝑋, 𝑌 ) = E(𝑋 − E𝑋)(𝑌 − E𝑌 ) = E𝑋𝑌 − E𝑋E𝑌 . If 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0, then we
say 𝑋 and 𝑌 are uncorrelated.
Statement 2
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The residual 𝑋 − E𝑋 | 𝑌 and ℎ(𝑌 ) are uncorrelated for every function ℎ : 𝒴 → R.
Proof
By linearity and Law of iterated expectation we have
E[𝑋 − E[𝑋 | 𝑌 ]] = E𝑋 − E[E[𝑋 | 𝑌 ]] = 0
𝐶𝑜𝑣(𝑋 − E[𝑋 | 𝑌 ], ℎ(𝑌 )) = E[(𝑋 − E[𝑋 | 𝑌 ])ℎ(𝑌 )] − E[𝑋 − E[𝑋 | 𝑌 ]]E[ℎ(𝑌 )] =
E[(𝑋 − E[𝑋 | 𝑌 ])ℎ(𝑌 )] = 0.
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STATISTICAL TABLES 
 

3

TABLE A.3 
 

F Distribution:  Critical Values of F (5% significance level) 
 
 v1   1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 
 v2 
 1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.36 246.46 247.32 248.01 
 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.42 19.43 19.44 19.45 
 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.71 8.69 8.67 8.66 
 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.87 5.84 5.82 5.80 
 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.64 4.60 4.58 4.56 

 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.96 3.92 3.90 3.87 
 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.53 3.49 3.47 3.44 
 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.24 3.20 3.17 3.15 
 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.03 2.99 2.96 2.94 
 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.86 2.83 2.80 2.77 

 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.74 2.70 2.67 2.65 
 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.64 2.60 2.57 2.54 
 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.55 2.51 2.48 2.46 
 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.48 2.44 2.41 2.39 
 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.42 2.38 2.35 2.33 

 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.37 2.33 2.30 2.28 
 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.33 2.29 2.26 2.23 
 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.29 2.25 2.22 2.19 
 19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.26 2.21 2.18 2.16 
 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.22 2.18 2.15 2.12 

 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.20 2.16 2.12 2.10 
 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.17 2.13 2.10 2.07 
 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.15 2.11 2.08 2.05 
 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.13 2.09 2.05 2.03 
 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.11 2.07 2.04 2.01 

 26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.09 2.05 2.02 1.99 
 27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.08 2.04 2.00 1.97 
 28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.06 2.02 1.99 1.96 
 29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.05 2.01 1.97 1.94 
 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.04 1.99 1.96 1.93 

 35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.99 1.94 1.91 1.88 
 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.95 1.90 1.87 1.84 
 50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.89 1.85 1.81 1.78 
 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.86 1.82 1.78 1.75 
 70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.89 1.84 1.79 1.75 1.72 

 80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.88 1.82 1.77 1.73 1.70 
 90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.86 1.80 1.76 1.72 1.69 
 100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.79 1.75 1.71 1.68 
 120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.78 1.73 1.69 1.66 
 150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.82 1.76 1.71 1.67 1.64 

 200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.80 1.74 1.69 1.66 1.62 
 250 3.88 3.03 2.64 2.41 2.25 2.13 2.05 1.98 1.92 1.87 1.79 1.73 1.68 1.65 1.61 
 300 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86 1.78 1.72 1.68 1.64 1.61 
 400 3.86 3.02 2.63 2.39 2.24 2.12 2.03 1.96 1.90 1.85 1.78 1.72 1.67 1.63 1.60 
 500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.77 1.71 1.66 1.62 1.59 

 600 3.86 3.01 2.62 2.39 2.23 2.11 2.02 1.95 1.90 1.85 1.77 1.71 1.66 1.62 1.59 
 750 3.85 3.01 2.62 2.38 2.23 2.11 2.02 1.95 1.89 1.84 1.77 1.70 1.66 1.62 1.58 
1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.76 1.70 1.65 1.61 1.58 
 

. 
 


