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AHoTAaIiga

VY (piHaHCOBIfi MaTremaTHIll MU JyX€ YacTO CTUKAEMOCHh 3 TaKUMHU MOHSTTSIMU,
SIK HEBM3HAYEHICTh Ta MIHJIMBICTh, & OTXE CIOCTEPIra€EMO JESKUA PU3KMK Yy KOKHOMY
npunyueHHl. CToxacTUYHE MOJEJIOBaHHSI € BAXKJIMBUM IHCTPYMEHTOM [UIsl aHaJ3y,
MPOrHO3y peajbHUX (PIHAHCOBUX JaHUX. Bubip “kpamoi” momeni, ska aJeKBaTHO
OMUCYyBaTUMeE JaHl € JOCUTh HEMPOCTOIO 3a/1a4ei0 B aHAII31 YACOBUX PSIIB. DBijbIIiCcTh
KJIACUYHUX Ta JIeTaJIbHO JOCIIKEHUX €eKOHOMETPUYHUX MOJEJEN € JTHIAHUMHU 32 Mapa-
MeTpaMH, Hanmpukjiaj Taki gk AR(p), MA(q), ARMA(p,q). Ix mepesaroio € mpocrora
Ta HEeBeJIMKa KUIBKICTh MapameTpiB, 110 AO3BOJSIOTh JOCTATHHO JOOpE arpOKCUMYBATH
4YacoBI psJM, SIK1 3a NPUITYIIEHHSAM BBaXalThCs cTallioHapHUMU. OJHaK, y peajbHOMY
XUTTI (PIHAHCOBI MOKA3HUKH 3MIHIOIOTHCSI Ty ke HerepeadauyBaHO, TOMY IMOCTAE MpodjiemMa
3MiHHOI Bapiallii, iKa He MOxe OyTH ONKCaHa MPOCTUMHU JIiHIHHUMU MOJIEJISIMU. 3arajiom
MO/IEJIIOBAHHSI Ta MPOTHO3YBAHHSI BOJIATUJIBHOCTI HA (POH/I0BOMY PUHKY CTaJIO MPIOPH-
TETHUM 3aBJAaHHSM NPUKJIAHUX JOCIII)KEHb OCTAHHIX POKIB.

KBanidikariiiny po6oTy NpHUCBSYEHO 3aCTOCYBAaHHIO TEOPETUYHMUX OCHOB HETIHIHMX
croxactuuHux mogeneit, a came ARCH(p), GARCH(p,q) Ha peasibHuX (DiHAHCOBUX IAHUX.
Y po6oTi mpoBeieHa OIliHKa MEeTO/IOM MOMEHTIB Ta METO/IOM MaKCHUMAaJIbHOI BipOT'1THOCTI,
iX IOPIBHSIHHA Ta CUMYJIALLSA Mojesieli. CrporHo30BaHa MOBEAIHKA BOJATUIIBHOCTI aKIif
Ha MEBHUI MEPio/I.

KuouoBi ciaoBa: ymoBHa Bapiamisi, BOJIATHIbHICTb, CTOXaCTHUYHA BeJUYUHA,
ARCH(p), GARCH(p,q)



Introduction

Common methods of modelling time series (e.g. ARIMA) operate under an assumption
of constant variance. However, a lot of financial processes have a change in variance
or volatility that can cause problems while modelling. If the variance has an explicit
increasing trend, this property of series is called heteroskedasticity. In this case linear
models explain and forecast certain economic behavior or economic performance in a
relatively poor way, therefore we need another approach to model data.

Nonlinear models are applied in order to explain several phenomena in financial
statistics and economics such as "cluster property" of prices, their "disastrous" jumps and
downfalls, "heavy tails" of the distributions of the variables h,, = In % that cannot be
covered in the scope of linear models. Many macroeconomic indicators (the volumes
of production, investment, the general level of prices) and also microeconomic indexes
(current prices, the volume of traded stocks) fluctuate with a very high frequency or can be
extremely irregular, so nonlinear stochastic models describe recessions and expansions,

catastrophic behavior[1].

The ARCH(p) process (Autoregressive Conditional Heteroscedastic) introduced by
Engle (1982) allows the conditional variance to change over time as a function of past
errors leaving the unconditional variance constant[2]. For such processes, the recent past
gives information about the one-period forecast variance[3]. A lag parameter p defines
the number of prior residual errors that should be included in the conditional variance
equation in order to take account of the long memory effect that is observed in empirical
work. Estimating of high-order model leads to the violation of of the non-negativity
constraints.

As an extension of ARCH model, GARCH(p,q) (Generalized Autoregressive Condi-
tional Heteroskedastic), was introduced by Bollerslev (1986). It remains modelling not
only with a long-memory property but also have more flexible lag structure. The GARCH
model combines both the moving average together with autoregressive component.

The main objective of this thesis is the application of theoretical background to real
financial time series. This is achieved through the following steps that are implemented
manually and in Python:

1. Transforming data in order to follow property of stationarity (unconditional variance).
2. Testing if my data has ARCH/GARCH effects.

3. Determination of order the model.

4. Applying different methods of estimation and comparing results.

5. Simulation of volatility and log returns.

6. Forecast of volatility.

The work consists of two main chapters, a summary, a bibliography and an appendix. The
first chapter describes definitions and properties of these models, the second one focuses
on numerical results on the real dataset.



1 Nonlinear stochastic models: ARCH, GARCH

1.1 Stochastic processes, model and examples

Analysing time series of the evolution of financial (economic, social) indexes, we strive
to find "best" model that fits our data, which actually can be rather a complicated task. Let
identify the following main components of statistical data:[1]

* a slowly changing trend component;
* periodic or aperiodic cycles;

* a fluctuating ("stochastic" or "chaotic") component.

The main objectives of financial indexes analysis are to predict the "future dynamics
of prices" or to come up with a right investment decision. Facing with uncertainty and
variability we definitely observe a risk in every assumption we make. Therefore, in this
chapter we introduce essential theoretical background that allows us to design nonlinear
stochastic models. (see [4])

Definition 1.1

Let T be the index set, (€2, F,P) a probability space and (£, G) a measurable space.
A stochastic process is a sequence of random variables X = X;; ¢ € T where for each
fixedt € T, X, isarandom variable from (2, F,P) to (E,G). ) is known as the sample
space, where E is the state space of the stochastic process X.
The index set 1" of the stochastic process is often some subset of the real line, such as
natural numbers or an interval, giving the set I’ the interpretation of time.
The state space E defines the values that the stochastic process can take (integers, real line etc.).
A stochastic process can also be written as X (t,w): t € T to emphasize that it is actually
function of two variables, ¢t € T and w € ).
Definition 1.2

If X(t,w) :t € T is a stochastic process, then for any point w € €2, the mapping

X(yw): T — S,

is called a sample function (path) of the stochastic process X (t,w) : t € T.

This type of modelling introduces and predicts outcomes that take to consideration certain
levels of unpredictability or randomness. To understand this concept we can compare it
to its opposite, deterministic modelling, which in turn gives the same exact results for a
particular set of inputs, no matter how many times you re-calculate the model.[6]

The application of stochastic models is commonly used in financial sector, one of the
famous examples 1s Monte Carlo simulation. It models how a portfolio may perform
based on the probability distribution of individual stock returns.

Examples of stochastic processes

1. White noise. We call £ a white-noise process if

E(Et) :O,Vt,
var(g;) =02, Vt, (D
cov(et, r—s) =0,Vs # 0
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A time series is a white noise if the variables are independent and identically distributed
with a mean of zero and the same variance (¢02) and each value has a zero correlation with
all other values in the series.[24]

=]

i W i \\ i

[E 200 A 6400 &0 1004

Figure 1: White noise

In fact, white noise is a sequence of random variables and cannot be predicted. In addition,
if series follows Gaussian distribution e; ~ N (0, 1), we call it Gaussian white noise.

2. Martingale. A discrete-time stochastic process (sequence of random variables)
X1, Ta, ..., Ty 1s called martingale if it satisfies the following conditions:

E(|X¢]) < o0

2
E(X, 0| X1, ... X)) =X, 2)

Conditional expected value of the next observation, given all the past observations, is
equal to the most recent observation.

Furthermore, it is essential to define martingale difference sequence (MDS). A stochastic
series X; is MDS if it satisfies the following conditions:

E(1Xi]) < o0,

E[X,|F\1] = 0, ©)

This denotes if Y; is a martingale, then X; = Y; — Y;_; will be martingale difference
sequence [23].
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Figure 2: Martingale

Definition 1.3

A time series 1 is weakly stationary if E(ry) = u, whichis constantand Cov(ry, 7:—;) = v
which only depends on [, (time-invariant). So, the time plot of the data should show that
values fluctuate with constant variance. Implicitly in the condition of weak stationarity,
we assume that the first two moments of r; are finite.
The covariance y; = Cov(ry, 1) is called the lag-1 autocovariance of 7.
Correlation and autocorrelation function
Definition 1.4

The correlation coefficient between two random variables X and Y is defined as

o CowXY) B )Y — )
Y VarX)Var(Y)  VEX = g PE(Y = j)”

where p,. and p, are the mean of X and Y, respectively, and it is assumed that the variance
exists.
This coeflicient measures the strength of linear dependence between X and Y, and it can
be shown that -1 < p, , < 1and p,, = p, .. The two random variables are uncorrelated
if p, , = 0. Furthermore, if both X and Y are normal random variables, then p, , = 0 iff
X and Y are independent.
Definition 1.5

The correlation coefficient between r; and r;_; is called the lag-/ autorrelation of r;,
which under the weak stationarity assumption is a function of [ only. Specifically, we
define

Cov(ry, ri_1) _cov(ry, i) o

= VVar(r)Var(r,_) -~ Var(ry) Y0

Autoregressive model

Forecasting stock prices, investor makes an assumption if new buyers or sellers of that
stock are impacted by recent market transactions.

Autoregressive models based on the assumption that past values have an effect on current
values.

A sequence r; = (r;)¢>1 called autoregressive model AR(p) of order p if:

e = Qo+ QT+ QT o+ ... + QY p T &

9



where ¢; is a white noise. We consider lagged values of h,,_; as predictors.
For effective use of AR models it is essential to study its basic properties. Consider case
of AR(1) the contribution in 7; is made only by the closest in time variable r;_;.

T = Qo+ Q1ri—1 + & 4)

AR(1) model implies that, conditional on the past observation h,,_1, we have:
E(ry | rio1) = ag +aqre_y,  Var(ry | re-y) = Var(s) = o2

That is, given the past observation 7;_1, the current observation is centered around o +
a171—1 with variability 02. This is Markov property such that conditional on 7;_1, the
value of r; is not correlated with r,_; for s > 1.

We usually restrict AR models with the sufficient and necessary condition for weak
stationarity.

1. Expectation of AR(1)

Assuming that we have:
E(r:) = p, Var(r:) = v, and  Cov(rs, 14—5) = ;,

where 11 and 7 are constant and v; is a function of 7, not¢. —1 < oy <1
Taking the expectation of Eq.(4) and because E(¢; = 0), we obtain

E(ry) = g + aqE(r—1). (5)
Under assumption of stationarity, E(r;) = E(r;_1) = u. Substituting this into the

previous equation, we get
Q

E = = . 6
(7’ t) X 1— oy (6)
Note, the mean of r; esists if a; # 1 and the mean of ; is zero if and only if oy = 0.
2. Variance of AR(1)
Using Eq(6) we have oy = (1 — aq)u, the AR(1) can be rewritten as
re—p=o1(r1 — p) + & (7)
By repeated substitutions, the previous equation implies that
Ty — =&+ Q€1 T+ Oé%gt_Q + ...
— ©))
i=0
Thus, r — p is a linear function of ¢; ¢ for ¢+ > 0. With help of linearity and the
independence of the series ¢, we obtain E[(r; — p)ei1] = 0. With the assumption of

stationarity we have Cov(r;_1,&;) = E[(r—1 — p)et] = 0.
Taking square and expectation of Eq.(7)

Var(ry) = aiVar(ri_y) + o2

10



Under the stationary assumption, Var(r; = Var(r;_1)), so that

02

Var(ry) = 1 —5042' 9)

In order the variance to be finite and satisfy non-negativity, o3 < 1. Hence, weak

stationary of AR(1) implies that —1 < a; < 1 and guarantees the mean and variance of
r; to be finite.

Autocorrelation function of AR(1) model

Multiplying Eq.(7) by ; consider independence between ; and r;_; and taking expectation,
we obtain

Elei(r —t — p)] = Eler(re1 — p)] + E(ef) = o2,
where o2 is the variance of &;.
Multiplying Eq.(7) by (r;—; — 1), taking expectation and applying the prior result, we have

 Jam 402 ifl=0
R P T )

where we use 7; = 7_;. Consequently, for a weakly stationary AR(1) model, we have

0.2

2
1 —of

Var(ry) =y = and v =ayvy_1, for [>0

From the last equation, the ACF of r; satisfies
pr = oipi—1, for 1>0

po = 1 then p; = o/l. This result says that ACF of a weakly stationary AR(1) [22] series
decays exponentially with rate «;; and starting value py = 1.

ACF for AR(1) with Phi = .6

0.6

0.5+

0.3

autooor

0.2+

0.0+

|
5 1 11 1

Figure 3: ACF of AR(1) for a; = 0.6

Why do we model log returns?
Representing financial data in log difference is very common [9]. Calculating simple

returns is done using:
P _ P
R=- L, 10
2 (10)

11




R-is market return, P; - is ending price, P;- isstarting price.
Mostly total value of a return consists of n sub-periods, so we need to compound the
growth of each period:

Pf = Po(l + Rl)(l + RQ)(l + Rn)

where P- 1s final price, [9- is initial price, I?,- is return for each sub-period.

We could write this formula in a simplified exponential way if R, were evenly distributed,
but in reality it never happens. Because of this we should take to account a logarithmic
form of returns. In this case we are focusing more on relative value rather than absolute
one, logarithmic returns show the rate of exponential growth.

Therefore if you earn % interest that is compounded continuously, at the end of the year
your money will be:

Py=P lim (1 + )" =P’
n

T—00

or grown by a factor:
Py .
— =e
Py

Taking natural logarithm we obtain

Py

B

r=lIn(
The following equation is derived from Eq.(10)
In(R; + 1) = In(=)
J

Such representation of an asset return ensures weak-stationary property.

1.2 ARCH model and its properties

The nature of financial data is often as follows:[25]

» The distribution of average and variance over time is not followed under normal law
and density function, is characterized by a more elevated critical zone (the presence of
so-called thick tails). In other words, most financial time series has such distributions
of values in which extreme values of the indicator occur more often than it is provided
by the normal distribution.

* In financial processes there is a clustering of volatility: spontaneous strong shocks of
an indicator do not subside, and proceed still some time.

Further we declare several nonlinear stochastic models that are popular in financial math-
ematics and statistics.

The ARCH(p) process (Autoregressive Conditional Heteroscedastic) was introduced by
Engle (1982).[1,3]

12



* AR (Autoregressive) means past financial data influences future data

* CH (Conditional Heteroscedastic) identifies nonconstant volatility related to prior
period’s high or low volatility.

Let (£2, F, P) be the original probability space and let ¢ = (&,),,>1 be a sequence of inde-
pendent, normally distributed random variables (¢,, ~ N(0, 1)) simulating "randomness",
"uncertainty" in the models that we consider below.

By F,, we shall mean the o-algebra o(zy, .., €,); we set Fy = {0, Q}.

We shall interpret .S,, = S, (w) as the price (or an exchange rate) at time n = 0, 1.... Here
time can be measured in years, months so on.

To describe the evolution of the variables

Sn
hy, =1 : 11
ng— (11)
R.Engle considered the conditionally Gaussian model with
hy, = onen. (12)
The volatilities o,, are defined as follows:
p
or=ao+ Y aihl ;. (13)
i=0

where oy > 0, ; > 0, in order to guarantee positive variance and hy = ho(w) is a random
variable independent of € = (&,,),>1-

We see that o, are predictable functions of (past) functions h2 | h2 ,, ..., so we can
consider that large (small) values of h2_, imply large (small) respectively values of o2.[4]
Consequently, h,, tends to assume high value, it means that probability of obtaining large
shocks is greater.[16]

Shown above nonlinear models can give an interpretation of such phenomena as "cluster
property"”, namely periods of large movements in prices alternate with periods during
which prices hardly change. Because of this conditions, the assumption of a constant
variance (homoscedasticity) is inappropriate.[8]

For simplicity, we consider p = 1:

02 =ag+ah? ;. (14)

The following properties of the h,, = o,¢, are:

1) Expectation of log-returns (First moment)

By applying Theorem of iterated expectations, conditional expectation of measurable
random variable and mean of white noise, (see Appendix) we derive

Eh, = E[E[(0,en) | Fu-1]] = Elo,E(g,)] =0 (15)
2) Variance (Second moment)

Var(h,) = Eh; — E(h,)* = E[E[(oc), | Fa1)]] = E(ag + anhi,_,) =

16
= g+ OélEhi_l, ( )

13



E(hi) | ,/T"n_l) = O'?L = Qqq + Oélhi_l. (17)

If
O<aop <1
and assume that equation (16) has unique stationary solution, namely Eh2 ;| = Eh? we
derive
B2 =20 n>o0. (18)
1— (03]

3) Fourth moment

Eh} = EotEe} = 3Eo: = 3E(ag + arh? )? = 3(af + 200 ER2 | 4+ o3ERE ) =
B 304%(1 + )

T + 302Eh? .

(19)

Assuming that 0 < a; < 1 and 3a? < 1 we can obtain following solution in case
(Ehl = const)
3a3(1 + a)

Eht = 20
" (1—ag)(1—3a}) (20)
4) Excess kurtosis
The value of excess kurtosis is
Eh* 6o
= n__3=_—1_ 21
(Eh2)? 1—3a? 1)

Kurtosis measures how fat a distribution’s tail is when compared to the center of the
distribution. Excess kurtosis helps determine how much risk is involved in a specific
investment. We compare excess kurtosis regarding to normal distribution, that’s why we
substract 3 in (21) (as excess kurtosis of normal distribution equals 0). The values of excess
kurtosis can be either negative or positive. When the value of an excess kurtosis is negative,
the distribution is called platykurtic.This kind of distribution has a tail that’s thinner than
a normal distribution. When excess kurtosis is positive, it has a leptokurtic distribution.
The tails on this distribution is heavier than that of a normal distribution, indicating a
heavy degree of risk. The returns on an investment with a leptokurtic distribution or
positive excess kurtosis will likely have extreme values. Excess kurtosis can be at or near
zero as well, so the chance of an extreme outcome is rare. This is known as a mesokurtic
distribution.[10]

So, in our case kurtosis is positive, which means that we observe heavy tails and distribution
of the variables h,, has a peak near the mean value.(see [20])

14
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Figure 4: Kurtosis

5) Structure of correlation relationship in A,

The sequence h = h,,, h,, = 0,,€, is serially uncorrelated process.

E(hyhy—1) = E[E(hphp-1 | hp-1, hn—2, ...)] = Elhy_1E(hy | hp-1, hp—a,...)] =

= Elh,_1-0] =0.

Cov(hy, hp-1) = E(hpyhy—1) — E(hy)E(h,—1) = 0.

If two variables are uncorrelated, there is no linear relationship between them, but it
doesn’t mean that they are independent.

We can prove it considering correlation relationship between squares of h2, h2_, or their
abs |hy, |hy—1]]-

Dh2 _ 2 ( (7)) 2
" 1-303

Eh%hi_1:1+3&§- o |
1—-30] 11—

) (22)

1—041

(23)

Therefore,
_ COU(h%, h%—l)

p(1) = Corr(hy, hyy) =
/Dh2Dh?_

Estimation of model using Method of Moments [1]

Firstly, we need to find empirical values of second and fourth moments assuming that they
are finite and h,, follows stationary condition.

Eh? = Eh2 — (Eh,)?

Eh,, = E(h,) — AE(h,)E(h;) + 6E(h,)*E(h;;) — 3E (k)"

Consider the following system of equations:

= (.

{Eh% = o
4 3al(1=a) 24)
Ehy, = a=anisa)-

15



Then «, a; can be derived as:
=EhZ - (1 - ay), (25)

3(ER2)? 11— 302
Ehi  — 1—a?’

(26)

Forecasting [1]
Financial analysts are interested in predicting future behavior of prices. As I have already
mentioned sequence h = (h,,) is martingale difference, so it can not be predicted by prior
values E(hy, ., | F') = 0.

So, we will forecast nonlinear function of h,,.,,, namely h?

n—+m
h127+m - Eh2+m | 'Fh E07%+m€?21+m ‘ Fh - (27)
- E[E( n+m %—&—m —|—m 1) | "T:h] EO_?H—m ’ "T_;}%l = 012L+m
1—af? m
2, = ag T Ojl + o"h2
if m — oo, h%+m—>Eh2 = 7o

Although ARCH model can model different economic phenomena it has a number of
disadvantages.[16]

1. Firstly, analysing structure of the model, it is assumed that positive and negative shocks
have the same effects on volatility, because of the squares of previous shocks. However,
in practice price of an asset reacts differently to positive and negative shocks.

2. The ARCH model is rather limited. For example, oz% of ARCH(1) should be in interval
[0, %] provided that series has finite fourth moment.

3. The ARCH model doesn’t explain reasons why conditional variance has such behavior.
4.ARCH models are likely to overpredict the volatility because they respond slowly to
large isolated shocks to the return series.[16]

1.3 GARCH model and its properties

Since ARCH model was introduced, it became an incentive to generate different
variation of itself. One extension known as generalized ARCH was proposed by Bollerslev
(1986). Very often fitting financial data for ARCH model requires many lags to adequately
describe the volatility process, for instance, consider returns of SP 500 index, ARCH(9)
should be applied to model volatility. More complex structure of GARCH model is a good
alternative to solve this problem.[1,16]

Then h,, follows a GARCH(p,q) model if

i=1

p q
By = Onen, 02 =ap+ Z a;h? ; + Z ﬁjafhj, (28)
j=1

16



where again ¢, is a sequence of i.i.d. random variables with mean O and variance 1,
ag >0, ; >0, 8; >0, and Zmax P4) (a; + ;) < 1. Here it is understood that o;; = 0
fori > pand 3; > 0, for j > ¢. The last constraint on ¢; 4 3; is needed for unconditional
variance of h,, to be finite, whereas its conditional variance o2 evolves over time.

For ¢ = 0 the process reduces to the ARCH(p), and for p = ¢ = 0, is simply white noise.
In the ARCH(p) process the conditional variance is specified as a function of past sample
variances only, whereas the GARCH(p,q) process allows lagged conditional variances to
enter as well. This corresponds to some sort of adaptive learning mechanism.

Structure and properties of GARCH(1,1)

hy = 0nen, 0o = g+ aih?_fro>_y, (29)

where ag > 0, a; >0, 57 > 0
Ehi = ) + (CYl + 51)2_1

First, a large h? | gives rise to large o2. This means that a large h2_; tends to be followed
by another large 12, generating again, the well-known behavior of volatility clustering in
financial time series. provided that a; + 31 < 1 then stationary solution of EA? is

o)

Eh? = .
1— ] — 51

If 303 + 20181 + B7 < 1 then stationary solution for fourth moment is

304%(1 + a1 + 61)

Eht =
"o (I—ar = B)(1 = B7) = 20081 = 303
Excess kurtosis is Ep 9
K f n — 3 — 2 6a1 2
(Eh2)? 1—Bf — 2B — f

Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1) process is
heavier than that of a normal distribution.

Estimation of GARCH(1,1) based on ARMA representation. [17]

We can assume, that z; = h? as

Ty =W+ ¢(Et_1 + &+ 98,5_1
where ¢; = z; — o7 is a martingale difference sequence with respect to F;, ¢ = a+ 3 > 0
and = — < 0. We shall also assume that ¢ < 1 in order to guarantee E[z;] < oo.

The covariance function is defined as:

(k) = El(@i1x — Elz]) (20 — El2:])]

Suppose, x; 1s stationary with 2nd moment. For stationary process autocorrelation function

is p(k) = 7(k)/~(0)

According to the following set of Yule-walker equations Harvey (1993).
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(1+¢0)(¢ +0)
1+ 6%+ 200

p(1) = (31)

Letb = q%j__—w, ¢ # p(1) and express €q.20in 6, 6% + b0 + 1 =0

The solution to quadratic equation is

bV -4
N 2

0

We observe that
w=0(1-19), o =E(y).

First, we can estimate ¢ by (5 — £2) gybstitute and obtain estimator of

p(1)
—b+ Vb2 —4 P _ $?+1—2p(1)o
2 ’ ¢ —p(1)

This leads to the following estimators of A = («, 5, w)

é:

~

d=0+¢, B=-6, ©=6(1-9) (32)

The literature on GARCH models is enormous; see Bollerslev, Chou, and Kroner (1992),
Bollerslev, Engle, and Nelson (1994), and the references therein. The model encounters
the same weaknesses as the ARCH model. For instance, it responds equally to positive
and negative shocks.
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2 Numerical results for ARCH and GARCH models

In this chapter I will illustrate an application of ARCH model on real dataset of

Toronto Stock Exchange (TSX).[12] It is canadian stock exchange located in Toronto,
Ontario, founded in 1861, the TSX is Canada’s premier stock exchange with more than
1,500 listed companies, including those from the energy, mining, technology, and real
estate sectors. It is the 11th largest exchange in the world and the third largest in North
America based on market capitalization.[13]
We will consider Adjusted Close price in Canadian dollars for the last 5 years from
02/08/2016-30/07/2021. The adjusted closing price factors is anything that might affect
the stock price after the market closes. A stock’s price is typically affected by supply and
demand of market participants. However, some corporate actions, such as stock splits,
dividends, and rights offerings, affect a stock’s price. Adjustments allow investors to
obtain an accurate record of the stock’s performance.[14]

Firstly, we plot our raw data.

—— Adj Close
20000

18000

16000

Adj Close

14000

12000

Figure 5: Adj Close price of TSX

Analysing this plot we can assume that non stationarity is present in our data. Firstly,
we are tracking positive trend, but in the beginning of 2020 due to covid pandemic we
observe a really big drop and afterwards the evolution of stock proceeds with its growth.
To make sure that it is true we will apply statistical Augmented Dickey-Fuller. The ADF
test 1s a type of statistical test called a unit root test, because it technically checks if value
of « in equation below equals 1 or not.

Y = QY1 + Uy,

where u; - 18 a noise

The null hypothesis (HO) of the test is that the time series is not stationary, o = 1 (has
some time-dependent structure).

The alternate hypothesis (H1) is that the time series is stationary, doesn’t have a unit root.
We interpret this result using the p-value from the test.

If p-value is below a threshold (such as 5% or 1%), we reject the null hypothesis (data
is stationary), otherwise a p-value above the threshold suggests we fail to reject the null
hypothesis (data is non-stationary). We can also compare ADF Statistic with critical
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values, if ADF Statistic is less than critical one we are likely to reject null hypothesis (so
stationary data), otherwise we come up with nonstationary data.

ADF Statistic: -1.634868
p-value: ©.464975
Critical Values:

1%: -3.436
S%: -2.864
10%: -2.568

p-value: 0.46 > 0.05, we fail to reject null hypothesis, so our data is definitely nonsta-
tionary.
ADF Statistic: -1.63 > -3.41 - non stationary.
The results obtained by using non-stationary time series may be spurious in that they may
indicate a relationship between two variables where one does not exist.
In order to receive consistent, reliable results, the non-stationary data needs to be trans-
formed into stationary data. [15]
In our case we will use log difference approach and represent data as:

Time Series Plot

—— Log Retumns

Log returns

S o i 0 g
Date

Figure 6: Log-returns

We can see that now our data is more likely to be stationary, except non constant variance
at the begining of 2020.
Results of ADF test:

ADF Statistic: -8.337829
p-value: ©.000800
Critical values:

1%: -3.436
5%: -2.864
10%: -2.568

p-value: 0.0 < 0.05, we reject null hypothesis, so our data is definetely stationary.
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ADF Statistic: -8.34 < -2.86 - stationary.
Testing for ARCH effects
The squared series h2 is used to check for conditional heteroscedasticity, where h,, =
T — Iy 18 the residual of ARMA model. F-statistic can be used to find the joint significance
of multiple independent variables. So for the given regression equation:

h: =ap+aih? |+ .. +aph?  4e, t=m+1,..,T,

n—m

where ¢,, denotes the error term, m is a prespecified positive integer, and 7' is the sample
size.

The null hypothesis H0 would be:a; = o = ... — vy, =0

Alternative hypothesis H1 would be: «; # 0

So, if even one of the coeflicients is significant, then there is a high possibility of re-
jecting the null hypothesis as the coeflicients are not jointly insignificant anymore. Here
the two models can be an unrestricted model which contains all the predictor variables
or a restricted model in which we are restricting the number of predictor (for example
intercept-only).

Let SSRy = 3,1, (h2 —®)?, where @ is the sample mean of h2 -sum square of residuals
of the restricted model

and SSR; = ZtT:m L1 €2, where €2 is the least squares residual of the prior linear regres-
sion. It is sum square of residuals of the unrestricted model. Then we have

5 (SSRy— SSRi)/m
" SSR /(T —2m —1)

Denote:

df1 = m: degree of freedom 1,

df2 =T — 2m — 1: degree of freedom 2.

The distribution we are gonna compare it with is called the F-distribution. We usually
take a confidence interval of 95% which translates to an alpha value of 0.05. Based on the
values of the two degrees of freedom and the alpha value we can find the F-critical value
on the F-distribution. See table of F-critical values in appendix. If the F-statistic value is
greater than the F-critical, we reject the null hypothesis.

So, given model got a F-statistic score of 288.473, df1 = 1,df2 = 1.25e + 03. F-critical
value for a = 0.05 is 3.85. Since, F' — critical is much lower than our F' — statistic,
we reject the null hypothesis, which means that the independent variables are jointly
significant in explaining the variance of the dependent variable. We can also check the
p — value in the summary to determine whether to reject or accept the null hypothesis or
not. In our case, p — value = 2.232 - 10~°% is much lower than oo = 0.05, so we reject the
null hypothesis.

Order determination

In order to determine order of the model, we need build partial autocorrelation plot, which
1s a summary of the relationship between an observation in a time series with observations
at prior time steps, but only the direct effect is shown (all intermediary effects are omitted).
As I have already mentioned variables h,, and h,,_; are uncorrelated, but their squares are
correlated and can be predicted.
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Partial Autocorrelation
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Figure 7: PACF of squared log-returns

We can observe that the first three lags are very significant. So, it is better to use
ARCH(3) for this financial data.

2.1 Application of ARCH model

In this paper are covered two different method of estimation the model. First method
is the method of moments, but it is difficult to apply it for ARCH model of higher order,
so for simplicity I will demonstrate this approach on ARCH(1) model.

Empirical values of moments are:

Eh2 =0.000113,
Eh! =7.0885-107°,

Applying Equations (17-19) from Chapter 1 we obtain the following estimations for
coeflicients:
ap = 0.000049.

Solving Eq.(19) we obtain two roots:

ay; = — 0.56655,
s =0.56655.

First one we don’t consider, because it is less than zero and the coeflicients a; ought to be
positive. Simulated returns of ARCH(1) are shown in the following plot.
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Figure 8: h,, = \/0.000049 +0.56655h2_, 2,

Also was simulated volatility for ARCH(1).
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Figure 9: 02 = 0.000049 + 0.56655h2

Empirical value of excess kurtosis is /' = 51.973 that confirms presence of heavy-tails in
the data.

Maximum of Likelihood function estimation (MLE) [16]

MLE is a probabilistic framework for solving the problem of density estimation. It involves
maximizing a likelihood function (optimization problem) in order to find the probability
distribution and parameters that best explain the observed data. What we want to calculate
1s the total probability of observing all of the data, i.e. the joint probability distribution
of all observed data points. To do this we would need to calculate some conditional
probabilities, which can get very difficult. So, we assume that each data point is generated
independently of the others. Thus if the events are independent, then the total probability
of observing all of data is the product of observing each data point individually. Here, 1
am briefly explaining main concepts of algorithm.

Letey, ..., er be an independent and identically distributed sample with probability density
function (pdf) f(e4; ©), where © is a k x 1 vector of parameters that characterize f(s;; ©).
In our case we consider that, &; ~ N (1, 02) then pdf is defined as:

f(er | ©) = ——

\/ 2mo?

exp 32 and © = (p, 0?).
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The joint probability density of the sample is:

T

fer e | 0) = fe1 ] ©)...f(er | 0) = || f(e:©).

t=1

The common approach to find maxima (minima) of the function is to apply differentiation.
But the above equation is quite difficult to differentiate, so we can simplify it by taking the
natural logarithm of the expression. This is absolutely fine because the natural logarithm
1S a monotonically increasing function. This is important because it ensures that the
maximum value of the log of the probability occurs at the same point as the original
probability function. The log-likelihood function /(cy, 1) can be written as a function of
the parameters o and o;:

ler | an, 1) =Y li(ao, a1) + Inf(er)
t=2

=Y logf(es | Fior) + Infe(er)
t=2

(33)
n—1

1 n
log(2m) — 3 Z log(ag + aser ;)
=2

1 — 2

£
— =) ———— +logp(=1),

2

where f. is the stationary marginal density of €;. A problem is that the analytical expression
for f. is unknown in ARCH models thus can not be calculated. In the conditional likelihood
function I° = Inf(e,, ..., €2 |)1 the expression In f.(c;) dissapears:

I*(g, 1) = th(@o,%)
=2

= Inf(e| Fin) (34)
t=2
n—1 1 & 1 & €2
= — In(2m) — = In(ag + a2 ;) — = t
7z 2; (a0 + i) 2 & o + are)

Applying this algorithm, we obtain the following coeflicients for ARCH(1) model

coef std err t P>|t] 95.0% Conf. Int.
omega 26725e-05 4.423e-07 60425 0.000 [2586e-052.759e-05]
alpha[1] 0.6743 0.111 6.094 1.100e-09 [ 0.457, 0.891]

Figure 10: Estimation of ARCH(1) with MLE
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Estimations for parameters of model obtained via two different methods on simulated

values appeared to be similar.
It is shown plot of realised and conditional volatility for ARCH(1).
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Conditional volatility
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Figure 11: Realised vs conditional volatility

Then it is shown estimation for ARCH(3).

Volatility Model

coef std err t P>|t] 95.0% Conf. Int.
omega 1.6444e-05 4.864e-12 3.381e+06 0.000 [1.644e-05,1.644e-05]
alpha[1] 0.2557 6.995e-02 3656 2563e-04 [ 0.119, 0.393]
alpha[2] 0.2547 5.858e-02 4.349 1.368e-05 [ 0.140, 0.370]
alpha[3] 0.2547 8.706e-02 2926 3.433e-03 [8.411e-02, 0.425]

Figure 12: Estimation of ARCH(3) with MLE

Simulation for log-returns and volatility of ARCH(3) model.
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Figure 13: h, = \/ 1.6444 - 1075 + 0.2557h2_, + 0.2547h2_, + 0.2547h2 e,
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Figure 14: 02 = 1.6444 - 107° + 0.2557h2_| + 0.2547h2_, + 0.2547h?_,

Forecast

Applying Eq.(26) from Chapter 1 to m
literally equal to Eh2 = 0.000113
Forecast with python (test/train sample)

— 100 I obtain that h2,,, = 0.000113 that is

I divided our sample into train and test one in order to predict the last 7 values of volatility
of returns. Firstly, I fitted ARCH(1) model on train sample, then applied forecast method
on it and added plot of actual and predicted volatility.
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Figure 15: Forecast of volatility for ARCH(1)

2.2 Application of GARCH model

Firstly, I calculated coefficients manually, using Eq.(30) and obtained such results:

H(1) = 0.55210036,

& =3.715-1075,

H(2) = 0.57086614, so ¢ = 0.9671, b=2.097, 6= —0.733

A~

a=0234, B=0.733

02 =3.715-107% 4 0.234h> |, +0.7330>_,
Estimation with Python (MLE)
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Volatility Model

coef std err t P=]t] 95.0% Conf. Int.

omega 2.2725e-06 1.117e-09 2035133 0.000 [2.270e-06,2 275e-06]
alpha[1] 0.2000 1.372e-02 14.577 3.962e-48 [0.173, 0.227]
beta[1] 0.7800 1.476e-02 52.847 0.000 [0.751, 0.809]

Simulated returns and volatility for GARCH(1)
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Figure 16: h, = \/2.2711 1076+ 0.2h2_, +0.7802_,2,

10

0.9

08

07

0.6

0.5

04

03

0.2

0 200 440 600 800 1000 1200

Figure 17: 02 = 2.2711- 1075 + 0.2h2_, + 0.7802_,

2.3 Model diagnostic

In ARCH model standardized shocks a; = 2* are independent identically distributed
random variables following either normal or standard1zed Student-t distribution. It is
common way to apply the Ljung-Box statistics of a; to check adequacy of mean equation
and a? in order to check if the volatility equation is valid. In addition, it can be useful to
analyse QQ-plot, ACF plot and value of skewness, kurtosis.[16]

The Ljung-Box test is a statistical test that checks if autocorrelation exists in a time series.
The null hypothesis defines that residuals independently distributed.
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The alternative hypothesis is that residuals are not independently distributed.

If the p-value is less than some threshold, you can reject the null hypothesis and conclude
that the residuals are not independently distributed, otherwise they are 1id.

For ARCH(1) we obtain such results:

Ljung-Box statistics stat = 0.114188, pvalue = 0.735426, then p-value is quite large
from alpha level and we accept null hypothesis.

Figure 18: ACF of residuals ARCH(1)

We can observe that residuals are serially uncorrelated, no any significant lags are
present.

Figure 19: QQ-plot

In general, most values follow law of normal distribution, except on the tails they
deviate. Calculated value of excess kurtosis is KX = 0.9015 it is bigger than kurtosis of
Gaussian distribution, hence the distribution may have heavy tails that is shown in the
following histogram.
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Figure 20: Histogram of residuals ARCH(1)
Analysing GARCH(1,1) we obtain the following results:

Ljung-Box statistics stat = 0.335288, pvalue = 0.562562, then p-value is quite large
from alpha level and we accept null hypothesis.

Autocorrelation

Figure 21: ACF of residuals GARCH(1,1)

Residuals are serially uncorrelated, no any significant lags are present.
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Figure 22: QQ-plot

In general, most values follow law of normal distribution, except on the tails they
deviate.

Figure 23: Histogram of residuals GARCH(1,1)

In order to find "best" model we can apply Akaike Information Criterion.[21] The
formula for the AIC score is as follows:

AIC = 2k — 2In(L),

where £ - is the number of model parameters, £ - is the maximum value of the likelihood
function of the model.

The model with the lowest AIC offers the best fit. The absolute value of the AIC value is not
important, it can be positive or negative. In our case for ARCH(1) AIC' = —8943.95, for
ARCH(3) - —9113.80, for GARCH(1) - —9176.03 respectively. Therefore, for GARCH(1)
model AIC criterion is the lowest, so it is appropriate model.
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Conclusion

ARCH / GARCH models belong to the class of nonlinear models with conditional
variance.
In this work were implemented the following steps:

* Prices of stocks were transformed into more common representation such as difference
of log returns in order to follow weak stationary assumption.

* By the means of F-statistic it was tested and proven that residual series of the model
contain ARCH effects, namely conditional heteroscedasticity. The F-statistic was
significant, so ARCH model can adequately describe financial time series.

* PACF plot of squared returns 72 was used to determine order of ARCH. It was defined
that the first three lags are significant.

* In order to estimate the model was used Method of Moments that provided the
following coeflicients: oy = 0.000049, ; = 0.56655, thus the obtained equation of

returns is h,, = \/ 0.000049 + 0.56655}1%_15”. In addition, parameters were evaluated

with Maximum Likelihood approach in Python, such that oy = 0.0000267, ; =
0.6743, regarding to quite low level of p-value parameters of model are significant.
Consequently, with simulated values estimations of two methods are very similar.

* Volatitility and log-returns were simulated for ARCH(1) and ARCH(3).

« It was confirmed that forecasting log-returns h2 ., for a large step m is striving to

second moment under assumption of weak stationarity.
 Ultimately, it was predicted volatility of ARCH(1) for 7 days.

Additionally, I have estimated GARCH(1,1) using both methods, so log-returns are de-

fined with the following equation h,, = \/2.2711 10764+ 0.2h2_, + 0.7802_,&,. It was

simulated volatility and log returns for GARCH(1,1). Finally, it was predicted volatility
of GARCH(1,1) for 7 days. In order to choose the "best" model was applied Akaike Infor-
mation Criterion which showed that GARCH(1,1) fits data better than other modifications
of model.
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Appendix

Definition 1.1
wi, ..., wy is called elementary events and finite set {2 = {wy,...,wy} is called space
of elementary events.
Definition 1.2
Let X be some set, and let P(.X) represent its power set. Then a subset F C P(X)
is called o-algebra if it satisfies the following properties:
1. X isin F.
2. F is closed under complementation: if A is in F, then so is its complement X \ A is in F.

3. F is closed under countable unions: if A;, Ay, As... are in F, thenso J A4;isin F.

Definition 1.3 -

An ordered triple (€2, F, P) where (2 is a set of points w, F is o -algebra of subsets of €2,
P is a probability on F is called probabilistic model or a probability space.
Definition 1.4

Borel o algebra on topological space X is the smallest o-algebra containing all open
sets (or equivalently all closed sets).
Definition 1.5

A random variable is a function X:(2 — R. It is said to be measurable w.r.t F
if for every Borel set B € B(R)

XYB)={wecw: X(w)eB}yeF

Definition 1.6

Let X be a set. Let A, B be o-algebras on X. Then B is said to be a sub-sigma-algebra
of Aifand only if B C A.
Definition 1.7

Let G be a sub-c-algebra of F, and let X € L be a random variable. We say that the
random variable £ is the conditional expectation of X with respect to G - and denote it by
E[X|g] if
1. £t
2. £is G -measurable,
3.E[E14] = E[XT1y4], forall A € G
Definition 1.8

For discrete random variables, the conditional probability mass function of Y given
X=X can be written according to its definition as:

(X =2} n{Y =y})
P(X =x)

pYX(y|$):P(Y:y‘X:x):P(

Definition 1.9
The joint probability mass function of two discrete random variables X,Y is:

pxy(z,y) =P(X =zandY =y)
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or written in terms of conditional distributions
pxy(v,y) =PY =y|[X=2)- P X=2)=P(X=2|Y =y) P(Y =y)

((w) = ﬁE[X]lA] = > X(w)P[{w} | 4], orallw € A.
weA
Definition 1.11

If X and Y are discrete random variables, the conditional expectation of X given Y is

=z,Y =y)
Y =y)

where P(X = z,Y = y) is joint probability mass function of X and Y.
Statement 1 Law of the unconscious statistician

Let X be a random variable and let Y = ¢(X') be a function of this random variable.
If X is a discrete random variable and py (z), the expected value of g(X) is

Elg(X)] =) glx)px(z).

reX

E(X|Y:y):Z:CP(X:x|Y:y):ZxP(XP

Properties of conditional expectation
Taking out what is known

If X is H-measurable, then E(XY | H) = XE(Y | H).
Theorem 1(Law of Iterated Expectations, ''Adam’s Law'")

For any random element X € X and random variable Y € ) C R,

E[E[X | Y]] = EX

EEX |Y]]=YEX|Y=ylPY =y =>>aPX=x|Y=yPY =y)
=S Y 2PY =y | X = 2)P(X = 2) zgxP(X:x)§P(Y:y | X =x) =

S P(X = 2) = E[X]

In the first step let f(z) = E[X | Y] and apply LOTUS (Statement 1).
Projection interpretation
If we consider E[X | Y] as prediction for X given Y then X —E[X | Y] is the residual
of that prediction.
Theorem 2 (Projection interpretation)
Forany h: Y — R/ E[(Y —E[Y | X])h(Y)] =0
Proof
By linearity of conditional expectation we have E[XAh(Y)] — E[E[X | Y]h(Y)] =
E[Xh(Y)] —E[E[X | Y]A(Y) =
EXh(Y)] —EEXR(Y)| Y]] =EXA(Y)] -E[Xh(Y)] =0
Definition 1.12
The covariance of random variable X and Y is defined
Cov(X,Y)=E(X —EX)(Y —EY) = EXY — EXEY. If Cov(X,Y) = 0, then we
say X and Y are uncorrelated.
Statement 2
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The residual X — EX | Y and h(Y") are uncorrelated for every function h : ) — R.
Proof
By linearity and Law of iterated expectation we have
EX —EX |Y]]=EX —E[E[X |Y]]=0
Cov(X — E[X | Y], h(Y)) = E[(X — E[X | Y])h(Y)] - E[X — E[X | Y][E[(Y)] =
E[(X — E[X | Y])h(Y)] = 0.
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STATISTICAL TABLES

TasLE A.3

F Distribution: Critical Values of F (5% significance level)

Vi 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
V2

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.36 246.46 247.32 248.01

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 1942 1943 1944 19.45

3 10.13 955 928 9.12 9.01 894 889 885 881 879 874 871 8.69 8.67 8.66

4 771 694 659 639 626 616 6.09 6.04 600 59 591 587 584 582 580
5 6.61 579 541 519 505 495 488 482 477 474 468 4.64 460 458 456
6
7
8

599 514 476 453 439 428 421 415 410 4.06 4.00 396 392 390 3.87

559 474 435 412 397 387 379 373 368 364 357 353 349 347 344

532 446 407 384 369 358 350 344 339 335 328 324 320 3.17 3.15

9 512 426 386 3.63 348 337 329 323 318 314 307 303 299 296 294
10 496 410 371 348 333 322 314 3.07 302 298 291 286 283 280 277

11 484 398 359 336 320 309 301 295 290 285 279 274 270 267 265
12 475 389 349 326 311 300 291 285 280 275 269 264 260 257 254
13 467 381 341 318 3.03 292 283 277 271 267 260 255 251 248 246
14 460 3.74 334 311 296 285 276 270 265 260 253 248 244 241 239
15 454 3,68 329 306 290 279 271 264 259 254 248 242 238 235 233

16 449 3.63 324 301 285 274 266 259 254 249 242 237 233 230 228
17 445 359 320 296 281 270 261 255 249 245 238 233 229 226 223
18 441 355 316 293 277 266 258 251 246 241 234 229 225 222 219
19 438 352 313 290 274 263 254 248 242 238 231 226 221 218 216
20 435 349 310 287 271 260 251 245 239 235 228 222 218 215 212

21 432 347 3.07 284 268 257 249 242 237 232 225 220 216 212 210
22 430 344 3.05 282 266 255 246 240 234 230 223 217 213 210 2.07
23 428 342 303 280 264 253 244 237 232 227 220 215 211 2.08 2.05
24 426 340 301 278 262 251 242 236 230 225 218 213 209 2.05 203
25 424 339 299 276 260 249 240 234 228 224 216 211 2.07 2.04 2.01

26 422 337 298 274 259 247 239 232 227 222 215 209 205 202 199
27 421 335 296 273 257 246 237 231 225 220 213 2.08 2.04 2.00 197
28 420 334 295 271 256 245 236 229 224 219 212 206 2.02 199 1.96
29 418 333 293 270 255 243 235 228 222 218 210 205 2.01 197 194
30 417 332 292 269 253 242 233 227 221 216 209 204 199 196 1.93

35 412 327 287 264 249 237 229 222 216 211 2.04 199 194 191 1.88
40 408 323 284 261 245 234 225 218 212 208 200 195 190 1.87 1.84
50 403 318 279 256 240 229 220 213 207 203 195 189 185 181 178
60 400 315 276 253 237 225 217 210 204 199 192 186 182 178 1.75
70 398 313 274 250 235 223 214 207 202 197 189 184 1.79 175 1.72

80 39 311 272 249 233 221 213 206 200 195 188 182 1.77 173 1.70
90 395 310 271 247 232 220 211 204 199 194 186 180 1.76 1.72 1.69
100 394 3.09 270 246 231 219 210 2.03 197 193 185 1.79 175 1.71 1.68
120 392 3.07 268 245 229 218 2.09 202 196 191 183 1.78 1.73 169 1.66
150 390 3.06 266 243 227 216 2.07 200 194 18 182 176 1.71 167 1.64

200 389 304 265 242 226 214 206 198 193 188 180 174 169 166 1.62
250 388 3.03 264 241 225 213 205 198 192 187 179 173 168 165 1.61
300 387 303 263 240 224 213 204 197 191 18 178 172 168 164 1.61
400 386 302 263 239 224 212 203 19 19 18 178 172 1.67 163 1.60
500 386 3.01 262 239 223 212 203 19 19 185 177 171 1.66 1.62 1.59

600 386 3.01 262 239 223 211 202 195 19 185 177 171 1.66 1.62 1.59
750 385 3.01 262 238 223 211 202 195 189 184 1.77 170 1.66 1.62 1.58
1000 385 3.00 261 238 222 211 202 195 189 184 176 1.70 1.65 1.61 1.58



