Pylyavska O., Shatohina Ju.

THE p-GROUPS SATISFYING THE CONDITION: EACH CYCLIC SUBGROUP IS CONTAINED IN THE CENTER OR HAS A TRIVIAL INTERSECTION WITH IT

Y. Berkovich proposed the next problem: «Suppose that p-group G satisfies the following condition: if Z is a cyclic subgroup of G then either $Z \leq Z(G)$ or $Z \cap Z(G)=\{1\}$. Classify all such groups». We have proved that abelian p-groups and p-groups with exponent p exhaust all regular p-groups satisfying this condition.

1. Introduction

Let G be a non-trivial finite p-group, $Z(G)$ - the center of G.

In his book [1] Y. Berkovich proposed the next problem: «Suppose that p-group G satisfies the following condition: if Z is a cyclic subgroup of G then either $Z \leq Z(G)$ or $Z \cap Z(G)=\{1\}$. Classify all such groups».

It is easy to see all abelian groups satisfy this condition.

Let G be a nonabelian group. If G is a group of exponent $p, \exp G=p$, then every cyclic subgroup Z of G has the prime order p. So the intersection of every cyclic subgroup Z with other subgroup either is equal Z or is a trivial subgroup. We have all non-abelian groups of exponent p satisfy our condition too.

The aim of this work is to prove each regular p-group satisfying this condition is either the group of exponent p or abelian.

The p-group G is called regular if for each g, $h \in G$ we have

$$
g^{p} h^{p}=(g h)^{p} \prod_{i} s_{i}^{p}
$$

where s_{i} is the element from the commutator subgroup of the group $\langle g, h\rangle$ generated by g, h.

To answer the question does the regular p-group G satisfy the condition: «For each cyclic subgroup Z of G holds either $Z \leq Z(G)$ or $Z \cap Z(G)=\{1\}$ 》, we will describe all regular p-groups having a cyclic subgroup Z which is not contained in the center and which has a non-trivial intersection with it.

2. Proof

Theorem 1. Let G be a non-abelian regular p-group and let the center $Z(G)$ of G has an exponent greater then p. Then G has the cyclic subgroup Z which is not contained in $Z(G)$ and has a non-trivial intersection with $Z(G)$.

Proof. Let G be a regular nonabelian group and let $\exp Z(G)>p$.

1) Suppose that there is an element $g \in G$, $g \in Z(G)$ of exponent p. We may choose the element $z_{1} \in Z(G)$ such that $\exp z_{1}=p^{m}>p$. The element $z_{1} g$ does not belong to the center and has an exponent which is equal to the exponent of element z_{1}. The center $Z(G)$ does not contain the cyclic subgroup Z_{1} generated by the element $z_{1} g$. But $Z_{1}=$ $=\left\langle z_{1} g\right\rangle$ has the non-trivial subgroup Z_{1}^{p} which is generated by the element $\left(z_{1} g\right)^{p}=z_{1}^{p} g^{p}=z_{1}^{p} \neq 1$ and is contained in the center of G. So the cyclic subgroup Z_{1} is not contained in $Z(G)$ but Z_{1} and $Z(G)$ have a non-trivial intersection.
2) Suppose each element g from $G \backslash Z(G)$ has the order greater then p. Regard the subgroup $\Omega(G)=$ $=\left\langle x \mid x^{p}=1\right\rangle$. The subgroup $\Omega(G)$ is characteristic so it has a non-trivial intersection with the center. The assumption that the center $Z(G)$ does not contain $\Omega(G)$ gives the contradiction with the supposition. Really, if $\Omega(G) \backslash(\Omega(G) \cap Z(G)) \neq\{1\}$ then there is an element g from $\Omega(G) \backslash(\Omega(G) \cap Z(G))$. It does not belong to the center $Z(G)$ and has the order equal p.

Therefore $Z(G)$ contains $\Omega(G)$. For regular p-group G the subgroup $\Omega(G)$ coincides with the
set of all elements of order p. So there exists g from $G \backslash Z\left(G\right.$ such that $g^{p} \in \Omega(G) \subset Z(G)$. We obtain the cyclic subgroup $Z=\langle g\rangle$ of G which has a non-trivial intersection with center $Z(G)$ but $Z(G)$ does not contain Z.

The Theorem 1 is proved.
Theorem 2. Let G be a nonabelian regular p-group with exponent greater then p and the center $Z(G)$ of G has an exponent equal p. Then G has the cyclic subgroup Z which is not contained in $Z(G)$ and has a non-trivial intersection with $Z(G)$.

Proof. Suppose that $\exp G>p, \exp Z(G)=p$. Regard the characteristic subgroup $\square(G)=$ $=\left\langle x^{p} \mid x \in G\right\rangle$. It has a non-trivial intersection with the center $Z(G)$. For each regular p-group G the subgroup $\square(G)$ coincides with the set of all elements $x^{p}, x \in G$. So we may find the element $g \in G$

1. Y. Berkovich Groups of prime power order. In preparation.
2. B. Huppert Endliche Gruppen 1. Springer-Verlag, Berlin-
such that $g^{p} \neq 1, g^{p} \in \square(G) \cap Z(G)$. It is easy to see $g \notin Z(G)$. Hence, the cyclic subgroup $Z=\langle g\rangle$ of G is not contained in the center $Z(G)$ and has a nontrivial intersection with $Z(G)$.

The Theorem 2 is proved.
As an immediate consequence of these theorems we obtain the following result.

Theorem 3. Each regular p-group G which satisfies the condition if Z is a cyclic subgroup of G then either $Z \leq Z(G)$ or $Z \cap Z(G)=\{1\}$, is either the group of exponent p or abelian.

The case with irregular group G is much more complicated.

Acknowledgement. The authors wish to express their gratitude to Professor Zvonimir Janko and Professor Vladimir C'epuluc' who have pointed out this problem for us.

Heidelberg-New York. - 1967. - P. 794.
3. Холл М. Теория групп. - М.: ИЛ, 1962.

Пилявська О. С., Шатохіна Ю. В.

p-ГРУПИ, ЦО ЗАДОВОЛЬНЯЮТЬ УМОВІ: КОЖНА ЦИКЛІЧНА ПЦГРУПА АБО МІСТИТЬСЯ У ЦЕНТРІ ГРУПИ, АБО МАЕ 3 НИМ ТРИВІАЛЬНИЙ ПЕРЕТИН

Автори висловлюють подяку професору 3. Янку та професору В. Чепулічу, які запропонували розглянути проблему, поставлену Я. Берковичем. «Нехай р-група G задовольняє умові: якщо Z є циклічною підгрупою групи G, то або $Z \leq Z(G)$ або $Z \cap Z(G)=\{1\}$. Класифікувати всі такі групи». Ми довели, що абелеві р-групи та групи експоненти р вичерпують усі регулярні р-групи, які задовольняють цю умову.

