MiHICTEpPCTBO OCBITH 1 HAYKH Y KpaiHU
Harmionansamii yaiBepcutet «KueBo-MormisHcbka akaaeMis
dakynapTeT IHPOPMATUKH

Kadenpa maTematuku
Maricrepcbka podoTa

OCBITHI{ CTYHIHb — MAriCTp

Ha TeMy: «CeMaHTHYHUIi MOLIYK HA OCHOBI NMpeACTaB/JeHb, OTPUMAHMX 32

JAO0MIOMOI 00 HEPOHHHMX Mep ek

BukoHaB: cTyeHT 2-ro poKy HaBYaHHS,
OCBITHBO-HAYKOBO1 NMpOTpaMu

«IIpuknanna MareMaTuka,

cneriansHOCTI 113 [Ipukitagna maTemaTuka
Kpommn Onexkcanap AHapiiioBUY
Kepinuk: [IBait H.O.

KaHAUAAT Pi3.-MaT. HAYK, JOLIEHT

Penenzenr

(TIpi3BuIIe Ta iHiMiasH)

KBamidikariiitna po6oTta 3axuiieHa

3 OLIIHKOIO

Cekperap EK
« » 2022 p.

Kuis — 2022

Table of contents

AHOMUAUIS «eeseeeeeseeesesssesssene 3
ARPOTALION uunnnneennnneecnnneicnnenisneeissnessseesssseessssssssssssssssesssssesssasssses 4
IREPOAUCHION...ncuennnnennnnencnnnencnnnnncnneicsnnnissasnsssssssssssicssssisssssssssssssssssssssssesssssessssssssssssssssssssssssssssssssns 5
1. Semantic search. Document Re-ranking problem, an 0Verviewueeeueeesuercvenseecsvecsannes 7
1.1. Query-Document matching, Semantic Search, Retrieval and Re-rank.ccoccooeniniinininnnnne 7
1.1.2 Retrieval and Re-TanKINgccccveviiriiiiieiieiieeie et ereereesteesreesteestaesenesenesssesssesssessseessesssesnns 7

1.1.3 SemMantic SEATCH.......oouiiuiiiiitieiee ettt ettt ettt et et sb e et e e e ae et e st ne et nees 8
1.1.4. Symmetric & Asymmetric Semantic SEArch............cceevuiriiieiieiienierierie e 8

1.2. Classic retrieval approach. BIM=25........cccuiiiiiiiiiiie ettt et re s e e s te e e seveesvaesssaeeseaeessneeas 9
1.3 Evaluation Metrics fOr Te-TaNKING........c..ccveriieriiiriierienieeieeste et et et eieestaesieesaeesanesnsesnseenseenseesseenns 11
L3 1 MRR@K ..ottt sttt s st e e b et e e st s e s et et et eneeneeneene 12
L3 2 MAP@K ...ttt sttt b ettt ne et 13
L33 NDCGEK ...ttt ettt ettt e st et et e e st essesseessenseeseensanseessansesseansensesseessensans 14

2. Using Language Models in semantic search, re-ranking and retrieval. GPT-3 and OPT ... 15
2.1 GPT network architecture and related CONCEPLS.......c.eecueerierirriiriieie ettt 16
2.2 Interaction With GPT. PrOMPLScccvieviiiiieiieiierieiiecee st ete e ete et te e seestaestaeseaessvessvessneennas 16
2.3. GPT and re-ranking. Zero-shot re-ranking SOIUtION...........coveiiiiiiiriiiiii ettt 17
2.4 Cross-Encoder and Bi-Encoder MOdelscooiiiiiiiiiiriiniinieieeseeeseceee et 18
24,1 BI-ENCOGET ...ttt b et bt et sttt et et e b e bt e b e bt e naeas 19
2.4.2 CTOSS-ENCOURT ..ottt ettt ettt ettt ettt eneenteseeeneeaeas 19

3. PracticAl TESEATCHuuenneennneennennneinnenneicnnensensnessseissessssisssesssssssssssssssssssssssssssssssssssssssassses 21
3.1. Training dataset: MS MARCO PaSSagE.........cccccuirrieiieiieiieieeieesieesieesieesteesenesereseresssessseessesssesssens 21
3.2 Benchmark for retrieval and re-ranking: BEIR...........cccccoiiiiiiiiiii e 21
3.2. Prompt Engineering and OPT eValUationc..cceevvieriieniieniieiieniesieseeseesevesenesenessneesseesseesseessens 23
3.3. Training @ CrosS-ENCOUETcoicviiiiiiieiiieciie ettt et e et e et e e sbeeesteeesaeesssaeesseeesseesssens 25
3.3. Improving OPT performance: Knowledge Distillation...........cccccevevereieniiniieenieeieeneeeeeeeeseee e 25
3.3.1. Logits diStribUtion tranSTeT..........cccuiieiiieiiieeiie ettt sve e e et e e eesbeeeneaeesbeeenseesnseeens 26
3.3.2. Self-attention relation diStllation..........c.cceoeriiieiiiiieeee e 26

3.4. Results cOMPAriSON tADIEcccviiriirieiieiiieie ettt ettt seestteste s e ssbeenbeenseessaessaessaesseesssesssennnas 27
TR TR T 1 TSSO 28
CONCIUSTION.c.nneonnneenneecnnenireeirnenieecsaeisseissesssecsssssssesssassssessssssssssssassssessssssssssssassssesssassssssssassssesssases 29

RESOICHICES euueneeeecnnvevnnerissnerisnniessseicsssrissssssssssssssssnsssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssnsssssas 30

AHoOTALIA

Marictepcbka poOoTa NpUCBSIYEHA 3a/1a4l CEMaHTUYHOTO TOIIYKY,
30KpeMa, 3a/layl paH>KyBaHHsI IOKYMEHTIB 3a 3allUTaMUd KOpUCTyBadiB. B po0OoTi
PO3TIIAIAE€THCS PO3B’A30K 3a7a4l paHKyBaHHS 33 JOTIOMOTO HEMPOHHUX
Mepex apxitektypu GPT-3. B poOoTi nponoHyeTbes po3B’A3yBaTH L0 33/a4y
3a nonoMoroto imMmiemenTanii GPT-3 mix nazsoro OPT.

PosrnsnaroTees pi3H1 BapiaHTH pO3B’ 3Ky 3a/1a4i 0e3 10JJaTKOBOTO
TPEHYBaHHS, 30KpeMa, BUKOPUCTaHHS Pi3HUX (HOpMaTiB BXIAHUX TEKCTIiB. B
po6oTi mpononyeThest Moaeab Cross-Encoder Ha ocaoBi OPT, mo gemoHcTpye
Kpallll pe3yJbTaTi poOOTH Ha MPUNHATHX B IHIYCTPii TecTax B MOPIBHSIHHI 3
ICHYIOYMMU PIIICHHSIMH, 110 BBAKAIOTHCS CTaHAapTaMu. PO3rsimaroThes
eKCIIEPUMEHTH 3 TUCTHIIsAIIEr0 Moaeneir OPT 3aaiis moaapIoro mokpameHHs
iXHIX pe3yJIbTaTiB B 33Jja4aX CEMAaHTUYHOTO MOUIYKY.

PoGota cknangaerbest 3 TphoX po3autiB. [lepimii, TeopeTuuHUt po3 it
NPUCBSYCHUH MTOCTAHOBIII 33/1a4l PaH)XyBaHHS, OIJISIIY ICHYIOYMX METPUK Ta
KJIACUYHUX MiAXO0MA1B. JIpyruii po3aisl onucye BUKOPUCTAaHHS HEUPOHHUX MEPEK
B 3aJ1a4l paH)KyBaHHS a TAKOX JEMOHCTPYE pillieHHs, ToOyaoBaHi Ha 0a3i
moaenent apxitektypu GPT-3. Tperiif, npakTUYHUN PO31T MPUCBIYCHUMA
noOynoBi Ta TpenyBaHHI0 Cross-Encoder Ha ocHoBl Mmogeneit OPT,
eKCIepUMEHTaM 3 JUCTUIIAIIEI0 MOJIeNiel Ta 00poOili pe3ynbratiB. PesynpraTn

€KCIIEPUMEHTIB JIEMOHCTPYIOTHCSl Y BUCHOBKY.

Annotation

This master’s thesis is dedicated to semantic search problem. It is focused
on the task of re-ranking documents based on user query, particularly, by
solving it via applying neural networks based on GPT-3 architecture. This work
introduces GPT-3 implementation, OPT, to the re-ranking task, proposes best
prompt for its zero-shot evaluation, introduces OPT-based cross-encoder that
outperforms previous BERT-based SOTA approaches by a margin and
experiments with different knowledge-distillation settings in order to
additionally boost performance of smaller model.

The work is split into three sections. The first section sets theoretical
background of re-ranking problem, reviews metrics and industry-standard
approaches. Second section explains usage of neural networks in semantic
search and describes different solutions to re-ranking problem using networks
of GPT-3 architecture. The third, experimental section, covers training an OPT-
based Cross-Encoder, describes knowledge-distillation experiments and
evaluates proposed solutions. Results of the experiments are discussed in

conclusion section. All the used literature is in the References section.

Introduction

Recent developments in Natural Language Processing have greatly
impacted its neighboring domains such as Information Retrieval. Appearance of
large pre-trained language models!!! has changed industry standards and
approaches. Text search is among the areas that were highly impacted. This
work focuses on text search problem known as re-ranking, where a list of
documents has to be sorted by relevance given a specific user query.

Introduction of BERT! led to appearance of high-quality vector
representations of search queries and document collections that significantly
boosted search performance and let to evolution of search systems. Instead of
relying on classic solution based on BM-25 algorithm®®], newer search pipelines
use high-quality input representations that only a pre-trained language model
can create. However, BM-25 didn’t become obsolete, as indexing enormous
collections remains a significant challenge.

BERT influenced the appearance of two different main neural-based
approaches to re-ranking task that can be classified as bi-encoder and cross-
encoder!®. Bi-Encoder approach lies in creating separate vector representations
(embeddings) for documents and queries and ranking documents using cosine
similarity. Cross-Encoder is a classifier built on top of BERT that uses
document-query pair as a single input string and outputs their grade of
relevance.

Introduction of GPT-3) allowed solving NLP problems out of the box
without additional training, and re-ranking task is among these tasks.
Muennighoff!® demonstrated GPT-3 great out-of-the box performance in re-

ranking, comparable to SOTA BERT-based solutions!”. Adopting SOTA

approaches to GPT architecture may lead to superior models for semantic
search tasks, which is the main motivation of this paper.

The aim of this paper is to utilize recently released GPT-3
implementation OPT® for re-ranking problem, create best zero-shot pipeline
experimenting with various input prompts, propose OPT-based cross-encoder
that outperforms previous state-of-the-art solutions on benchmarks such as
BEIR®! and explore possibilities of creating a distillated version of OPT that
would outperform SOTA in both speed and precision.

First part of the paper is focused on an overview of re-ranking problem
itself, description of industry-standard solutions and introduction of necessary
benchmarks and metrics. Second part provides an overview of GPT network
architecture, describes how GPT can be used in a problem of re-ranking,
introduces a cross-encoder structure and a variety of methods and techniques
that can be used for re-ranking problem. The final, third part, describes training
datasets, discusses training of a GPT-based cross-encoder, applies various
knowledge distillation techniques required for expanding OPT zero-shot

capabilities and analyzes achieved results.

1. Semantic search. Document Re-ranking problem, an

overview

1.1. Query-Document matching, Semantic Search, Retrieval and Re-

rank.

The problem of matching similar pieces of information based on their
relevancy scourges the world of information technologies for decades.
Producing relevant search results is a crucial for any information-retrieval
system, with search itself being one of the greatest achievements of recent
decades.

One could broadly define search as the task of matching a piece of
information that the user wants to know with information that the user feeds
into the search system as a clue. This problem is also known as retrieval, and
given a system that operates a large collection of documents, it may be defined
as follows:

Given a set of documents D and a user query Q, a system must extract a
subset of N documents, semantically most relevant to the query.

A system that operates documents and queries may be called a retrieval

system.

1.1.2 Retrieval and Re-ranking

Retrieval systems have certain constraints. List of results must be formed
fast, so that the user gets results in real-time, and retrieval on a very large

collections of documents leads to inability to use most advanced methods of

search in real-time — indexing all the documents is too costly and time-
consuming. Industry overcame this problem by introducing a two-stage pipeline
called retrieve and re-rank. The first stage, retrieval, extracts a subset of N most
relevant documents. Second stage, re-ranking, can be defined as a problem of
sorting a subset of N most relevant documents obtained during retrieval stage,

in order to provide the user with more accurate search result.

1.1.3 Semantic Search

Classic methods of retrieval and re-ranking are based on statistical matching
of word occurrences between documents and queries, whereas more recent
approaches are based on an idea of semantically matching document and query
using vector representations. A re-ranking pipeline that uses methods based on
semantic matching can be called Semantic Search (or Neural Search). It is
based on the idea that any piece of text can be represented as an N-dimensional
real vector, and a simple function, such as cosine similarity can be used to
determine a grade of semantic similarity between two given pieces of text (or

other types of information).

1.1.4. Symmetric & Asymmetric Semantic Search

Semantic search is sensitive to a ratio between length of document and
length of query, as well as whether query and document can be potentially used
interchangeably, that’s why semantic search can be symmetric or asymmetric.
Symmetric semantic search may consist of query and title of a web article with
a similar name, for example for a query “How to install pythorch on M1 Mac?”
the good result would be an article called “Everything you need to know about

installing pytorch on M1 Mac”. Asymmetric semantic search typically consists

of a short question-like query (“How to remove a malware?”’) and a longer
answer answering the question “To remove a malware, try scanning your
computer with Defender utility. In case it does not find anything, start your

computer in Safe mode ...”.

1.2. Classic retrieval approach. BM-25

Due to speed and computational limitations in retrieval problem it is
important to understand classic retrieval approaches, as it is still a widespread
practice to use them for initial retrieval of a substantial number (typically, top-
1000) most relevant documents using faster, simpler algorithms, and then using
more advanced, neural based approaches for further re-ranking. BM-25 (Best-
Matching 25)8! is an industry-standard baseline algorithm for initial retrieval
task.

BM-25 is based on certain important assumptions about the documents and
terms (normalized words) that documents consist of:

1. Words in documents and query are tokenized (split by punctuation
characters in most naive implementation), stemmed (reduced to their
roots, 1.e., ‘cooker, cooking, cooked -> cook’), lemmatized (reduced verb
forms to base form, i.e., "'was, were -> be"). Stop words (‘in’, ‘at’, etc.)
are removed using a pre-defined list.

Exact implementations for each step may be different.

2. In order to understand term frequencies, extracted terms are used to build
an inverted index. Inverted index is a data structure that contains
documents metadata and statistics of term frequencies and document

frequencies.

10

3. Terms frequency tf;,; can be viewed as a table where each document d is
represented as a column and each term t as a row. Each table value tf;4
represents number of times a term t appears in a document d.

Storing full term-frequency table is inefficient due to the sparsity — thus,

inverted index is built — a table, where each term contains a list of

documents it appears in and corresponding term frequency in the doc
dog — [d;:5,d3y: 3]

(Term dog appears five times in doc d4, three times in doc d5()

Using the raw frequencies is not the best solution, as it would give a

popular term too high weight yet produce irrelevant result. (i.e., one doc

can contain word “machine” 100 times yet be irrelevant to the query

“machine learning”). Logarithm is used to lower the weight of the terms:

tf(t,d) =log(1+tfrg)
4. Document frequency d f; represents how in many documents term t

appears. Inverse document frequency is typically defined as:

idf(t) = logE
dft
Where |D| is a number of documents in a collection, and log is used to
get a smaller range of values.

5. To take into account both the term frequency (how often term is
represented in a particular document) and document frequency (how

many documents contain particular term), TF-IDF score was introduced:

. ID|
TFipr(a,q = Z tft,q * idf () = z log(l + tft,d) log <—

d
teTqNTy teET4NTy ft

N————

11

Such a function would downgrade scores for frequently used words and
give a high score for rare words that appear often in a certain document.
Scores of TF-IDF are used as inputs for different NLP and retrieval tasks.
The problem of using raw TF-IDF is that despite introduction of
logarithm, TF-IDF weights are always increasing with increasing term
frequency, which leads to more unbalanced and inaccurate results.

To deal with always increasing weights and provide a function that would

saturate with increasing term frequency, BM-25 (ref!) was introduced.

Same as TF-IDF, BM-25 is based on tf and df;, takes into account

document length d! and uses additional hyperparameters k and b that can be

optimized for a particular dataset:

tf : |D|—df +0.5
BM25(q,d) = Yterynr, m *log(Y.)
k<(1—b)+bavg‘fu+tft,d> o

Hyperparameter b is responsible for normalizing document length, and k
controls scaling of term frequency.

1.2 <k < 2and 0.5 < b < 0.8 are frequently used ranges for the
hyperparameters.

BM-25 is a basis for most search engines used today.

In our solution, we use BM-25-Anserini implementation!!%],

1.3 Evaluation Metrics for re-ranking

Evaluation metrics are another crucial aspect in estimation of the quality of
different retrieval systems.
An important concept in re-ranking problem is relevance. It can be assumed

that the document is relevant or not relevant to the query (a.k.a., binary

12

relevance). However, a more practical approach would be to assign grades of
relevance to a document. This approach is called utility-based relevance and
relevance can be represented either as a floating point or a fixed set of classes.

Commonly, relevance can be graded as follows:

Text label Description Label

Irrelevant Document does not provide any relevant | 0

information related to the query.

Relevant Document provides minimal relevant |

information related to the query.

Highly relevant | Document provides substantial 2

information related to the query.

Perfectly relevant | Document is dedicated to the query and | 3
can be displayed as a top result in a
search engine.

Table 1.1 — Common TREC Relevance Labels

Binary relevance can be evaluated with metrics such as MRR and MAP,
most important utility relevance metric is NDCG.
As the problem is often setup to re-rank certain subset of top retrieved documents,
it is commonly used to notate metrics with cutoff @k, i.e., NDCG(@ 10 means that

we calculate the metric only for ten top resulting documents.

1.3.1 MRR@K

Mean Reciprocal Rank, or MRR!!, is a metric that evaluates test results

based on where the first relevant item is placed. For a single query,

13

RR = !
" rank

where rank 1s a position of highest ranked answer, ranged from 1 to N,

where N is the number of results for a given query. For multiple queries Q,
Q|

MRR = . z .
~ 101 L rank,
1=

MRR assumes that the user is interested only in the first most relevant

document, which may be true in applications and scenarios.

1.3.2 MAP@K

Mean Average Precision, or MAP!'?), is a metric that evaluates retrieval
system based on an assumption that the user is interested in each relevant
document and is willing to judge the system based on how it performs on
multiple queries.

Firstly, let’s remind what precision metric stands for. Given classification
task with lists of binary labels and predictions (0s and 1s, negatives and
positives), we define precision as a share of the correctly identified 1s among
all items labeled as 1.

tp

Pr =
r tp+ fn

Where tp stand for positive labels that were matched as positive, fn stand
for positive labels that were matched as negative.

Average precision can be defined as follows:

11 P(@)ai * Tel(q);
[rel(q)]

AP(q) =

14

where q is a given query, P(q)@; is a precision of q after the first i
documents, rel(q); stands for binary relevance of doc at position i, and
|rel(q)| is a total number of relevant documents for the query.

MAP means AP over multiple queries:

1
MAP(Q) = 1oy > ap@

qeQ
MAP gives more focus to errors associated with wrong documents that
appear high in the re-ranked list. Its main downside lies in inability to work

with non-binary relevance ratings.

1.3.3 NDCG@K

Non-discounted cumulative gain (NDCG)!"3! also has emphasis on
correctness of documents high in the ranking list. An idea behind NDCG is that
the most relevant items should be first, followed by somewhat relevant items
and the least relevant items should be last in re-ranked list of documents.

Given that each document has ranked position i,i € [1;n] and relevance
value rel(d) (typically, 0-3), Discounted Cumulative Gain (DCG) can be
defined as follows:

rel(d)

DCG(D) = _
e log,(i+1)

Given a set of queries Q, we can define nDCG:

DCG(Q) = — D
n Q) = 10| 4 DCG (sorted(rel(q))

Where Sorted(rel(q)) stands for the best documents ranking possible.
NDCG has advantage over MRR, as it gives less discounts to documents that

appear lower in ranking list.

15

2. Using Language Models in semantic search, re-ranking and

retrieval. GPT-3 and OPT

Pre-trained language models built using transformer-based architecture!!!
caused a paradigm shift in Natural Language Processing. Instead of training
separate model from scratch for each task, industry moved towards an idea that
every task can potentially be solved with a “universal” language model. In order
to prepare such a model, one has to train a model that learns representations for
words and sentences, with similar words being “located nearby” and opposite
words being “far away from each other”.

This concept is called word embeddings and it implies that each word can be
encoded as a real-value vector in N-dimensional space.

The first architecture under the paradigm of pre-training was BERT!. Its
success increased effort towards training a single transformer-based model
capable of solving NLP tasks in few-shot, or even zero-shot manner, and
influenced the appearance of GPT-3!%), that showed phenomenal results and
revolutionized the field even further.

Re-ranking problem also benefited from appearance of pre-trained language
models. Quality vector representations for queries and documents led to
introduction of different new solutions [’!, ['4] that beat previous approaches by a
margin.

Once GPT-3 appeared, it demonstrated huge gains over BERT in a variety of
tasks. Re-ranking is no exception, and as it was demonstrated!®,, GPT- has huge
potential in re-ranking task. As more open-source GPT-3 implementations are
appearing, the focus of this paper is on one of them, OPT!®). OPT is an
implementation of GPT-3 with minor architectural changes. OPT models vary

in size, from 125M to 175B.

16

2.1 GPT network architecture and related concepts

Language modelling is a machine learning task of predicting words given a
text sequence. GPT presents very effective architecture for this task. As for input,
it operates on parts of words, known as tokens. Input layer consists of token
embeddings (vocabulary size, hidden dim) and positional encoding vector that
explains the model words position in the texts!!®],

A main component of GPT is a decoder block, that consists of masked self-
attention, followed by feed forward neural network. The concept behind self-
attention lies in constructing a probability distribution for each token in a particular
sequence given its position. Queries, Keys and Value vectors are a basis of self-
attention. Query vector represents a given token in order to score it against other
tokens in a sequence, Keys vectors represents other tokens, and Values correspond
to word representations. Queries and Key vectors are then multiplied and summed
in order to get vector of scores of what can be interpreted as a “correlation matrix”
between words.

In order to treat long sequences more effectively, separate parts of keys-
queries-values vectors are split, scored separately and gathered as separate
attention-heads. Merged attention heads are then passed towards a projection layer
so that it could be processed by a feed-forward layer in order to get output of the

input shape and feed it to the next decoder block.

2.2 Interaction with GPT. Prompts

The main advantage of pre-trained GPT models is the ease of interaction.
Once model is trained, user different NLP tasks can be solved by feeding text
inputs into the network. In order to make the model “solve” a particular NLP task,

a correct input pattern must be designed. Input patterns are called prompts, and the

17

process of selecting a correct pattern is called prompt engineering. Prompts are

divided into zero-shot and few-shot. Zero-shot means that the model is not

provided with any examples, and few-shot means that we give some examples

during inference step. For example, a translation task may be approached in zero-

shot manner via prompt like:

Translate text from English to French \n text: < text >\ntranslation:

Few-shot prompt may look like:

Translate English to French: cheese = fromage\n wine — vin\n bread —
To fit a model to a new task or to make it work in zero-shot for a particular

prompt model may be trained further using some new data. This process is called

fine-tuning and is a more traditional approach of adopting language models for

new tasks.

2.3. GPT and re-ranking. Zero-shot re-ranking solution

Prompt-engineering is the easiest, “naive” way to use GPT in re-ranking
task. A prompt can be any string that contains slots for document and query,
prompt options are covered in Section 3.2.

Given a query and a set of documents, the most suitable document to the query is:

d* = argmax P(d|q)
deD

Using Bayes theorem,

P(qld
d* = argmax P(d|q) = argmax (qld) = argmax P(q|d)P(d)
deD dgep P(q) deD

Thus, P(q|d) can estimate how “good” a query fits a document. As GPT is auto
regressive, it can predict P(q|d) by placing d to the left part of the prompt and
q to the right part of it. Given tokenized input sequence (prompt) p of length

n,p = (P1.i-1,9;,..n) With query tokens q; _,, and prompt tokens (including

document) p;

..... i—1»

score(d) = P(qld) =) log (softmax(q;))
k=i

Documents can be sorted by the calculated scores.

Ca)
2 ~ |

O

50

O

GPT

oy

A

Logprobs
sum over

query
tokens

Ay

=)
20

5

70

argmax(D)

Figure I — Naive approach for GPT-based re-ranking

2.4 Cross-Encoder and Bi-Encoder models

18

Scoring approach described in Section 2.3 may be useful for offline usage or

quick prototyping but has its own limitations in actual retrieval and re-ranking

pipeline. Its performance may be increased, its main disadvantage is slow speed

and number of comparisons required to rank multiple query-documents sets.

Like other transformers used for the re-ranking task, GPT out of the box

performance can be improved via making minor architecture changes and fine-

tuning slightly changed model on datasets of document-query pairs.

19

2.4.1 Bi-Encoder

Bi-Encoder approach is based on an intuitive idea to cover the whole
retrieval and re-rank pipeline by calculating similarity between vector
representations (embeddings) of documents and queries. Using document
representation as a vector is useful for faster retrieval, as document vectors may
be indexed and compared against queries in a real-time setting

The first step in Bi-Encoder setting is to get a single embedding vector for
the input query/document, that would have same dimensionality regardless of
the sequence length. In order to achieve that, Bi-Encoder uses pooling operation
between LM output vectors for each token in an input sequence. Based on the
architecture of the used LM, different types of pooling may be used.

Given document and query embeddings, one can rank documents by using
cosine similarity.

In order to get better representations, Bi-Encoder may be fine-tuned, as

described in [6][16].

2.4.2 Cross-Encoder

Cross-Encoder is a classifier or regressor built on top of a language model.
Given a query-document pair, it calculates a relevance score (usually, in range
[0,1]. Before usage, Cross-Encoder 1s fine-tuned on datasets of triplets (query,

document, relevancy), where relevancy is normalized to a desired score range.

Doc

Query %/

.

GPT

/

C)

Classifier

-/

Figure 2 Cross-Encoder architecture

20

Cross-Encoder is the most accurate existing method for re-ranking. Its main

downside, however, is that it doesn’t store vector representations, and is not fast

enough to score millions of document-query pairs in real time.

Search systems that rely on neural networks only typically use Bi-Encoder

for retrieval step (as document representations are already stored) and Cross-

Encoder for re-ranking step on a narrow subset of pre-selected documents.

vl

21

3. Practical research

Research part of the paper is focused on OPTI®l. This paper presents first
OPT evaluation on BEIR benchmark!®! using different prompts, as well as trains
first GPT-3 based Cross-Encoder, also using OPT. The OPT Cross-Encoder (OPT-
125M) outperforms classical approach (BM-25), previous-generation SOTA! as
well as out-of-the box Naive method of re-ranking. The last part of the research is
focused on improving performance of smaller OPT-model (OPT-125M) using
various knowledge distillation techniques, such as self-attention distribution

transfer.

3.1. Training dataset: MS MARCOQO Passage

Microsoft Machine Reading Comprehension is a dataset focused on passage
ranking, question answering and machine reading comprehension. Introduced
by Microsoft as a part of TREC-2019 challenge, it consists of 8.8 Imillion
query-document pairs.

During experiments, a subset of 2 million query-document pairs from train
set were used for fine-tuning experiments, and eval subset was used as a part of

BEIR benchmark.

3.2 Benchmark for retrieval and re-ranking: BEIR

In order to compare quality of different retrieval systems it requires
evaluating them on different tasks and benchmarks. Evaluation in IR can be
done offline or online, where online evaluation is done by doing A/B tests and

getting feedback from the users, while offline evaluation can be done using

22

fixed test collections of queries (can be handcrafted or sampled from real-world
user queries), documents (task-specific) and judgements about query-document
relevance.

Most commonly, re-ranking benchmarks are datasets from TREC!'™ and
NTCIR!8 test collections, which are updated yearly by the community of the
two largest conferences related to Information Retrieval.

However, this paper uses a recently developed benchmark called BEIR
(Benchmarking IR). BEIR is an evaluation benchmark that consists of 19
publicly available datasets from 10 different text retrieval tasks. [add
reference!]. BEIR was specifically designed to introduce more accurate
representation of real-world usage for re-ranking models and is now widely
used to benchmark different re-ranking approaches and models!®. Apart from
being set in different domains, such as BIO-Medical IR, Question Answering,
Tweets-Retrieval, Fact Checking, Citation Prediction, etc., BEIR datasets differ
in number of test document-query pairs, document-query ratio, and, most
importantly, use different grades of relevancy, which allows researchers to
identify possible shortcomings in particular model during training and
evaluation stages.

Note that in this work we didn’t use Signal-1M, TREC-News, Bioasq and
Robust-04 datasets, as they required separate enquiries for access. That is why
benchmarked is marked as BEIR* in results section.

The following table provides a short statistic of datasets presented in BEIR

benchmarks:

23

Task Dataset Relevancy | Test Queries | Test Docs
Passage-Retrieval MS Marco Binary 6980 8841823
Bio-Medical IR TREC-COVID | 3-level 50 171332
Bio-Medical IR NFCorpus 3-level 323 3633
Bio-Medical IR BioASQ Binary 500 14914602
Question Answering NQ Binary 3452 2681468
Question Answering HotPotQA Binary 7405 5233329
Question Answering FiQA-2018 Binary 648 57638
Tweets-Retrieval Signal-1M (RT) | 3-level 97 2866316
News Retrieval TREC-NEWS | 5-level 57 594977
News Retrieval Robust04 3-level 249 528155
Argument Retrieval ArguAna Binary 1406 8674
Argument Retrieval Touché-2020 3-level 49 382545
Duplicate-Question Retrieval | CQADupStack | Binary 13145 457199
Duplicate-Question Retrieval | Quora Binary 10000 522931
Entity-Retrieval DBPedia 3-level 400 4635922
Citation-Prediction SCIDOCS Binary 1000 25657
Fact Checking FEVER Binary 6666 5416568
Fact Checking Climate- Binary 1535 5416593
FEVER
Fact Checking SciFact Binary 300 5183

Table 3.1 - BEIR datasets statistics

3.2. Prompt Engineering and OPT evaluation

In order to use OPT on re-ranking task, we had to start with selecting the

most suitable prompt that would unlock OPT potential and show good results.

Based on !, three prompts were chosen for evaluation OPT on BEIR dataset

using method described in Section 2.3. Additionally, GPT-NEO ! was also

24

evaluated in order to compare performance differences between different GPT

implementations.

Selected prompts were:

Number Text

Prompt 1 Documents are searched to find matches with the same content.\nThe
document "{doc}" is a good search result for " {query}

Prompt 2 Documents are searched to find matches with the same
content.\nDocument: "{doc}"\n\nThe above document is a good match
for the query: "{query}

Prompt 3 The selected text is:\n{doc}\n\n\nThe relevant title is:\n{query}

Table 3.2 — Prompts list

The table below illustrates used prompts and their respective mean BEIR*

NDCG@]10 scores:

Prompt Network NDCG@10
Prompt 1 OPT-125M 0.3998
Prompt 2 OPT-125M 0.4084
Prompt 3 OPT-125M 0.4065
Prompt 1 OPT-350M 0.4098
Prompt 2 OPT-350M 0.4137
Prompt 3 OPT-350M 0.4116
Prompt 1 GPT-NEO-125M 0.3137
Prompt 2 GPT-NEO-125M 0.3153
Prompt 3 GPT-NEO-125M 0.3102

Table 3.3 — Zero-shot evaluation results

As may be seen, OPT-125M beat GPT-NEO-125M out of the box with all
three prompts. OPT-350M slightly outperforms OPT-125M and prompts 1 and 3

showed opposite results in OPT to those under GPT-NEO. Prompt 2 showed better

results among three options; thus, further experiments were done using it for input

sequences.

25

3.3. Training a Cross-Encoder

Easiest way to improve OPT performance out of the box was to train Cross-
Encoder. In order to do so, we used Prompt-1. Architecturally, a linear layer
with a sigmoid activation function was placed on top of the output GPT layer.
Input dim of linear layer equals hidden dim of the model (768 for OPT-125M,
1024 for OPT-350M). Cross-Encoder was trained on data described in Section
3.1 and Mean-Squared Error was used as a loss function. AdamW was used as
an optimizer, with learning rate set to 1e-5 and weight decay of 0.001. Fine-
tune took exactly one epoch and improved OPT-125M performance by ~2%.
Also, GPT-NEO-125M cross-encoder was trained, but it showed worse results

that out-of-the box model, which requires separate investigation.

3.3. Improving OPT performance: Knowledge Distillation

Another way to improve performance of OPT-125M is to fine-tune it in a
way that it would mimic a behavior of bigger models. This technique is called
Knowledge distillation. Under this setting, one model is trained using
representations or labels generated by a more capable model. The model that is
being trained is called a student, and a more powerful model that student learns
to imitate is called a teacher. The motivation behind these experiments lies in an
idea to create an OPT version of mini-LM-v2, a BERT-based SOTA of fast yet
highly capable retrieval & re-rank model.

Training data and optimizer settings were used the same as in Cross-Encoder
experiments. Knowledge distillation experiments were performed using OPT-
350M as a teacher and OPT-125M as a student. Kullback-Leibler divergence 12!

was used as a loss function.

26

3.3.1. Logits distribution transfer

The simplest way to perform knowledge distillation is to make student
model imitate logits distribution of teacher model. In order to do so, KL-
divergence between student and teacher models is used as a loss function for a
student:

L = Dg; (log (softmax(logitsy)||log (softmax(logitss)

Teacher *
/) Logits |
(doc, query) > KL-Divergence
\ Logits

Student 4——//'

Figure 2

3.3.2. Self-attention relation distillation

A more complex approach is to make a model imitate self-attention
mechanism. The selected method is called self-attention relation distillation and
was successfully used in [77. As our models do not differ in size that greatly, we
used outputs from corresponding last attention layers of student and teacher
models. Loss function can be defined:

L=Ly+Lg+Ly
Where VW € [Q, K, V] Ly, is a KL divergence between (K-K, V-V or Q-Q) scaled
dot-product matrices, which represent relations between different parts of attention

mechanism.

27

1 Ar x
L = 5751 2, D, P (RENIRE)

a=1t=1
Where |x| stands for sequence length, A, — number of student attention heads, Dy,
is a KL-divergence,l, m mean and

X X
R¥, = softmax()

Vd,

is a self-attention relation between (K-K, V-V or Q-Q) of teacher (T) or student (S)

model. d, represents number of student attention heads.
(K-K, V-V, Q-Q) are multi-head relation vectors that are aggregated between
attention heads, concatenated, split if number of teacher model attention heads is

higher than student attention head, and then multiplied via dot product.

3.4. Results comparison table

o

— = =

® ® ®

* * *

) &) O

Q O QO

@) A A

Z Z Z
Naive Baseline (BM-25) 0.2175 0.228 0.2816
Transformer SOTA (cross-encoder/ms- 0.3317 0.3703 0.4041
marco-MiniLM-L12-v2)
GPT-NEO-125M, zero-shot 0.2925 0.3153 0.3713
OPT-125M, zero-shot 0.3751 0.4084 0.4408
OPT-125M Cross-Encoder 0.3915 0.4233 0.4619
OPT-125M-distilled-logits-transfer 0.3516 0.3772 0.3819
OPT-125M-distilled-attention-transfer 0.3867 0.4106 0.4315
OPT-350M, zero-shot 0.3911 0.4137 0.4578

Table 3.4 — summary comparison of experiment results

28

As mentioned before, results are measured on a subsection of BEIR.
Evaluation metric is NDCG, NCDG* stands for mean results over present

datasets.

3.5. Results

OPT evaluation demonstrated that it outperforms its GPT-NEO competitor
by a huge margin with all experimented prompts. Moreover, with a correct
prompt it outperforms BERT-based SOTA solution out of the box.

In terms of model sizes, there is little difference between OPT-125M and
OPT-350M in zero-shot performance and using OPT-350M as a teacher doesn’t
add a lot of performance to OPT-125M.

Logits transfer experiment failed and degraded model performance, while
self-attention relation transfer boosted out-of-the box performance, which lets a
room for improvement and further experiments in order to find better
knowledge-distillation setting. It i1s worth trying two-step distillation, from 1.3B
model to 350M and from 350M to 125M.

Training a Cross-Encoder was the most successful experiment, as it easily
outperformed all the competitive solutions.

It is worth noting that results are heavily reliant on prompts, and a different
prompt may heavily influence the resulting benchmark numbers.

Overall, all neural-based approaches outperform BM-25 baseline, though,

may be much slower.

29

Conclusion

In this work we have discusses semantic search tasks based on neural
networks of GPT-3 architecture. The work introduced fresh GPT-3
implementation, OPT, to the search problem of re-ranking. In the work, we
chose the most suitable input prompt for re-ranking with OPT by evaluating
OPT on BEIR benchmark in zero-shot mode with different input prompts. The
best proposed prompt let OPT outperform both its predecessor (SBERT) and
other GPT-3 implementation (GPT-Neo) by a significant margin, which showed
its usability for re-ranking out of the box. In order to improve OPT zero-shot
performance in re-ranking for smaller OPT model we have conducted
experiments under different knowledge distillation settings by using logits
distribution transfer and self-attention relation distillation. The experiments
were rather successful, as distilled smaller model showed similar performance
to the larger model. Inspired by OPT-results in zero-shot, the work proposed
OPT-based Cross-Encoder model that outperforms SOTA Cross-Encoders.
Obtained results demonstrate utility of using large pre-trained language models
in tasks related to neural search and confirm the validity and prospects of using
GPT in re-ranking task.

Further work would involve building an OPT model that could maintain re-
ranking quality of larger OPT models, while surpassing them in faster inference

speed and smaller model size.

30

References

. Vaswani, A., et al. Attention Is All You Need, 2017,
doi:10.48550/arXiv.1706.03762

. Devlinn, J., et al: BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding, 2018, doi:10.48550/arXiv.1810.04805

. Robertson, S., Zaragoza, H., The Probabilistic Relevance Framework: BM-
25 and Beyond, 2009, doi: 10.1561/1500000019

. Humeau,S., et al. Poly-encoders: Architectures and Pre-training Strategies
for Fast and Accurate Multi-sentence Scoring ,2020,
doi:10.48550/arXiv.1905.01969

. Brown, T.B., et al. Language Models are Few-Shot Learners, 2020,
do1:10.48550/arXiv.2005.14165

. Muennighoff, Niklas. SGPT: GPT Sentence Embeddings for Semantic
Search, 2022, doi:10.48550/arXi1v.2202.08904

. Wang, W., et al. MiniLMv2: Multi-Head Self-Attention Relation Distillation
for Compressing Pretrained Transformers, 2021,
do1:10.48550/arxiv.2012.15828

. Zhang, S., et al. OPT: Open Pre-Trained Transformer Language Models,
2022, do0i:10.48550/arXiv.2205.01068

. Thakur, N., et al. BEIR: A Heterogenous Benchmark for Zero-shot
Evaluation of Information Retrieval Models, 2021,

do1:10.48550/arXiv.2104.08663

10.Lin, J., et al. Pyserini: An Easy-to-Use Python Toolkit to Support Replicable

IR Research with Sparse and Dense Representations, 2021,
doi:10.48550/arXiv.2102.10073

31

11.Voorhees, Ellen M. The trec-8 question answering track report. Trec. Vol.
99, 1999.

12.Sanderson, M., Manning C.D., et al. Introduction to Information Retrieval,
Cambridge University Press. 2008. ISBN-13 978-0-521-86571-5, xxi+ 482
pages.

13.Jarvelin, Kalervo, and Jaana Kekéldinen. "Cumulated gain-based evaluation
of IR techniques." ACM Transactions on Information Systems (TOIS) 20.4
(2002): 422-446.

14.Reiemers, Nis, Gurevych, Iryna, Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks, 2019, doi:10.48550/arXiv.1908.10084

15.Radford, A., et. al, Language Models are Unsupervised Multitask Learners,
2019, URL: https://d4dmucfpksywv.cloudfront.net/better-language-

models/language-models.pdf

16.Lin, J., et al., Pretrained Transformers for Texts Ranking: BERT and
Beyond , 2021, doi:10.48550/arXiv.2010.06467
17.http://trec.nist.gov/

18.https://research.nii.ac.jp/ntcir/index-en.html

19.Sid, B., et al. GPT-Neo: Large Scale Autoregressive Language Modeling
with Mesh-Tensorflow, doi:10.5281/zenodo.5297715

20.Kullback, S. and Leibler, R.A. On information and sufficiency. The Annals
of Mathematical Statistics, 22, 79-86. 1951, doi:10.1214/aoms.1177729694

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://trec.nist.gov/
https://research.nii.ac.jp/ntcir/index-en.html

	Керівник: Швай Н.О.
	кандидат фіз.-мат. наук, доцент
	Рецензент _______________________
	Table of contents
	Анотація
	Annotation
	Introduction
	1. Semantic search. Document Re-ranking problem, an overview
	1.1. Query-Document matching, Semantic Search, Retrieval and Re-rank.
	1.1.2 Retrieval and Re-ranking
	1.1.3 Semantic Search
	1.1.4. Symmetric & Asymmetric Semantic Search

	1.2. Classic retrieval approach. BM-25
	1.3 Evaluation Metrics for re-ranking
	1.3.1 MRR@K
	1.3.2 MAP@K
	1.3.3 NDCG@K

	2. Using Language Models in semantic search, re-ranking and retrieval. GPT-3 and OPT
	2.1 GPT network architecture and related concepts
	2.2 Interaction with GPT. Prompts
	2.3. GPT and re-ranking. Zero-shot re-ranking solution
	2.4 Cross-Encoder and Bi-Encoder models
	2.4.1 Bi-Encoder
	2.4.2 Cross-Encoder

	3. Practical research
	3.1. Training dataset: MS MARCO Passage
	3.2 Benchmark for retrieval and re-ranking: BEIR
	3.2. Prompt Engineering and OPT evaluation
	3.3. Training a Cross-Encoder
	3.3. Improving OPT performance: Knowledge Distillation
	3.3.1. Logits distribution transfer
	3.3.2. Self-attention relation distillation

	3.4. Results comparison table
	3.5. Results

	Conclusion
	References

