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Анотація 

 
Магістерська робота присвячена задачі семантичного пошуку, 

зокрема, задачі ранжування документів за запитами користувачів. В роботі 

розглядається розв’язок задачі ранжування за допомогою нейронних 

мереж архітектури GPT-3. В роботі пропонується розв’язувати цю задачу 

за допомогою імплементації GPT-3 під назвою OPT.  

Розглядаються різні варіанти розв’язку задачі без додаткового 

тренування, зокрема, використання різних форматів вхідних текстів. В 

роботі пропонується модель Cross-Encoder на основі OPT, що демонструє 

кращі результати роботи на прийнятих в індустрії тестах в порівнянні з 

існуючими рішеннями, що вважаються стандартами. Розглядаються 

експерименти з дистиляцією моделей OPT задля подальшого покращення 

їхніх результатів в задачах семантичного пошуку. 

Робота складається з трьох розділів. Перший, теоретичний розділ 

присвячений постановці задачі ранжування, огляду існуючих метрик та 

класичних підходів. Другий розділ описує використання нейронних мереж 

в задачі ранжування а також демонструє рішення, побудовані на базі 

моделей архітектури GPT-3. Третій,  практичний розділ присвячений 

побудові та тренуванню Cross-Encoder на основі моделей OPT, 

експериментам з дистиляцією моделей та обробці результатів. Результати 

експериментів демонструються у висновку. 
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Annotation 

 
This master’s thesis is dedicated to semantic search problem. It is focused 

on the task of re-ranking documents based on user query, particularly, by 

solving it via applying neural networks based on GPT-3 architecture. This work 

introduces GPT-3 implementation, OPT, to the re-ranking task, proposes best 

prompt for its zero-shot evaluation, introduces OPT-based cross-encoder that 

outperforms previous BERT-based SOTA approaches by a margin and 

experiments with different knowledge-distillation settings in order to 

additionally boost performance of smaller model. 

The work is split into three sections. The first section sets theoretical 

background of re-ranking problem, reviews metrics and industry-standard 

approaches. Second section explains usage of neural networks in semantic 

search and describes different solutions to re-ranking problem using networks 

of GPT-3 architecture. The third, experimental section, covers training an OPT-

based Cross-Encoder, describes knowledge-distillation experiments and 

evaluates proposed solutions. Results of the experiments are discussed in 

conclusion section. All the used literature is in the References section. 
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Introduction 
 

Recent developments in Natural Language Processing have greatly 

impacted its neighboring domains such as Information Retrieval. Appearance of 

large pre-trained language models[1] has changed industry standards and 

approaches. Text search is among the areas that were highly impacted. This 

work focuses on text search problem known as re-ranking, where a list of 

documents has to be sorted by relevance given a specific user query. 

Introduction of BERT[2] led to appearance of high-quality vector 

representations of search queries and document collections that significantly 

boosted search performance and let to evolution of search systems. Instead of 

relying on classic solution based on BM-25 algorithm[3], newer search pipelines 

use high-quality input representations that only a pre-trained language model 

can create. However, BM-25 didn’t become obsolete, as indexing enormous 

collections remains a significant challenge.  

  BERT influenced the appearance of two different main neural-based 

approaches to re-ranking task that can be classified as bi-encoder and cross-

encoder[4]. Bi-Encoder approach lies in creating separate vector representations 

(embeddings) for documents and queries and ranking documents using cosine 

similarity. Cross-Encoder is a classifier built on top of BERT that uses 

document-query pair as a single input string and outputs their grade of 

relevance.  

Introduction of GPT-3[5] allowed solving NLP problems out of the box 

without additional training, and re-ranking task is among these tasks. 

Muennighoff[6] demonstrated GPT-3 great out-of-the box performance in re-

ranking, comparable to SOTA BERT-based solutions[7]. Adopting SOTA 
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approaches to GPT architecture may lead to superior models for semantic 

search tasks, which is the main motivation of this paper. 

The aim of this paper is to utilize recently released GPT-3 

implementation OPT[8] for re-ranking problem, create best zero-shot pipeline 

experimenting with various input prompts, propose OPT-based cross-encoder 

that outperforms previous state-of-the-art solutions on benchmarks such as 

BEIR[9] and explore possibilities of creating a distillated version of OPT that 

would outperform SOTA in both speed and precision. 

First part of the paper is focused on an overview of re-ranking problem 

itself, description of industry-standard solutions and introduction of necessary 

benchmarks and metrics. Second part provides an overview of GPT network 

architecture, describes how GPT can be used in a problem of re-ranking, 

introduces a cross-encoder structure and a variety of methods and techniques 

that can be used for re-ranking problem. The final, third part, describes training 

datasets, discusses training of a GPT-based cross-encoder, applies various 

knowledge distillation techniques required for expanding OPT zero-shot 

capabilities and analyzes achieved results. 
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1. Semantic search. Document Re-ranking problem, an 

overview 

1.1. Query-Document matching, Semantic Search, Retrieval and Re-

rank.  

The problem of matching similar pieces of information based on their 

relevancy scourges the world of information technologies for decades. 

Producing relevant search results is a crucial for any information-retrieval 

system, with search itself being one of the greatest achievements of recent 

decades. 

One could broadly define search as the task of matching a piece of 

information that the user wants to know with information that the user feeds 

into the search system as a clue. This problem is also known as retrieval, and 

given a system that operates a large collection of documents, it may be defined 

as follows:  

Given a set of documents D and a user query Q, a system must extract a 

subset of N documents, semantically most relevant to the query.  

A system that operates documents and queries may be called a retrieval 

system. 

 

1.1.2 Retrieval and Re-ranking 

Retrieval systems have certain constraints. List of results must be formed 

fast, so that the user gets results in real-time, and retrieval on a very large 

collections of documents leads to inability to use most advanced methods of 
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search in real-time – indexing all the documents is too costly and time-

consuming. Industry overcame this problem by introducing a two-stage pipeline 

called retrieve and re-rank. The first stage, retrieval, extracts a subset of N most 

relevant documents. Second stage, re-ranking, can be defined as a problem of 

sorting a subset of N most relevant documents obtained during retrieval stage, 

in order to provide the user with more accurate search result. 

 

1.1.3 Semantic Search 

Classic methods of retrieval and re-ranking are based on statistical matching 

of word occurrences between documents and queries, whereas more recent 

approaches are based on an idea of semantically matching document and query 

using vector representations. A re-ranking pipeline that uses methods based on 

semantic matching can be called Semantic Search (or Neural Search). It is 

based on the idea that any piece of text can be represented as an N-dimensional 

real vector, and a simple function, such as cosine similarity can be used to 

determine a grade of semantic similarity between two given pieces of text (or 

other types of information).   

 

1.1.4. Symmetric & Asymmetric Semantic Search 

Semantic search is sensitive to a ratio between length of document and 

length of query, as well as whether query and document can be potentially used 

interchangeably, that’s why semantic search can be symmetric or asymmetric. 

Symmetric semantic search may consist of query and title of a web article with 

a similar name, for example for a query “How to install pythorch on M1 Mac?” 

the good result would be an article called “Everything you need to know about 

installing pytorch on M1 Mac”. Asymmetric semantic search typically consists 
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of a short question-like query (“How to remove a malware?”) and a longer 

answer answering the question “To remove a malware, try scanning your 

computer with Defender utility. In case it does not find anything, start your 

computer in Safe mode …”. 

 

1.2. Classic retrieval approach. BM-25 

 Due to speed and computational limitations in retrieval problem it is 

important to understand classic retrieval approaches, as it is still a widespread 

practice to use them for initial retrieval of a substantial number (typically, top-

1000) most relevant documents using faster, simpler algorithms, and then using 

more advanced, neural based approaches for further re-ranking. BM-25 (Best-

Matching 25)[3] is an industry-standard baseline algorithm for initial retrieval 

task. 

 BM-25 is based on certain important assumptions about the documents and 

terms (normalized words) that documents consist of: 

1. Words in documents and query are tokenized (split by punctuation 

characters in most naïve implementation), stemmed (reduced to their 

roots, i.e., ‘cooker, cooking, cooked -> cook’), lemmatized (reduced verb 

forms to base form, i.e., `was, were -> be`). Stop words (‘in’, ‘at’, etc.)  

are removed using a pre-defined list. 

Exact implementations for each step may be different. 

2. In order to understand term frequencies, extracted terms are used to build 

an inverted index. Inverted index is a data structure that contains 

documents metadata and statistics of term frequencies and document 

frequencies.  
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3. Terms frequency 𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 can be viewed as a table where each document 𝑑𝑑 is 

represented as a column and each term 𝑡𝑡 as a row. Each table value 𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 

represents number of times a term 𝑡𝑡 appears in a document 𝑑𝑑. 

Storing full term-frequency table is inefficient due to the sparsity – thus, 

inverted index is built – a table, where each term contains a list of 

documents it appears in and corresponding term frequency in the doc 

𝑑𝑑𝑑𝑑𝑑𝑑 − [𝑑𝑑1: 5,𝑑𝑑30: 3] 

(Term 𝑑𝑑𝑑𝑑𝑑𝑑 appears five times in doc 𝑑𝑑1, three times in doc 𝑑𝑑30) 

Using the raw frequencies is not the best solution, as it would give a 

popular term too high weight yet produce irrelevant result. (i.e., one doc 

can contain word “machine” 100 times yet be irrelevant to the query 

“machine learning”). Logarithm is used to lower the weight of the terms: 

𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑) = log�1 + 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑� 

4. Document frequency 𝑑𝑑𝑓𝑓𝑡𝑡 represents how in many documents term 𝑡𝑡 

appears. Inverse document frequency is typically defined as: 

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = log
|𝐷𝐷|
𝑑𝑑𝑓𝑓𝑡𝑡

 

Where |𝐷𝐷| is a number of documents in a collection, and log is used to 

get a smaller range of values. 

5. To take into account both the term frequency (how often term is 

represented in a particular document) and document frequency (how 

many documents contain particular term), TF-IDF score was introduced: 

𝑇𝑇𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑,𝑞𝑞) = � 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞  

 = � log�1 + 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑� log�
|𝐷𝐷|
𝑑𝑑𝑓𝑓𝑡𝑡

�
𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞  
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Such a function would downgrade scores for frequently used words and 

give a high score for rare words that appear often in a certain document. 

Scores of TF-IDF are used as inputs for different NLP and retrieval tasks.  

The problem of using raw TF-IDF is that despite introduction of 

logarithm, TF-IDF weights are always increasing with increasing term 

frequency, which leads to more unbalanced and inaccurate results. 

To deal with always increasing weights and provide a function that would 

saturate with increasing term frequency, BM-25 (ref!) was introduced. 

Same as TF-IDF, BM-25 is based on 𝑡𝑡𝑡𝑡 and 𝑑𝑑𝑓𝑓𝑡𝑡, takes into account 

document length 𝑑𝑑𝑑𝑑 and uses additional hyperparameters 𝑘𝑘 and 𝑏𝑏 that can be 

optimized for a particular dataset: 

𝐵𝐵𝐵𝐵25(𝑞𝑞,𝑑𝑑) = ∑ 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑

𝑘𝑘�(1−𝑏𝑏)+𝑏𝑏 𝑑𝑑𝑙𝑙𝑑𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑 �

∗ log �|𝐷𝐷|−𝑑𝑑𝑓𝑓𝑡𝑡+0.5
𝑑𝑑𝑓𝑓𝑡𝑡+0.5 

�𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞    

Hyperparameter 𝑏𝑏 is responsible for normalizing document length, and 𝑘𝑘 

controls scaling of term frequency.  

1.2 < 𝑘𝑘 < 2 and 0.5 < 𝑏𝑏 < 0.8 are frequently used ranges for the 

hyperparameters. 

BM-25 is a basis for most search engines used today.  

In our solution, we use BM-25-Anserini implementation[10]. 

 

1.3 Evaluation Metrics for re-ranking 

Evaluation metrics are another crucial aspect in estimation of the quality of 

different retrieval systems. 

An important concept in re-ranking problem is relevance. It can be assumed 

that the document is relevant or not relevant to the query (a.k.a., binary 
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relevance). However, a more practical approach would be to assign grades of 

relevance to a document. This approach is called utility-based relevance and 

relevance can be represented either as a floating point or a fixed set of classes. 

Commonly, relevance can be graded as follows: 

 

Text label Description Label 

Irrelevant Document does not provide any relevant 

information related to the query. 

0 

Relevant Document provides minimal relevant 

information related to the query. 

1 

Highly relevant Document provides substantial 

information related to the query. 

2 

Perfectly relevant Document is dedicated to the query and 

can be displayed as a top result in a 

search engine. 

3 

Table 1.1 – Common TREC Relevance Labels 

Binary relevance can be evaluated with metrics such as MRR and MAP, 

most important utility relevance metric is NDCG. 

As the problem is often setup to re-rank certain subset of top retrieved documents, 

it is commonly used to notate metrics with cutoff @k, i.e., NDCG@10 means that 

we calculate the metric only for ten top resulting documents.  
 

1.3.1 MRR@K 

Mean Reciprocal Rank, or MRR[11], is a metric that evaluates test results 

based on where the first relevant item is placed. For a single query,  
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𝑅𝑅𝑅𝑅 =
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

where rank is a position of highest ranked answer, ranged from 1 to 𝑁𝑁, 

where 𝑁𝑁 is the number of results for a given query. For multiple queries 𝑄𝑄, 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

|𝑄𝑄|�
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖

|𝑄𝑄|

𝑖𝑖=1

  

MRR assumes that the user is interested only in the first most relevant 

document, which may be true in applications and scenarios. 

 

1.3.2 MAP@K 

Mean Average Precision, or MAP[12], is a metric that evaluates retrieval 

system based on an assumption that the user is interested in each relevant 

document and is willing to judge the system based on how it performs on 

multiple queries. 

Firstly, let’s remind what precision metric stands for. Given classification 

task with lists of binary labels and predictions (0s and 1s, negatives and 

positives), we define precision as a share of the correctly identified 1s among 

all items labeled as 1. 

Pr =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓
 

Where 𝑡𝑡𝑡𝑡 stand for positive labels that were matched as positive, 𝑓𝑓𝑓𝑓 stand 

for positive labels that were matched as negative. 

Average precision can be defined as follows: 

𝐴𝐴𝐴𝐴(𝑞𝑞) =
∑ 𝑃𝑃(𝑞𝑞)@𝑖𝑖 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)𝑖𝑖𝑘𝑘
𝑖𝑖=1

|𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)|  
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where 𝑞𝑞 is a given query, 𝑃𝑃(𝑞𝑞)@𝑖𝑖 is a precision of 𝑞𝑞 after the first 𝑖𝑖 

documents, 𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)𝑖𝑖 stands for binary relevance of doc at position 𝑖𝑖, and 

|𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)| is a total number of relevant documents for the query. 

MAP means AP over multiple queries: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄) =
1

|𝑄𝑄| �𝐴𝐴𝐴𝐴(𝑞𝑞)
𝑞𝑞∈𝑄𝑄

 

MAP gives more focus to errors associated with wrong documents that 

appear high in the re-ranked list. Its main downside lies in inability to work 

with non-binary relevance ratings. 

 

1.3.3 NDCG@K 

  Non-discounted cumulative gain (NDCG)[13] also has emphasis on 

correctness of documents high in the ranking list. An idea behind NDCG is that 

the most relevant items should be first, followed by somewhat relevant items 

and the least relevant items should be last in re-ranked list of documents. 

Given that each document has ranked position 𝑖𝑖, 𝑖𝑖 ∈ [1;𝑛𝑛]  and relevance 

value 𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑) (typically, 0-3), Discounted Cumulative Gain (DCG) can be 

defined as follows:  

𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷) = �
𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑)

log2(𝑖𝑖 + 1)
𝑑𝑑∈𝐷𝐷

  

Given a set of queries 𝑄𝑄, we can define 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑄𝑄) =
1

|𝑄𝑄|
�

𝐷𝐷𝐷𝐷𝐷𝐷(𝑞𝑞)
𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞))

𝑞𝑞∈𝑄𝑄

 

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)� stands for the best documents ranking possible. 

NDCG has advantage over MRR, as it gives less discounts to documents that 

appear lower in ranking list. 
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2. Using Language Models in semantic search, re-ranking and 

retrieval. GPT-3 and OPT 

Pre-trained language models built using transformer-based architecture[1] 

caused a paradigm shift in Natural Language Processing. Instead of training 

separate model from scratch for each task, industry moved towards an idea that 

every task can potentially be solved with a “universal” language model. In order 

to prepare such a model, one has to train a model that learns representations for 

words and sentences, with similar words being “located nearby” and opposite 

words being “far away from each other”. 

This concept is called word embeddings and it implies that each word can be 

encoded as a real-value vector in N-dimensional space.  

The first architecture under the paradigm of pre-training was BERT[2]. Its 

success increased effort towards training a single transformer-based model 

capable of solving NLP tasks in few-shot, or even zero-shot manner, and 

influenced the appearance of GPT-3[5], that showed phenomenal results and 

revolutionized the field even further. 

Re-ranking problem also benefited from appearance of pre-trained language 

models. Quality vector representations for queries and documents led to 

introduction of different new solutions [7], [14] that beat previous approaches by a 

margin. 

Once GPT-3 appeared, it demonstrated huge gains over BERT in a variety of 

tasks. Re-ranking is no exception, and as it was demonstrated[6], GPT- has huge 

potential in re-ranking task. As more open-source GPT-3 implementations are 

appearing, the focus of this paper is on one of them, OPT[8]. OPT is an 

implementation of GPT-3 with minor architectural changes. OPT models vary 

in size, from 125M to 175B. 
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2.1 GPT network architecture and related concepts 

Language modelling is a machine learning task of predicting words given a 

text sequence. GPT presents very effective architecture for this task. As for input, 

it operates on parts of words, known as tokens. Input layer consists of token 

embeddings (vocabulary size, hidden dim) and positional encoding vector that 

explains the model words position in the texts[15]. 

A main component of GPT is a decoder block, that consists of masked self-

attention, followed by feed forward neural network. The concept behind self-

attention lies in constructing a probability distribution for each token in a particular 

sequence given its position. Queries, Keys and Value vectors are a basis of self-

attention. Query vector represents a given token in order to score it against other 

tokens in a sequence, Keys vectors represents other tokens, and Values correspond 

to word representations. Queries and Key vectors are then multiplied and summed 

in order to get vector of scores of what can be interpreted as a “correlation matrix” 

between words.  

In order to treat long sequences more effectively, separate parts of keys-

queries-values vectors are split, scored separately and gathered as separate 

attention-heads. Merged attention heads are then passed towards a projection layer 

so that it could be processed by a feed-forward layer in order to get output of the 

input shape and feed it to the next decoder block. 

2.2 Interaction with GPT. Prompts 

The main advantage of pre-trained GPT models is the ease of interaction. 

Once model is trained, user different NLP tasks can be solved by feeding text 

inputs into the network. In order to make the model “solve” a particular NLP task, 

a correct input pattern must be designed. Input patterns are called prompts, and the 
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process of selecting a correct pattern is called prompt engineering. Prompts are 

divided into zero-shot and few-shot. Zero-shot means that the model is not 

provided with any examples, and few-shot means that we give some examples 

during inference step. For example, a translation task may be approached in zero-

shot manner via prompt like: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ \𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: < 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >\𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:  

Few-shot prompt may look like: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ: 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 → 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓\𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 → 𝑣𝑣𝑣𝑣𝑣𝑣\𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑑𝑑 → 

To fit a model to a new task or to make it work in zero-shot for a particular 

prompt model may be trained further using some new data. This process is called 

fine-tuning and is a more traditional approach of adopting language models for 

new tasks. 

2.3. GPT and re-ranking. Zero-shot re-ranking solution 

 Prompt-engineering is the easiest, “naïve” way to use GPT in re-ranking 

task. A prompt can be any string that contains slots for document and query, 

prompt options are covered in Section 3.2.  

Given a query and a set of documents, the most suitable document to the query is: 

𝑑𝑑∗ = argmax
𝑑𝑑∈𝐷𝐷  

𝑃𝑃(𝑑𝑑|𝑞𝑞) 

Using Bayes theorem, 

𝑑𝑑∗ = argmax
𝑑𝑑∈𝐷𝐷  

𝑃𝑃(𝑑𝑑|𝑞𝑞) = argmax
𝑑𝑑∈𝐷𝐷  

𝑃𝑃(𝑞𝑞|𝑑𝑑)
𝑃𝑃(𝑞𝑞)

= argmax
𝑑𝑑∈𝐷𝐷  

𝑃𝑃(𝑞𝑞|𝑑𝑑)𝑃𝑃(𝑑𝑑) 

Thus, 𝑃𝑃(𝑞𝑞|𝑑𝑑) can estimate how “good” a query fits a document. As GPT is auto 

regressive, it can predict 𝑃𝑃(𝑞𝑞|𝑑𝑑) by placing 𝑑𝑑 to the left part of the prompt and 

𝑞𝑞 to the right part of it.  Given tokenized input sequence (prompt) 𝑝𝑝 of length 
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𝑛𝑛, 𝑝𝑝 = (𝑝𝑝1,..,𝑖𝑖−1, 𝑞𝑞𝑖𝑖,…,𝑛𝑛) with query tokens 𝑞𝑞𝑖𝑖,…,𝑛𝑛 and prompt tokens (including 

document) 𝑝𝑝1,…,𝑖𝑖−1,   

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = 𝑃𝑃(𝑞𝑞|𝑑𝑑) = � log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑘𝑘))
𝑛𝑛

𝑘𝑘=𝑖𝑖

 

Documents can be sorted by the calculated scores. 

 

 
 

Figure 1 – Naïve approach for GPT-based re-ranking 

 

2.4 Cross-Encoder and Bi-Encoder models 

Scoring approach described in Section 2.3 may be useful for offline usage or 

quick prototyping but has its own limitations in actual retrieval and re-ranking 

pipeline. Its performance may be increased, its main disadvantage is slow speed 

and number of comparisons required to rank multiple query-documents sets. 

Like other transformers used for the re-ranking task, GPT out of the box 

performance can be improved via making minor architecture changes and fine-

tuning slightly changed model on datasets of document-query pairs.  
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2.4.1 Bi-Encoder 

Bi-Encoder approach is based on an intuitive idea to cover the whole 

retrieval and re-rank pipeline by calculating similarity between vector 

representations (embeddings) of documents and queries. Using document 

representation as a vector is useful for faster retrieval, as document vectors may 

be indexed and compared against queries in a real-time setting 

The first step in Bi-Encoder setting is to get a single embedding vector for 

the input query/document, that would have same dimensionality regardless of 

the sequence length. In order to achieve that, Bi-Encoder uses pooling operation 

between LM output vectors for each token in an input sequence. Based on the 

architecture of the used LM, different types of pooling may be used. 

Given document and query embeddings, one can rank documents by using 

cosine similarity. 

In order to get better representations, Bi-Encoder may be fine-tuned, as 

described in [6][16].  

 

2.4.2 Cross-Encoder 

Cross-Encoder is a classifier or regressor built on top of a language model. 

Given a query-document pair, it calculates a relevance score (usually, in range 

[0,1]. Before usage, Cross-Encoder is fine-tuned on datasets of triplets (query, 

document, relevancy), where relevancy is normalized to a desired score range. 
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Figure 2 Cross-Encoder architecture 
 

Cross-Encoder is the most accurate existing method for re-ranking. Its main 

downside, however, is that it doesn’t store vector representations, and is not fast 

enough to score millions of document-query pairs in real time. 

Search systems that rely on neural networks only typically use Bi-Encoder 

for retrieval step (as document representations are already stored) and Cross-

Encoder for re-ranking step on a narrow subset of pre-selected documents. 
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3. Practical research 

 Research part of the paper is focused on OPT[8]. This paper presents first 

OPT evaluation on BEIR benchmark[9] using different prompts, as well as trains 

first GPT-3 based Cross-Encoder, also using OPT. The OPT Cross-Encoder (OPT-

125M) outperforms classical approach (BM-25), previous-generation SOTA[7] as 

well as out-of-the box Naïve method of re-ranking. The last part of the research is 

focused on improving performance of smaller OPT-model (OPT-125M) using 

various knowledge distillation techniques, such as self-attention distribution 

transfer.  

 

3.1. Training dataset: MS MARCO Passage 

Microsoft Machine Reading Comprehension is a dataset focused on passage 

ranking, question answering and machine reading comprehension. Introduced 

by Microsoft as a part of TREC-2019 challenge, it consists of 8.81million 

query-document pairs. 

 During experiments, a subset of 2 million query-document pairs from train 

set were used for fine-tuning experiments, and eval subset was used as a part of 

BEIR benchmark. 

 

  3.2 Benchmark for retrieval and re-ranking: BEIR 

 In order to compare quality of different retrieval systems it requires 

evaluating them on different tasks and benchmarks. Evaluation in IR can be 

done offline or online, where online evaluation is done by doing A/B tests and 

getting feedback from the users, while offline evaluation can be done using 
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fixed test collections of queries (can be handcrafted or sampled from real-world 

user queries), documents (task-specific) and judgements about query-document 

relevance.  

Most commonly, re-ranking benchmarks are datasets from TREC[17] and 

NTCIR[18] test collections, which are updated yearly by the community of the 

two largest conferences related to Information Retrieval.  

However, this paper uses a recently developed benchmark called BEIR 

(Benchmarking IR). BEIR is an evaluation benchmark that consists of 19 

publicly available datasets from 10 different text retrieval tasks. [add 

reference!]. BEIR was specifically designed to introduce more accurate 

representation of real-world usage for re-ranking models and is now widely 

used to benchmark different re-ranking approaches and models[6].  Apart from 

being set in different domains, such as BIO-Medical IR, Question Answering, 

Tweets-Retrieval, Fact Checking, Citation Prediction, etc., BEIR datasets differ 

in number of test document-query pairs, document-query ratio, and, most 

importantly, use different grades of relevancy, which allows researchers to 

identify possible shortcomings in particular model during training and 

evaluation stages. 

Note that in this work we didn’t use Signal-1M, TREC-News, Bioasq and 

Robust-04 datasets, as they required separate enquiries for access. That is why 

benchmarked is marked as BEIR* in results section.  

The following table provides a short statistic of datasets presented in BEIR 

benchmarks: 
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Task Dataset Relevancy Test Queries Test Docs 

Passage-Retrieval MS Marco Binary 6980 8841823 

Bio-Medical IR TREC-COVID 3-level 50 171332 

Bio-Medical IR NFCorpus 3-level 323 3633 

Bio-Medical IR BioASQ Binary 500 14914602 

Question Answering NQ Binary 3452 2681468 

Question Answering HotPotQA Binary 7405 5233329 

Question Answering FiQA-2018 Binary 648 57638 

Tweets-Retrieval Signal-1M (RT) 3-level 97 2866316 

News Retrieval TREC-NEWS 5-level 57 594977 

News Retrieval Robust04 3-level 249 528155 

Argument Retrieval ArguAna Binary 1406 8674 

Argument Retrieval Touché-2020 3-level 49 382545 

Duplicate-Question Retrieval CQADupStack Binary 13145 457199 

Duplicate-Question Retrieval Quora Binary 10000 522931 

Entity-Retrieval DBPedia 3-level 400 4635922 

Citation-Prediction SCIDOCS Binary 1000 25657 

Fact Checking FEVER Binary 6666 5416568 

Fact Checking Climate-

FEVER 

Binary 1535 5416593 

Fact Checking SciFact Binary 300 5183 

Table 3.1 - BEIR datasets statistics 

 

3.2. Prompt Engineering and OPT evaluation 

In order to use OPT on re-ranking task, we had to start with selecting the 

most suitable prompt that would unlock OPT potential and show good results. 

Based on [6], three prompts were chosen for evaluation OPT on BEIR dataset 

using method described in Section 2.3. Additionally, GPT-NEO [19] was also 
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evaluated in order to compare performance differences between different GPT 

implementations.  

Selected prompts were: 

Number Text 

Prompt 1 Documents are searched to find matches with the same content.\nThe 
document "{doc}" is a good search result for "{query} 

Prompt 2 Documents are searched to find matches with the same 
content.\nDocument: "{doc}"\n\nThe above document is a good match 
for the query: "{query} 

Prompt 3 The selected text is:\n{doc}\n\n\nThe relevant title is:\n{query} 

Table 3.2 – Prompts list 
The table below illustrates used prompts and their respective mean BEIR* 

NDCG@10 scores: 
Prompt Network NDCG@10 

Prompt 1 OPT-125M 0.3998 

Prompt 2 OPT-125M 0.4084 

Prompt 3 OPT-125M 0.4065 

Prompt 1 OPT-350M 0.4098 

Prompt 2 OPT-350M 0.4137 

Prompt 3 OPT-350M 0.4116 

Prompt 1 GPT-NEO-125M 0.3137 

Prompt 2 GPT-NEO-125M 0.3153 

Prompt 3 GPT-NEO-125M 0.3102 

Table 3.3 – Zero-shot evaluation results  
As may be seen, OPT-125M beat GPT-NEO-125M out of the box with all 

three prompts. OPT-350M slightly outperforms OPT-125M and prompts 1 and 3 

showed opposite results in OPT to those under GPT-NEO. Prompt 2 showed better 

results among three options; thus, further experiments were done using it for input 

sequences. 
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3.3. Training a Cross-Encoder  

Easiest way to improve OPT performance out of the box was to train Cross-

Encoder. In order to do so, we used Prompt-1. Architecturally, a linear layer 

with a sigmoid activation function was placed on top of the output GPT layer. 

Input dim of linear layer equals hidden dim of the model (768 for OPT-125M, 

1024 for OPT-350M). Cross-Encoder was trained on data described in Section 

3.1 and Mean-Squared Error was used as a loss function. AdamW was used as 

an optimizer, with learning rate set to 1e-5 and weight decay of 0.001. Fine-

tune took exactly one epoch and improved OPT-125M performance by ~2%. 

Also, GPT-NEO-125M cross-encoder was trained, but it showed worse results 

that out-of-the box model, which requires separate investigation. 

3.3. Improving OPT performance: Knowledge Distillation 

Another way to improve performance of OPT-125M is to fine-tune it in a 

way that it would mimic a behavior of bigger models. This technique is called 

Knowledge distillation. Under this setting, one model is trained using 

representations or labels generated by a more capable model. The model that is 

being trained is called a student, and a more powerful model that student learns 

to imitate is called a teacher. The motivation behind these experiments lies in an 

idea to create an OPT version of mini-LM-v2, a BERT-based SOTA of fast yet 

highly capable retrieval & re-rank model. 

Training data and optimizer settings were used the same as in Cross-Encoder 

experiments. Knowledge distillation experiments were performed using OPT-

350M as a teacher and OPT-125M as a student. Kullback-Leibler divergence [20] 

was used as a loss function. 
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3.3.1. Logits distribution transfer 

The simplest way to perform knowledge distillation is to make student 

model imitate logits distribution of teacher model. In order to do so, KL-

divergence between student and teacher models is used as a loss function for a 

student: 

𝐿𝐿 = 𝐷𝐷𝐾𝐾𝐾𝐾(log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑇𝑇)||log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑆𝑆) 

 
Figure 2 

 

3.3.2. Self-attention relation distillation 

A more complex approach is to make a model imitate self-attention 

mechanism. The selected method is called self-attention relation distillation and 

was successfully used in [7]. As our models do not differ in size that greatly, we 

used outputs from corresponding last attention layers of student and teacher 

models. Loss function can be defined: 

𝐿𝐿 = 𝐿𝐿𝑄𝑄 + 𝐿𝐿𝐾𝐾 + 𝐿𝐿𝑉𝑉 

Where ∀𝑊𝑊 ∈ [𝑄𝑄,𝐾𝐾,𝑉𝑉]  𝐿𝐿𝑊𝑊 is a KL divergence between (K-K, V-V or Q-Q) scaled 

dot-product matrices, which represent relations between different parts of attention 

mechanism. 
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𝐿𝐿𝑊𝑊 =
1

𝐴𝐴𝑟𝑟|𝑥𝑥|
��𝐷𝐷𝐾𝐾𝐾𝐾(𝑅𝑅𝑎𝑎,𝑡𝑡

𝑇𝑇 ||𝑅𝑅𝑎𝑎,𝑡𝑡
𝑆𝑆 )

𝑥𝑥

𝑡𝑡=1

𝐴𝐴𝑟𝑟

𝑎𝑎=1

 

Where |𝑥𝑥| stands for sequence length, 𝐴𝐴𝑟𝑟 – number of student attention heads, 𝐷𝐷𝐾𝐾𝐾𝐾 

is a KL-divergence,𝑙𝑙,𝑚𝑚 mean and  

𝑅𝑅𝑎𝑎,𝑡𝑡
𝑋𝑋 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(

𝐴𝐴𝑎𝑎𝑋𝑋𝐴𝐴𝑎𝑎𝑋𝑋

√𝑑𝑑𝑟𝑟
) 

is a self-attention relation between (K-K, V-V or Q-Q) of teacher (T) or student (S) 

model. 𝑑𝑑𝑟𝑟 represents number of student attention heads.  

(K-K, V-V, Q-Q) are multi-head relation vectors that are aggregated between 

attention heads, concatenated, split if number of teacher model attention heads is 

higher than student attention head, and then multiplied via dot product.  

3.4. Results comparison table 

 N
D

C
G

*@
1 

N
D

C
G

*@
10

 

N
D

C
G

*@
10

0 
Naïve Baseline (BM-25) 0.2175 0.228 0.2816 

Transformer SOTA (cross-encoder/ms-

marco-MiniLM-L12-v2) 

0.3317 0.3703 0.4041 

GPT-NEO-125M, zero-shot 0.2925 0.3153 0.3713 

OPT-125M, zero-shot 0.3751 0.4084 0.4408 

OPT-125M Cross-Encoder 0.3915 0.4233 0.4619 

OPT-125M-distilled-logits-transfer 0.3516 0.3772 0.3819 

OPT-125M-distilled-attention-transfer 0.3867 0.4106 0.4315 

OPT-350M, zero-shot 0.3911 0.4137 0.4578 

Table 3.4 – summary comparison of experiment results 
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As mentioned before, results are measured on a subsection of BEIR. 

Evaluation metric is NDCG, NCDG* stands for mean results over present 

datasets. 

 

3.5. Results 

OPT evaluation demonstrated that it outperforms its GPT-NEO competitor 

by a huge margin with all experimented prompts. Moreover, with a correct 

prompt it outperforms BERT-based SOTA solution out of the box.  

In terms of model sizes, there is little difference between OPT-125M and 

OPT-350M in zero-shot performance and using OPT-350M as a teacher doesn’t 

add a lot of performance to OPT-125M.  

Logits transfer experiment failed and degraded model performance, while 

self-attention relation transfer boosted out-of-the box performance, which lets a 

room for improvement and further experiments in order to find better 

knowledge-distillation setting. It is worth trying two-step distillation, from 1.3B 

model to 350M and from 350M to 125M. 

Training a Cross-Encoder was the most successful experiment, as it easily 

outperformed all the competitive solutions. 

It is worth noting that results are heavily reliant on prompts, and a different 

prompt may heavily influence the resulting benchmark numbers. 

Overall, all neural-based approaches outperform BM-25 baseline, though, 

may be much slower. 
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Conclusion 

In this work we have discusses semantic search  tasks based on neural 

networks of GPT-3 architecture. The work introduced fresh GPT-3 

implementation, OPT, to the search problem of re-ranking. In the work, we 

chose the most suitable input prompt for re-ranking with OPT by evaluating 

OPT on BEIR benchmark in zero-shot mode with different input prompts. The 

best proposed prompt let OPT outperform both its predecessor (sBERT) and 

other GPT-3 implementation (GPT-Neo) by a significant margin, which showed 

its usability for re-ranking out of the box. In order to improve OPT zero-shot 

performance in re-ranking for smaller OPT model we have conducted 

experiments under different knowledge distillation settings by using logits 

distribution transfer and self-attention relation distillation. The experiments 

were rather successful, as distilled smaller model showed similar performance 

to the larger model. Inspired by OPT-results in zero-shot, the work proposed 

OPT-based Cross-Encoder model that outperforms SOTA Cross-Encoders. 

Obtained results demonstrate utility of using large pre-trained language models 

in tasks related to neural search and confirm the validity and prospects of using 

GPT in re-ranking task. 

Further work would involve building an OPT model that could maintain re-

ranking quality of larger OPT models, while surpassing them in faster inference 

speed and smaller model size. 
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