
Міністерство освіти і науки України

Національний університет «Києво-Могилянська академія»

Факультет інформатики

Кафедра математики

Магістерська робота
освітній ступінь – магістр

на тему: «Семантичний пошук на основі представлень, отриманих за

допомогою нейронних мереж»

Виконав: студент 2-го року навчання,

освітньо-наукової програми

«Прикладна математика»,

спеціальності 113 Прикладна математика

Крошин Олександр Андрійович

Керівник: Швай Н.О.

кандидат фіз.-мат. наук, доцент

Рецензент _______________________
(прізвище та ініціали)

Кваліфікаційна робота захищена

з оцінкою ____________________

Секретар ЕК ____________

«____» ____________2022 р.

Київ – 2022

2

Table of contents
Анотація ... 3

Annotation .. 4

Introduction .. 5

1. Semantic search. Document Re-ranking problem, an overview .. 7
1.1. Query-Document matching, Semantic Search, Retrieval and Re-rank. ... 7

1.1.2 Retrieval and Re-ranking ... 7

1.1.3 Semantic Search ... 8

1.1.4. Symmetric & Asymmetric Semantic Search ... 8

1.2. Classic retrieval approach. BM-25 ... 9

1.3 Evaluation Metrics for re-ranking ... 11

1.3.1 MRR@K .. 12

1.3.2 MAP@K .. 13

1.3.3 NDCG@K .. 14

2. Using Language Models in semantic search, re-ranking and retrieval. GPT-3 and OPT ... 15
2.1 GPT network architecture and related concepts .. 16

2.2 Interaction with GPT. Prompts ... 16

2.3. GPT and re-ranking. Zero-shot re-ranking solution ... 17

2.4 Cross-Encoder and Bi-Encoder models .. 18

2.4.1 Bi-Encoder ... 19

2.4.2 Cross-Encoder .. 19

3. Practical research .. 21
3.1. Training dataset: MS MARCO Passage ... 21

3.2 Benchmark for retrieval and re-ranking: BEIR ... 21

3.2. Prompt Engineering and OPT evaluation .. 23

3.3. Training a Cross-Encoder .. 25

3.3. Improving OPT performance: Knowledge Distillation .. 25

3.3.1. Logits distribution transfer .. 26

3.3.2. Self-attention relation distillation .. 26

3.4. Results comparison table ... 27

3.5. Results .. 28

Conclusion .. 29

References .. 30

3

Анотація

Магістерська робота присвячена задачі семантичного пошуку,

зокрема, задачі ранжування документів за запитами користувачів. В роботі

розглядається розв’язок задачі ранжування за допомогою нейронних

мереж архітектури GPT-3. В роботі пропонується розв’язувати цю задачу

за допомогою імплементації GPT-3 під назвою OPT.

Розглядаються різні варіанти розв’язку задачі без додаткового

тренування, зокрема, використання різних форматів вхідних текстів. В

роботі пропонується модель Cross-Encoder на основі OPT, що демонструє

кращі результати роботи на прийнятих в індустрії тестах в порівнянні з

існуючими рішеннями, що вважаються стандартами. Розглядаються

експерименти з дистиляцією моделей OPT задля подальшого покращення

їхніх результатів в задачах семантичного пошуку.

Робота складається з трьох розділів. Перший, теоретичний розділ

присвячений постановці задачі ранжування, огляду існуючих метрик та

класичних підходів. Другий розділ описує використання нейронних мереж

в задачі ранжування а також демонструє рішення, побудовані на базі

моделей архітектури GPT-3. Третій, практичний розділ присвячений

побудові та тренуванню Cross-Encoder на основі моделей OPT,

експериментам з дистиляцією моделей та обробці результатів. Результати

експериментів демонструються у висновку.

4

Annotation

This master’s thesis is dedicated to semantic search problem. It is focused

on the task of re-ranking documents based on user query, particularly, by

solving it via applying neural networks based on GPT-3 architecture. This work

introduces GPT-3 implementation, OPT, to the re-ranking task, proposes best

prompt for its zero-shot evaluation, introduces OPT-based cross-encoder that

outperforms previous BERT-based SOTA approaches by a margin and

experiments with different knowledge-distillation settings in order to

additionally boost performance of smaller model.

The work is split into three sections. The first section sets theoretical

background of re-ranking problem, reviews metrics and industry-standard

approaches. Second section explains usage of neural networks in semantic

search and describes different solutions to re-ranking problem using networks

of GPT-3 architecture. The third, experimental section, covers training an OPT-

based Cross-Encoder, describes knowledge-distillation experiments and

evaluates proposed solutions. Results of the experiments are discussed in

conclusion section. All the used literature is in the References section.

5

Introduction

Recent developments in Natural Language Processing have greatly

impacted its neighboring domains such as Information Retrieval. Appearance of

large pre-trained language models[1] has changed industry standards and

approaches. Text search is among the areas that were highly impacted. This

work focuses on text search problem known as re-ranking, where a list of

documents has to be sorted by relevance given a specific user query.

Introduction of BERT[2] led to appearance of high-quality vector

representations of search queries and document collections that significantly

boosted search performance and let to evolution of search systems. Instead of

relying on classic solution based on BM-25 algorithm[3], newer search pipelines

use high-quality input representations that only a pre-trained language model

can create. However, BM-25 didn’t become obsolete, as indexing enormous

collections remains a significant challenge.

 BERT influenced the appearance of two different main neural-based

approaches to re-ranking task that can be classified as bi-encoder and cross-

encoder[4]. Bi-Encoder approach lies in creating separate vector representations

(embeddings) for documents and queries and ranking documents using cosine

similarity. Cross-Encoder is a classifier built on top of BERT that uses

document-query pair as a single input string and outputs their grade of

relevance.

Introduction of GPT-3[5] allowed solving NLP problems out of the box

without additional training, and re-ranking task is among these tasks.

Muennighoff[6] demonstrated GPT-3 great out-of-the box performance in re-

ranking, comparable to SOTA BERT-based solutions[7]. Adopting SOTA

6

approaches to GPT architecture may lead to superior models for semantic

search tasks, which is the main motivation of this paper.

The aim of this paper is to utilize recently released GPT-3

implementation OPT[8] for re-ranking problem, create best zero-shot pipeline

experimenting with various input prompts, propose OPT-based cross-encoder

that outperforms previous state-of-the-art solutions on benchmarks such as

BEIR[9] and explore possibilities of creating a distillated version of OPT that

would outperform SOTA in both speed and precision.

First part of the paper is focused on an overview of re-ranking problem

itself, description of industry-standard solutions and introduction of necessary

benchmarks and metrics. Second part provides an overview of GPT network

architecture, describes how GPT can be used in a problem of re-ranking,

introduces a cross-encoder structure and a variety of methods and techniques

that can be used for re-ranking problem. The final, third part, describes training

datasets, discusses training of a GPT-based cross-encoder, applies various

knowledge distillation techniques required for expanding OPT zero-shot

capabilities and analyzes achieved results.

7

1. Semantic search. Document Re-ranking problem, an

overview

1.1. Query-Document matching, Semantic Search, Retrieval and Re-

rank.

The problem of matching similar pieces of information based on their

relevancy scourges the world of information technologies for decades.

Producing relevant search results is a crucial for any information-retrieval

system, with search itself being one of the greatest achievements of recent

decades.

One could broadly define search as the task of matching a piece of

information that the user wants to know with information that the user feeds

into the search system as a clue. This problem is also known as retrieval, and

given a system that operates a large collection of documents, it may be defined

as follows:

Given a set of documents D and a user query Q, a system must extract a

subset of N documents, semantically most relevant to the query.

A system that operates documents and queries may be called a retrieval

system.

1.1.2 Retrieval and Re-ranking

Retrieval systems have certain constraints. List of results must be formed

fast, so that the user gets results in real-time, and retrieval on a very large

collections of documents leads to inability to use most advanced methods of

8

search in real-time – indexing all the documents is too costly and time-

consuming. Industry overcame this problem by introducing a two-stage pipeline

called retrieve and re-rank. The first stage, retrieval, extracts a subset of N most

relevant documents. Second stage, re-ranking, can be defined as a problem of

sorting a subset of N most relevant documents obtained during retrieval stage,

in order to provide the user with more accurate search result.

1.1.3 Semantic Search

Classic methods of retrieval and re-ranking are based on statistical matching

of word occurrences between documents and queries, whereas more recent

approaches are based on an idea of semantically matching document and query

using vector representations. A re-ranking pipeline that uses methods based on

semantic matching can be called Semantic Search (or Neural Search). It is

based on the idea that any piece of text can be represented as an N-dimensional

real vector, and a simple function, such as cosine similarity can be used to

determine a grade of semantic similarity between two given pieces of text (or

other types of information).

1.1.4. Symmetric & Asymmetric Semantic Search

Semantic search is sensitive to a ratio between length of document and

length of query, as well as whether query and document can be potentially used

interchangeably, that’s why semantic search can be symmetric or asymmetric.

Symmetric semantic search may consist of query and title of a web article with

a similar name, for example for a query “How to install pythorch on M1 Mac?”

the good result would be an article called “Everything you need to know about

installing pytorch on M1 Mac”. Asymmetric semantic search typically consists

9

of a short question-like query (“How to remove a malware?”) and a longer

answer answering the question “To remove a malware, try scanning your

computer with Defender utility. In case it does not find anything, start your

computer in Safe mode …”.

1.2. Classic retrieval approach. BM-25

 Due to speed and computational limitations in retrieval problem it is

important to understand classic retrieval approaches, as it is still a widespread

practice to use them for initial retrieval of a substantial number (typically, top-

1000) most relevant documents using faster, simpler algorithms, and then using

more advanced, neural based approaches for further re-ranking. BM-25 (Best-

Matching 25)[3] is an industry-standard baseline algorithm for initial retrieval

task.

 BM-25 is based on certain important assumptions about the documents and

terms (normalized words) that documents consist of:

1. Words in documents and query are tokenized (split by punctuation

characters in most naïve implementation), stemmed (reduced to their

roots, i.e., ‘cooker, cooking, cooked -> cook’), lemmatized (reduced verb

forms to base form, i.e., `was, were -> be`). Stop words (‘in’, ‘at’, etc.)

are removed using a pre-defined list.

Exact implementations for each step may be different.

2. In order to understand term frequencies, extracted terms are used to build

an inverted index. Inverted index is a data structure that contains

documents metadata and statistics of term frequencies and document

frequencies.

10

3. Terms frequency 𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 can be viewed as a table where each document 𝑑𝑑 is

represented as a column and each term 𝑡𝑡 as a row. Each table value 𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡

represents number of times a term 𝑡𝑡 appears in a document 𝑑𝑑.

Storing full term-frequency table is inefficient due to the sparsity – thus,

inverted index is built – a table, where each term contains a list of

documents it appears in and corresponding term frequency in the doc

𝑑𝑑𝑑𝑑𝑑𝑑 − [𝑑𝑑1: 5,𝑑𝑑30: 3]

(Term 𝑑𝑑𝑑𝑑𝑑𝑑 appears five times in doc 𝑑𝑑1, three times in doc 𝑑𝑑30)

Using the raw frequencies is not the best solution, as it would give a

popular term too high weight yet produce irrelevant result. (i.e., one doc

can contain word “machine” 100 times yet be irrelevant to the query

“machine learning”). Logarithm is used to lower the weight of the terms:

𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑) = log�1 + 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑�

4. Document frequency 𝑑𝑑𝑓𝑓𝑡𝑡 represents how in many documents term 𝑡𝑡

appears. Inverse document frequency is typically defined as:

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = log
|𝐷𝐷|
𝑑𝑑𝑓𝑓𝑡𝑡

Where |𝐷𝐷| is a number of documents in a collection, and log is used to

get a smaller range of values.

5. To take into account both the term frequency (how often term is

represented in a particular document) and document frequency (how

many documents contain particular term), TF-IDF score was introduced:

𝑇𝑇𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑,𝑞𝑞) = � 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞

 = � log�1 + 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑� log�
|𝐷𝐷|
𝑑𝑑𝑓𝑓𝑡𝑡

�
𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞

11

Such a function would downgrade scores for frequently used words and

give a high score for rare words that appear often in a certain document.

Scores of TF-IDF are used as inputs for different NLP and retrieval tasks.

The problem of using raw TF-IDF is that despite introduction of

logarithm, TF-IDF weights are always increasing with increasing term

frequency, which leads to more unbalanced and inaccurate results.

To deal with always increasing weights and provide a function that would

saturate with increasing term frequency, BM-25 (ref!) was introduced.

Same as TF-IDF, BM-25 is based on 𝑡𝑡𝑡𝑡 and 𝑑𝑑𝑓𝑓𝑡𝑡, takes into account

document length 𝑑𝑑𝑑𝑑 and uses additional hyperparameters 𝑘𝑘 and 𝑏𝑏 that can be

optimized for a particular dataset:

𝐵𝐵𝐵𝐵25(𝑞𝑞,𝑑𝑑) = ∑ 𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑

𝑘𝑘�(1−𝑏𝑏)+𝑏𝑏 𝑑𝑑𝑙𝑙𝑑𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑡𝑡𝑓𝑓𝑡𝑡,𝑑𝑑 �

∗ log �|𝐷𝐷|−𝑑𝑑𝑓𝑓𝑡𝑡+0.5
𝑑𝑑𝑓𝑓𝑡𝑡+0.5

�𝑡𝑡∈𝑇𝑇𝑑𝑑∩𝑇𝑇𝑞𝑞

Hyperparameter 𝑏𝑏 is responsible for normalizing document length, and 𝑘𝑘

controls scaling of term frequency.

1.2 < 𝑘𝑘 < 2 and 0.5 < 𝑏𝑏 < 0.8 are frequently used ranges for the

hyperparameters.

BM-25 is a basis for most search engines used today.

In our solution, we use BM-25-Anserini implementation[10].

1.3 Evaluation Metrics for re-ranking

Evaluation metrics are another crucial aspect in estimation of the quality of

different retrieval systems.

An important concept in re-ranking problem is relevance. It can be assumed

that the document is relevant or not relevant to the query (a.k.a., binary

12

relevance). However, a more practical approach would be to assign grades of

relevance to a document. This approach is called utility-based relevance and

relevance can be represented either as a floating point or a fixed set of classes.

Commonly, relevance can be graded as follows:

Text label Description Label

Irrelevant Document does not provide any relevant

information related to the query.

0

Relevant Document provides minimal relevant

information related to the query.

1

Highly relevant Document provides substantial

information related to the query.

2

Perfectly relevant Document is dedicated to the query and

can be displayed as a top result in a

search engine.

3

Table 1.1 – Common TREC Relevance Labels

Binary relevance can be evaluated with metrics such as MRR and MAP,

most important utility relevance metric is NDCG.

As the problem is often setup to re-rank certain subset of top retrieved documents,

it is commonly used to notate metrics with cutoff @k, i.e., NDCG@10 means that

we calculate the metric only for ten top resulting documents.

1.3.1 MRR@K

Mean Reciprocal Rank, or MRR[11], is a metric that evaluates test results

based on where the first relevant item is placed. For a single query,

13

𝑅𝑅𝑅𝑅 =
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

where rank is a position of highest ranked answer, ranged from 1 to 𝑁𝑁,

where 𝑁𝑁 is the number of results for a given query. For multiple queries 𝑄𝑄,

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

|𝑄𝑄|�
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖

|𝑄𝑄|

𝑖𝑖=1

MRR assumes that the user is interested only in the first most relevant

document, which may be true in applications and scenarios.

1.3.2 MAP@K

Mean Average Precision, or MAP[12], is a metric that evaluates retrieval

system based on an assumption that the user is interested in each relevant

document and is willing to judge the system based on how it performs on

multiple queries.

Firstly, let’s remind what precision metric stands for. Given classification

task with lists of binary labels and predictions (0s and 1s, negatives and

positives), we define precision as a share of the correctly identified 1s among

all items labeled as 1.

Pr =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

Where 𝑡𝑡𝑡𝑡 stand for positive labels that were matched as positive, 𝑓𝑓𝑓𝑓 stand

for positive labels that were matched as negative.

Average precision can be defined as follows:

𝐴𝐴𝐴𝐴(𝑞𝑞) =
∑ 𝑃𝑃(𝑞𝑞)@𝑖𝑖 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)𝑖𝑖𝑘𝑘
𝑖𝑖=1

|𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)|

14

where 𝑞𝑞 is a given query, 𝑃𝑃(𝑞𝑞)@𝑖𝑖 is a precision of 𝑞𝑞 after the first 𝑖𝑖

documents, 𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)𝑖𝑖 stands for binary relevance of doc at position 𝑖𝑖, and

|𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)| is a total number of relevant documents for the query.

MAP means AP over multiple queries:

𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄) =
1

|𝑄𝑄| �𝐴𝐴𝐴𝐴(𝑞𝑞)
𝑞𝑞∈𝑄𝑄

MAP gives more focus to errors associated with wrong documents that

appear high in the re-ranked list. Its main downside lies in inability to work

with non-binary relevance ratings.

1.3.3 NDCG@K

 Non-discounted cumulative gain (NDCG)[13] also has emphasis on

correctness of documents high in the ranking list. An idea behind NDCG is that

the most relevant items should be first, followed by somewhat relevant items

and the least relevant items should be last in re-ranked list of documents.

Given that each document has ranked position 𝑖𝑖, 𝑖𝑖 ∈ [1;𝑛𝑛] and relevance

value 𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑) (typically, 0-3), Discounted Cumulative Gain (DCG) can be

defined as follows:

𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷) = �
𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑)

log2(𝑖𝑖 + 1)
𝑑𝑑∈𝐷𝐷

Given a set of queries 𝑄𝑄, we can define 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑄𝑄) =
1

|𝑄𝑄|
�

𝐷𝐷𝐷𝐷𝐷𝐷(𝑞𝑞)
𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞))

𝑞𝑞∈𝑄𝑄

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)� stands for the best documents ranking possible.

NDCG has advantage over MRR, as it gives less discounts to documents that

appear lower in ranking list.

15

2. Using Language Models in semantic search, re-ranking and

retrieval. GPT-3 and OPT

Pre-trained language models built using transformer-based architecture[1]

caused a paradigm shift in Natural Language Processing. Instead of training

separate model from scratch for each task, industry moved towards an idea that

every task can potentially be solved with a “universal” language model. In order

to prepare such a model, one has to train a model that learns representations for

words and sentences, with similar words being “located nearby” and opposite

words being “far away from each other”.

This concept is called word embeddings and it implies that each word can be

encoded as a real-value vector in N-dimensional space.

The first architecture under the paradigm of pre-training was BERT[2]. Its

success increased effort towards training a single transformer-based model

capable of solving NLP tasks in few-shot, or even zero-shot manner, and

influenced the appearance of GPT-3[5], that showed phenomenal results and

revolutionized the field even further.

Re-ranking problem also benefited from appearance of pre-trained language

models. Quality vector representations for queries and documents led to

introduction of different new solutions [7], [14] that beat previous approaches by a

margin.

Once GPT-3 appeared, it demonstrated huge gains over BERT in a variety of

tasks. Re-ranking is no exception, and as it was demonstrated[6], GPT- has huge

potential in re-ranking task. As more open-source GPT-3 implementations are

appearing, the focus of this paper is on one of them, OPT[8]. OPT is an

implementation of GPT-3 with minor architectural changes. OPT models vary

in size, from 125M to 175B.

16

2.1 GPT network architecture and related concepts

Language modelling is a machine learning task of predicting words given a

text sequence. GPT presents very effective architecture for this task. As for input,

it operates on parts of words, known as tokens. Input layer consists of token

embeddings (vocabulary size, hidden dim) and positional encoding vector that

explains the model words position in the texts[15].

A main component of GPT is a decoder block, that consists of masked self-

attention, followed by feed forward neural network. The concept behind self-

attention lies in constructing a probability distribution for each token in a particular

sequence given its position. Queries, Keys and Value vectors are a basis of self-

attention. Query vector represents a given token in order to score it against other

tokens in a sequence, Keys vectors represents other tokens, and Values correspond

to word representations. Queries and Key vectors are then multiplied and summed

in order to get vector of scores of what can be interpreted as a “correlation matrix”

between words.

In order to treat long sequences more effectively, separate parts of keys-

queries-values vectors are split, scored separately and gathered as separate

attention-heads. Merged attention heads are then passed towards a projection layer

so that it could be processed by a feed-forward layer in order to get output of the

input shape and feed it to the next decoder block.

2.2 Interaction with GPT. Prompts

The main advantage of pre-trained GPT models is the ease of interaction.

Once model is trained, user different NLP tasks can be solved by feeding text

inputs into the network. In order to make the model “solve” a particular NLP task,

a correct input pattern must be designed. Input patterns are called prompts, and the

17

process of selecting a correct pattern is called prompt engineering. Prompts are

divided into zero-shot and few-shot. Zero-shot means that the model is not

provided with any examples, and few-shot means that we give some examples

during inference step. For example, a translation task may be approached in zero-

shot manner via prompt like:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ \𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: < 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >\𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:

Few-shot prompt may look like:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ: 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 → 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓\𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 → 𝑣𝑣𝑣𝑣𝑣𝑣\𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑑𝑑 →

To fit a model to a new task or to make it work in zero-shot for a particular

prompt model may be trained further using some new data. This process is called

fine-tuning and is a more traditional approach of adopting language models for

new tasks.

2.3. GPT and re-ranking. Zero-shot re-ranking solution

 Prompt-engineering is the easiest, “naïve” way to use GPT in re-ranking

task. A prompt can be any string that contains slots for document and query,

prompt options are covered in Section 3.2.

Given a query and a set of documents, the most suitable document to the query is:

𝑑𝑑∗ = argmax
𝑑𝑑∈𝐷𝐷

𝑃𝑃(𝑑𝑑|𝑞𝑞)

Using Bayes theorem,

𝑑𝑑∗ = argmax
𝑑𝑑∈𝐷𝐷

𝑃𝑃(𝑑𝑑|𝑞𝑞) = argmax
𝑑𝑑∈𝐷𝐷

𝑃𝑃(𝑞𝑞|𝑑𝑑)
𝑃𝑃(𝑞𝑞)

= argmax
𝑑𝑑∈𝐷𝐷

𝑃𝑃(𝑞𝑞|𝑑𝑑)𝑃𝑃(𝑑𝑑)

Thus, 𝑃𝑃(𝑞𝑞|𝑑𝑑) can estimate how “good” a query fits a document. As GPT is auto

regressive, it can predict 𝑃𝑃(𝑞𝑞|𝑑𝑑) by placing 𝑑𝑑 to the left part of the prompt and

𝑞𝑞 to the right part of it. Given tokenized input sequence (prompt) 𝑝𝑝 of length

18

𝑛𝑛, 𝑝𝑝 = (𝑝𝑝1,..,𝑖𝑖−1, 𝑞𝑞𝑖𝑖,…,𝑛𝑛) with query tokens 𝑞𝑞𝑖𝑖,…,𝑛𝑛 and prompt tokens (including

document) 𝑝𝑝1,…,𝑖𝑖−1,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = 𝑃𝑃(𝑞𝑞|𝑑𝑑) = � log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑘𝑘))
𝑛𝑛

𝑘𝑘=𝑖𝑖

Documents can be sorted by the calculated scores.

Figure 1 – Naïve approach for GPT-based re-ranking

2.4 Cross-Encoder and Bi-Encoder models

Scoring approach described in Section 2.3 may be useful for offline usage or

quick prototyping but has its own limitations in actual retrieval and re-ranking

pipeline. Its performance may be increased, its main disadvantage is slow speed

and number of comparisons required to rank multiple query-documents sets.

Like other transformers used for the re-ranking task, GPT out of the box

performance can be improved via making minor architecture changes and fine-

tuning slightly changed model on datasets of document-query pairs.

19

2.4.1 Bi-Encoder

Bi-Encoder approach is based on an intuitive idea to cover the whole

retrieval and re-rank pipeline by calculating similarity between vector

representations (embeddings) of documents and queries. Using document

representation as a vector is useful for faster retrieval, as document vectors may

be indexed and compared against queries in a real-time setting

The first step in Bi-Encoder setting is to get a single embedding vector for

the input query/document, that would have same dimensionality regardless of

the sequence length. In order to achieve that, Bi-Encoder uses pooling operation

between LM output vectors for each token in an input sequence. Based on the

architecture of the used LM, different types of pooling may be used.

Given document and query embeddings, one can rank documents by using

cosine similarity.

In order to get better representations, Bi-Encoder may be fine-tuned, as

described in [6][16].

2.4.2 Cross-Encoder

Cross-Encoder is a classifier or regressor built on top of a language model.

Given a query-document pair, it calculates a relevance score (usually, in range

[0,1]. Before usage, Cross-Encoder is fine-tuned on datasets of triplets (query,

document, relevancy), where relevancy is normalized to a desired score range.

20

Figure 2 Cross-Encoder architecture

Cross-Encoder is the most accurate existing method for re-ranking. Its main

downside, however, is that it doesn’t store vector representations, and is not fast

enough to score millions of document-query pairs in real time.

Search systems that rely on neural networks only typically use Bi-Encoder

for retrieval step (as document representations are already stored) and Cross-

Encoder for re-ranking step on a narrow subset of pre-selected documents.

21

3. Practical research

 Research part of the paper is focused on OPT[8]. This paper presents first

OPT evaluation on BEIR benchmark[9] using different prompts, as well as trains

first GPT-3 based Cross-Encoder, also using OPT. The OPT Cross-Encoder (OPT-

125M) outperforms classical approach (BM-25), previous-generation SOTA[7] as

well as out-of-the box Naïve method of re-ranking. The last part of the research is

focused on improving performance of smaller OPT-model (OPT-125M) using

various knowledge distillation techniques, such as self-attention distribution

transfer.

3.1. Training dataset: MS MARCO Passage

Microsoft Machine Reading Comprehension is a dataset focused on passage

ranking, question answering and machine reading comprehension. Introduced

by Microsoft as a part of TREC-2019 challenge, it consists of 8.81million

query-document pairs.

 During experiments, a subset of 2 million query-document pairs from train

set were used for fine-tuning experiments, and eval subset was used as a part of

BEIR benchmark.

 3.2 Benchmark for retrieval and re-ranking: BEIR

 In order to compare quality of different retrieval systems it requires

evaluating them on different tasks and benchmarks. Evaluation in IR can be

done offline or online, where online evaluation is done by doing A/B tests and

getting feedback from the users, while offline evaluation can be done using

22

fixed test collections of queries (can be handcrafted or sampled from real-world

user queries), documents (task-specific) and judgements about query-document

relevance.

Most commonly, re-ranking benchmarks are datasets from TREC[17] and

NTCIR[18] test collections, which are updated yearly by the community of the

two largest conferences related to Information Retrieval.

However, this paper uses a recently developed benchmark called BEIR

(Benchmarking IR). BEIR is an evaluation benchmark that consists of 19

publicly available datasets from 10 different text retrieval tasks. [add

reference!]. BEIR was specifically designed to introduce more accurate

representation of real-world usage for re-ranking models and is now widely

used to benchmark different re-ranking approaches and models[6]. Apart from

being set in different domains, such as BIO-Medical IR, Question Answering,

Tweets-Retrieval, Fact Checking, Citation Prediction, etc., BEIR datasets differ

in number of test document-query pairs, document-query ratio, and, most

importantly, use different grades of relevancy, which allows researchers to

identify possible shortcomings in particular model during training and

evaluation stages.

Note that in this work we didn’t use Signal-1M, TREC-News, Bioasq and

Robust-04 datasets, as they required separate enquiries for access. That is why

benchmarked is marked as BEIR* in results section.

The following table provides a short statistic of datasets presented in BEIR

benchmarks:

23

Task Dataset Relevancy Test Queries Test Docs

Passage-Retrieval MS Marco Binary 6980 8841823

Bio-Medical IR TREC-COVID 3-level 50 171332

Bio-Medical IR NFCorpus 3-level 323 3633

Bio-Medical IR BioASQ Binary 500 14914602

Question Answering NQ Binary 3452 2681468

Question Answering HotPotQA Binary 7405 5233329

Question Answering FiQA-2018 Binary 648 57638

Tweets-Retrieval Signal-1M (RT) 3-level 97 2866316

News Retrieval TREC-NEWS 5-level 57 594977

News Retrieval Robust04 3-level 249 528155

Argument Retrieval ArguAna Binary 1406 8674

Argument Retrieval Touché-2020 3-level 49 382545

Duplicate-Question Retrieval CQADupStack Binary 13145 457199

Duplicate-Question Retrieval Quora Binary 10000 522931

Entity-Retrieval DBPedia 3-level 400 4635922

Citation-Prediction SCIDOCS Binary 1000 25657

Fact Checking FEVER Binary 6666 5416568

Fact Checking Climate-

FEVER

Binary 1535 5416593

Fact Checking SciFact Binary 300 5183

Table 3.1 - BEIR datasets statistics

3.2. Prompt Engineering and OPT evaluation

In order to use OPT on re-ranking task, we had to start with selecting the

most suitable prompt that would unlock OPT potential and show good results.

Based on [6], three prompts were chosen for evaluation OPT on BEIR dataset

using method described in Section 2.3. Additionally, GPT-NEO [19] was also

24

evaluated in order to compare performance differences between different GPT

implementations.

Selected prompts were:

Number Text

Prompt 1 Documents are searched to find matches with the same content.\nThe
document "{doc}" is a good search result for "{query}

Prompt 2 Documents are searched to find matches with the same
content.\nDocument: "{doc}"\n\nThe above document is a good match
for the query: "{query}

Prompt 3 The selected text is:\n{doc}\n\n\nThe relevant title is:\n{query}

Table 3.2 – Prompts list
The table below illustrates used prompts and their respective mean BEIR*

NDCG@10 scores:
Prompt Network NDCG@10

Prompt 1 OPT-125M 0.3998

Prompt 2 OPT-125M 0.4084

Prompt 3 OPT-125M 0.4065

Prompt 1 OPT-350M 0.4098

Prompt 2 OPT-350M 0.4137

Prompt 3 OPT-350M 0.4116

Prompt 1 GPT-NEO-125M 0.3137

Prompt 2 GPT-NEO-125M 0.3153

Prompt 3 GPT-NEO-125M 0.3102

Table 3.3 – Zero-shot evaluation results
As may be seen, OPT-125M beat GPT-NEO-125M out of the box with all

three prompts. OPT-350M slightly outperforms OPT-125M and prompts 1 and 3

showed opposite results in OPT to those under GPT-NEO. Prompt 2 showed better

results among three options; thus, further experiments were done using it for input

sequences.

25

3.3. Training a Cross-Encoder

Easiest way to improve OPT performance out of the box was to train Cross-

Encoder. In order to do so, we used Prompt-1. Architecturally, a linear layer

with a sigmoid activation function was placed on top of the output GPT layer.

Input dim of linear layer equals hidden dim of the model (768 for OPT-125M,

1024 for OPT-350M). Cross-Encoder was trained on data described in Section

3.1 and Mean-Squared Error was used as a loss function. AdamW was used as

an optimizer, with learning rate set to 1e-5 and weight decay of 0.001. Fine-

tune took exactly one epoch and improved OPT-125M performance by ~2%.

Also, GPT-NEO-125M cross-encoder was trained, but it showed worse results

that out-of-the box model, which requires separate investigation.

3.3. Improving OPT performance: Knowledge Distillation

Another way to improve performance of OPT-125M is to fine-tune it in a

way that it would mimic a behavior of bigger models. This technique is called

Knowledge distillation. Under this setting, one model is trained using

representations or labels generated by a more capable model. The model that is

being trained is called a student, and a more powerful model that student learns

to imitate is called a teacher. The motivation behind these experiments lies in an

idea to create an OPT version of mini-LM-v2, a BERT-based SOTA of fast yet

highly capable retrieval & re-rank model.

Training data and optimizer settings were used the same as in Cross-Encoder

experiments. Knowledge distillation experiments were performed using OPT-

350M as a teacher and OPT-125M as a student. Kullback-Leibler divergence [20]

was used as a loss function.

26

3.3.1. Logits distribution transfer

The simplest way to perform knowledge distillation is to make student

model imitate logits distribution of teacher model. In order to do so, KL-

divergence between student and teacher models is used as a loss function for a

student:

𝐿𝐿 = 𝐷𝐷𝐾𝐾𝐾𝐾(log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑇𝑇)||log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑆𝑆)

Figure 2

3.3.2. Self-attention relation distillation

A more complex approach is to make a model imitate self-attention

mechanism. The selected method is called self-attention relation distillation and

was successfully used in [7]. As our models do not differ in size that greatly, we

used outputs from corresponding last attention layers of student and teacher

models. Loss function can be defined:

𝐿𝐿 = 𝐿𝐿𝑄𝑄 + 𝐿𝐿𝐾𝐾 + 𝐿𝐿𝑉𝑉

Where ∀𝑊𝑊 ∈ [𝑄𝑄,𝐾𝐾,𝑉𝑉] 𝐿𝐿𝑊𝑊 is a KL divergence between (K-K, V-V or Q-Q) scaled

dot-product matrices, which represent relations between different parts of attention

mechanism.

27

𝐿𝐿𝑊𝑊 =
1

𝐴𝐴𝑟𝑟|𝑥𝑥|
��𝐷𝐷𝐾𝐾𝐾𝐾(𝑅𝑅𝑎𝑎,𝑡𝑡

𝑇𝑇 ||𝑅𝑅𝑎𝑎,𝑡𝑡
𝑆𝑆)

𝑥𝑥

𝑡𝑡=1

𝐴𝐴𝑟𝑟

𝑎𝑎=1

Where |𝑥𝑥| stands for sequence length, 𝐴𝐴𝑟𝑟 – number of student attention heads, 𝐷𝐷𝐾𝐾𝐾𝐾

is a KL-divergence,𝑙𝑙,𝑚𝑚 mean and

𝑅𝑅𝑎𝑎,𝑡𝑡
𝑋𝑋 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(

𝐴𝐴𝑎𝑎𝑋𝑋𝐴𝐴𝑎𝑎𝑋𝑋

√𝑑𝑑𝑟𝑟
)

is a self-attention relation between (K-K, V-V or Q-Q) of teacher (T) or student (S)

model. 𝑑𝑑𝑟𝑟 represents number of student attention heads.

(K-K, V-V, Q-Q) are multi-head relation vectors that are aggregated between

attention heads, concatenated, split if number of teacher model attention heads is

higher than student attention head, and then multiplied via dot product.

3.4. Results comparison table

 N
D

C
G

*@
1

N
D

C
G

*@
10

N
D

C
G

*@
10

0
Naïve Baseline (BM-25) 0.2175 0.228 0.2816

Transformer SOTA (cross-encoder/ms-

marco-MiniLM-L12-v2)

0.3317 0.3703 0.4041

GPT-NEO-125M, zero-shot 0.2925 0.3153 0.3713

OPT-125M, zero-shot 0.3751 0.4084 0.4408

OPT-125M Cross-Encoder 0.3915 0.4233 0.4619

OPT-125M-distilled-logits-transfer 0.3516 0.3772 0.3819

OPT-125M-distilled-attention-transfer 0.3867 0.4106 0.4315

OPT-350M, zero-shot 0.3911 0.4137 0.4578

Table 3.4 – summary comparison of experiment results

28

As mentioned before, results are measured on a subsection of BEIR.

Evaluation metric is NDCG, NCDG* stands for mean results over present

datasets.

3.5. Results

OPT evaluation demonstrated that it outperforms its GPT-NEO competitor

by a huge margin with all experimented prompts. Moreover, with a correct

prompt it outperforms BERT-based SOTA solution out of the box.

In terms of model sizes, there is little difference between OPT-125M and

OPT-350M in zero-shot performance and using OPT-350M as a teacher doesn’t

add a lot of performance to OPT-125M.

Logits transfer experiment failed and degraded model performance, while

self-attention relation transfer boosted out-of-the box performance, which lets a

room for improvement and further experiments in order to find better

knowledge-distillation setting. It is worth trying two-step distillation, from 1.3B

model to 350M and from 350M to 125M.

Training a Cross-Encoder was the most successful experiment, as it easily

outperformed all the competitive solutions.

It is worth noting that results are heavily reliant on prompts, and a different

prompt may heavily influence the resulting benchmark numbers.

Overall, all neural-based approaches outperform BM-25 baseline, though,

may be much slower.

29

Conclusion

In this work we have discusses semantic search tasks based on neural

networks of GPT-3 architecture. The work introduced fresh GPT-3

implementation, OPT, to the search problem of re-ranking. In the work, we

chose the most suitable input prompt for re-ranking with OPT by evaluating

OPT on BEIR benchmark in zero-shot mode with different input prompts. The

best proposed prompt let OPT outperform both its predecessor (sBERT) and

other GPT-3 implementation (GPT-Neo) by a significant margin, which showed

its usability for re-ranking out of the box. In order to improve OPT zero-shot

performance in re-ranking for smaller OPT model we have conducted

experiments under different knowledge distillation settings by using logits

distribution transfer and self-attention relation distillation. The experiments

were rather successful, as distilled smaller model showed similar performance

to the larger model. Inspired by OPT-results in zero-shot, the work proposed

OPT-based Cross-Encoder model that outperforms SOTA Cross-Encoders.

Obtained results demonstrate utility of using large pre-trained language models

in tasks related to neural search and confirm the validity and prospects of using

GPT in re-ranking task.

Further work would involve building an OPT model that could maintain re-

ranking quality of larger OPT models, while surpassing them in faster inference

speed and smaller model size.

30

References

1. Vaswani, A., et al. Attention Is All You Need, 2017,

doi:10.48550/arXiv.1706.03762

2. Devlinn, J., et al: BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding, 2018, doi:10.48550/arXiv.1810.04805

3. Robertson, S., Zaragoza, H., The Probabilistic Relevance Framework: BM-

25 and Beyond, 2009, doi: 10.1561/1500000019

4. Humeau,S., et al. Poly-encoders: Architectures and Pre-training Strategies

for Fast and Accurate Multi-sentence Scoring ,2020,

doi:10.48550/arXiv.1905.01969
5. Brown, T.B., et al. Language Models are Few-Shot Learners, 2020,

doi:10.48550/arXiv.2005.14165

6. Muennighoff, Niklas. SGPT: GPT Sentence Embeddings for Semantic

Search, 2022, doi:10.48550/arXiv.2202.08904

7. Wang, W., et al. MiniLMv2: Multi-Head Self-Attention Relation Distillation

for Compressing Pretrained Transformers, 2021,

doi:10.48550/arxiv.2012.15828

8. Zhang, S., et al. OPT: Open Pre-Trained Transformer Language Models,

2022, doi:10.48550/arXiv.2205.01068

9. Thakur, N., et al. BEIR: A Heterogenous Benchmark for Zero-shot

Evaluation of Information Retrieval Models, 2021,

doi:10.48550/arXiv.2104.08663

10. Lin, J., et al. Pyserini: An Easy-to-Use Python Toolkit to Support Replicable

IR Research with Sparse and Dense Representations, 2021,

doi:10.48550/arXiv.2102.10073

31

11. Voorhees, Ellen M. The trec-8 question answering track report. Trec. Vol.

99, 1999.

12. Sanderson, M., Manning C.D., et al. Introduction to Information Retrieval,

Cambridge University Press. 2008. ISBN-13 978-0-521-86571-5, xxi+ 482

pages.

13. Järvelin, Kalervo, and Jaana Kekäläinen. "Cumulated gain-based evaluation

of IR techniques." ACM Transactions on Information Systems (TOIS) 20.4

(2002): 422-446.

14. Reiemers, Nis, Gurevych, Iryna, Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks, 2019, doi:10.48550/arXiv.1908.10084

15. Radford, A., et. al, Language Models are Unsupervised Multitask Learners,

2019, URL: https://d4mucfpksywv.cloudfront.net/better-language-

models/language-models.pdf

16. Lin, J., et al., Pretrained Transformers for Texts Ranking: BERT and

Beyond , 2021, doi:10.48550/arXiv.2010.06467

17. http://trec.nist.gov/

18. https://research.nii.ac.jp/ntcir/index-en.html

19. Sid, B., et al. GPT-Neo: Large Scale Autoregressive Language Modeling

with Mesh-Tensorflow, doi:10.5281/zenodo.5297715

20. Kullback, S. and Leibler, R.A. On information and sufficiency. The Annals

of Mathematical Statistics, 22, 79-86. 1951, doi:10.1214/aoms.1177729694

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://trec.nist.gov/
https://research.nii.ac.jp/ntcir/index-en.html

	Керівник: Швай Н.О.
	кандидат фіз.-мат. наук, доцент
	Рецензент _______________________
	Table of contents
	Анотація
	Annotation
	Introduction
	1. Semantic search. Document Re-ranking problem, an overview
	1.1. Query-Document matching, Semantic Search, Retrieval and Re-rank.
	1.1.2 Retrieval and Re-ranking
	1.1.3 Semantic Search
	1.1.4. Symmetric & Asymmetric Semantic Search

	1.2. Classic retrieval approach. BM-25
	1.3 Evaluation Metrics for re-ranking
	1.3.1 MRR@K
	1.3.2 MAP@K
	1.3.3 NDCG@K

	2. Using Language Models in semantic search, re-ranking and retrieval. GPT-3 and OPT
	2.1 GPT network architecture and related concepts
	2.2 Interaction with GPT. Prompts
	2.3. GPT and re-ranking. Zero-shot re-ranking solution
	2.4 Cross-Encoder and Bi-Encoder models
	2.4.1 Bi-Encoder
	2.4.2 Cross-Encoder

	3. Practical research
	3.1. Training dataset: MS MARCO Passage
	3.2 Benchmark for retrieval and re-ranking: BEIR
	3.2. Prompt Engineering and OPT evaluation
	3.3. Training a Cross-Encoder
	3.3. Improving OPT performance: Knowledge Distillation
	3.3.1. Logits distribution transfer
	3.3.2. Self-attention relation distillation

	3.4. Results comparison table
	3.5. Results

	Conclusion
	References

