
Slushie: a zero-knowledge proof-based token mixer in

Substrate

Oleksandr Mykhailenko, Kyrylo Gorokhovskyi



Subject of the study

We research the possibility of implementing a working zero-knowledge proof-based 
cryptocurrency mixer for Substrate blockchains.

This includes creating a smart contract, a circuit for the quadratic arithmetic program to 
be used in the zk-SNARK, a CLI for mimicking front-end, and a relayer server.



Relevance of the study

Substrate is a popular framework for creating blockchains

from modular components. One of its components is pallet-contracts,

a module for executing Wasm-based smart contracts. 

Some decentralized networks, like Astar, already include

pallet-contracts in their runtime, meaning anyone can 

deploy and use a smart contract. 



Relevance of the study

Apart from potentially providing users with more privacy by using Slushie for token 

transfers, we explore the usage of the Plonk ZK proof system and its capabilities to 

produce verification functions efficient enough for usage in a smart contract. To add to 

that, we circumvent the risk of errors in client libraries when producing/verifying proofs 

by reusing exactly the same proving/verifying code for both the CLI and the smart 

contract.



Main goals

● Research the possibility to create a WebAssembly-based cryptocurrency mixer for 
Substrate-based blockchains using Plonk zkproof system;

● Improve client-side code integrity for producing and generating zero-knowledge proofs;

● Evaluate the ecosystem readiness for a production deployment of the mixer.



Architecture
App architecture consists of four main parts:

● Slushie smart contract

● A library for operations with zero-knowledge proofs, called plonk_prover;

● CLI that exposes main functions of plonk_prover, called plonk_prover_tool;

● A relayer server to send withdraw transactions without any RPC provider tracing.





Implementation

Technical stack:

● Rust was used to create the zk-SNARK circuit, utilities for operations on zk-proofs, and 
the smart contract (using the ink! e-DSL);

● Typescript was used to build the relayer server;

● An implementation of Plonk zk-proof system by Dusk Network B.V. was used for 
construction and verification of zero-knowledge proofs, as well as Poseidon (Grassi et al.) 
as the hash function, although Slushie also supports Blake2 hashing.



The workflow

The workflow with Slushie consists of the following parts:

1. Start a node with pallet-contracts included
2. Deploy Slushie with some custom deposit amount
3. Generate commitment, secret values, acquire the root
4. Call deposit method
5. Generate proof with desired parameters
6. Launch the relayer
7. Call withdraw method using the relayer, acquire funds on a target account



Starting the node



Deploying Slushie



Generating commitment & secret values



Depositing to Slushie



Generating the proof



Getting proof bytes (using node.js)



Launching relayer



Sending withdrawal request



Events about withdrawal



Conclusions

We succeeded to build a cryptocurrency mixer to be used in Substrate-based blockchains, 
which will allow the users to increase their privacy when transferring cryptocurrency. Moreover, 
we increased the integrity of the client-side code by reusing the same library (plonk_prover) 
within the CLI using native target compilation & within the smart contract using WebAssembly 
compilation. To add to that, we identified considerable issues with Substrate itself, like absence 
of important RPC methods in nodes, as well as bugs in Rust-based libraries for interacting with 
smart contracts.


	Слайд 1: Slushie: a zero-knowledge proof-based token mixer in Substrate
	Слайд 2: Subject of the study
	Слайд 3: Relevance of the study
	Слайд 4: Relevance of the study
	Слайд 5: Main goals
	Слайд 6: Architecture
	Слайд 7
	Слайд 8: Implementation
	Слайд 9: The workflow
	Слайд 10: Starting the node
	Слайд 11: Deploying Slushie
	Слайд 12: Generating commitment & secret values
	Слайд 13: Depositing to Slushie
	Слайд 14: Generating the proof
	Слайд 15: Getting proof bytes (using node.js)
	Слайд 16: Launching relayer
	Слайд 17: Sending withdrawal request
	Слайд 18: Events about withdrawal
	Слайд 19: Conclusions

