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Subject of the study

We research the possibility of implementing a working zero-knowledge proof-based
cryptocurrency mixer for Substrate blockchains.

This includes creating a smart contract, a circuit for the quadratic arithmetic program to
be used in the zk-SNARK, a CLI for mimicking front-end, and a relayer server.
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Relevance of the study

SUBSTRATE FRAME PALLETS

Substrate is a popular framework for creating blockchains —

tortity

Coictve

from modular components. One of its components is pallet-contracts,

a module for executing Wasm-based smart contracts. RUNTIME
Some decentralized networks, like Astar, already include —

pallet-contracts in their runtime, meaning anyone can

deploy and use a smart contract.
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Relevance of the study

Apart from potentially providing users with more privacy by using Slushie for token
transfers, we explore the usage of the Plonk ZK proof system and its capabilities to
produce verification functions efficient enough for usage in a smart contract. To add to
that, we circumvent the risk of errors in client libraries when producing/verifying proofs
by reusing exactly the same proving/verifying code for both the CLI and the smart

contract.



Main goals

® Research the possibility to create a WebAssembly-based cryptocurrency mixer for
Substrate-based blockchains using Plonk zkproof system;

® Improveclient-side code integrity for producing and generating zero-knowledge proofs;

e FEvaluate the ecosystem readiness for a productiondeployment of the mixer.



Architecture

App architecture consists of four main parts:

® Slushie smart contract

e Alibrary for operations with zero-knowledge proofs, called plonk_prover;

e CLIthat exposes main functions of plonk_prover, called plonk_prover_tool;

® A relayer server to send withdraw transactions without any RPC provider tracing.
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Implementation

Technical stack:

® Rust was used to create the zk-SNARK circuit, utilities for operations on zk-proofs, and
the smart contract (using the ink! e-DSL);

e Typescript was used to build the relayer server;

® An implementation of Plonk zk-proof system by Dusk Network B.V. was used for
construction and verification of zero-knowledge proofs, as well as Poseidon (Grassi et al.)
as the hash function, although Slushie also supports Blake2 hashing.



The workflow

The workflow with Slushie consists of the following parts:

Start a node with pallet-contracts included

Deploy Slushie with some custom deposit amount

Generate commitment, secret values, acquire the root

Call deposit method

Generate proof with desired parameters

Launch the relayer

Call withdraw method using the relayer, acquire funds on a target account
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Starting the node




Deploying Slushie
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Generating commitment & secret values




Depositing to Slushie
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Generating the proof




Getting proof bytes (using node.js)

0

const proofFile fs.readFileSync('plonk_prover_tool/prod-proof');

const buffer = Buffer.from(proofFile, 'hex');
console. log(buffer. t«




Launching relayer




Sending withdrawal request




Events about withdrawal
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Conclusions

We succeeded to build a cryptocurrency mixer to be used in Substrate-based blockchains,
which will allow the users to increase their privacy when transferring cryptocurrency. Moreover,
we increased the integrity of the client-side code by reusing the same library (plonk_prover)
within the CLI using native target compilation & within the smart contract using WebAssembly
compilation. To add to that, we identified considerable issues with Substrate itself, like absence
of important RPC methodsin nodes, as well as bugs in Rust-based libraries for interacting with
smart contracts.
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