Slushie: a zero-knowledge proof-based token mixer in

Substrate

Oleksandr Mykhailenko, Kyrylo Gorokhovskyi



Subject of the study

We research the possibility of implementing a working zero-knowledge proof-based
cryptocurrency mixer for Substrate blockchains.

This includes creating a smart contract, a circuit for the quadratic arithmetic program to
be used in the zk-SNARK, a CLI for mimicking front-end, and a relayer server.

Inputs Dutput

a

b x + | (@sb)ibac



Relevance of the study

SUBSTRATE FRAME PALLETS

Substrate is a popular framework for creating blockchains —

tortity

Coictve

from modular components. One of its components is pallet-contracts,

a module for executing Wasm-based smart contracts. RUNTIME
Some decentralized networks, like Astar, already include —

pallet-contracts in their runtime, meaning anyone can

deploy and use a smart contract.

BARE

Aiomes fwvop

Confrecin [



Relevance of the study

Apart from potentially providing users with more privacy by using Slushie for token
transfers, we explore the usage of the Plonk ZK proof system and its capabilities to
produce verification functions efficient enough for usage in a smart contract. To add to
that, we circumvent the risk of errors in client libraries when producing/verifying proofs
by reusing exactly the same proving/verifying code for both the CLI and the smart

contract.



Main goals

® Research the possibility to create a WebAssembly-based cryptocurrency mixer for
Substrate-based blockchains using Plonk zkproof system;

® Improveclient-side code integrity for producing and generating zero-knowledge proofs;

e FEvaluate the ecosystem readiness for a productiondeployment of the mixer.



Architecture

App architecture consists of four main parts:

® Slushie smart contract

e Alibrary for operations with zero-knowledge proofs, called plonk_prover;

e CLIthat exposes main functions of plonk_prover, called plonk_prover_tool;

® A relayer server to send withdraw transactions without any RPC provider tracing.



Frontend/CLI/
polkadot.js

—...

A

(1) Generate commitment
and secret values;
provide them to the client
side (frontendsCLI)

A

Plonk Prover CLI
(ZKP operations)

(2) Call "deposit” and

acquire Merkle tree root

[,

Y

Slushie smart contract

Root: Oxd34db33f...

{3) Generate proof, build

-

payload

Withdrawlnputs JSON }

{4) Call "withdraw” with
provided inputs

A

Relayer




Implementation

Technical stack:

® Rust was used to create the zk-SNARK circuit, utilities for operations on zk-proofs, and
the smart contract (using the ink! e-DSL);

e Typescript was used to build the relayer server;

® An implementation of Plonk zk-proof system by Dusk Network B.V. was used for
construction and verification of zero-knowledge proofs, as well as Poseidon (Grassi et al.)
as the hash function, although Slushie also supports Blake2 hashing.



The workflow

The workflow with Slushie consists of the following parts:

Start a node with pallet-contracts included

Deploy Slushie with some custom deposit amount

Generate commitment, secret values, acquire the root

Call deposit method

Generate proof with desired parameters

Launch the relayer

Call withdraw method using the relayer, acquire funds on a target account

NoubkhwbdeE



Starting the node




Deploying Slushie

upioad & deploy code 1/2

&

Segioyment sccoum

ALICE

juon for sither sl o contract bundie

Coratrucioes (1) =
new (depositSize: Balonce)

Croste a new Sl conicact

Messages (3] =

deposit C(oomeitment vidormarh)
° e BiLive
Oepont & fied armount af Schens s mua

withdron (oubiicinguts: Pubilicinguts)

o oxec

o petioatrash (): Ae "
Toss ~
Beturns the merie_tree 1001 hash

955,017 WASM Bytes

code bundie Adrre

shialue

Wiehdraw & oo amount of tokens 12:0on the mines

tranaferrable 1. 1529 vt

© ren

B remows st

upload & deploy code 2/2

daployment consiructor
néw (depositSize: Balance)

depositSize: Balance
42

max reftime allowed [m)

1199038364781

max procfsize allowed
11990383647911208550

0.200s execution time, 3.98% of block weight

o Prav

© oo



Generating commitment & secret values




Depositing to Slushie
call a contract B

COnract 1S uls

f
™ BLUSHIE

call from sccount transterrable 1.1528 uuwrr

ALICE -

maLesge 1o send

deposit (commiksent: Posetdonbashl: <[1:3 o k Froes -

commitment: Pesekdoniash
CuIFECETCFDERITEALD

EDODIBCSTARARCE)1CARAFAGF 75314DBFSASETE

walu
47 Uit

mas reftime allowed (=)
TR0EE3EATET

max prooldize allowed
1E03R3EATE 208650

0200 exncution tme, BUBEY of block weight

mead coniract only, no execetion

@ Excisin



Generating the proof




Getting proof bytes (using node.js)

0

const proofFile fs.readFileSync('plonk_prover_tool/prod-proof');

const buffer = Buffer.from(proofFile, 'hex');
console. log(buffer. t«




Launching relayer




Sending withdrawal request




Events about withdrawal

balances Transfer

-

~|1J from: Accountld32
A
Tru SLUSHIE

IR to: Accountld32
*ea' FERDIE

amount: w28
41.999999999986

o Dalances Transfer

S from: Accountld32
Tru SLUSHIE

amount; w128
0000000000014

Unit

Unit



Conclusions

We succeeded to build a cryptocurrency mixer to be used in Substrate-based blockchains,
which will allow the users to increase their privacy when transferring cryptocurrency. Moreover,
we increased the integrity of the client-side code by reusing the same library (plonk_prover)
within the CLI using native target compilation & within the smart contract using WebAssembly
compilation. To add to that, we identified considerable issues with Substrate itself, like absence
of important RPC methodsin nodes, as well as bugs in Rust-based libraries for interacting with
smart contracts.



	Слайд 1: Slushie: a zero-knowledge proof-based token mixer in Substrate
	Слайд 2: Subject of the study
	Слайд 3: Relevance of the study
	Слайд 4: Relevance of the study
	Слайд 5: Main goals
	Слайд 6: Architecture
	Слайд 7
	Слайд 8: Implementation
	Слайд 9: The workflow
	Слайд 10: Starting the node
	Слайд 11: Deploying Slushie
	Слайд 12: Generating commitment & secret values
	Слайд 13: Depositing to Slushie
	Слайд 14: Generating the proof
	Слайд 15: Getting proof bytes (using node.js)
	Слайд 16: Launching relayer
	Слайд 17: Sending withdrawal request
	Слайд 18: Events about withdrawal
	Слайд 19: Conclusions

