Bondarenko V. M.

ON REPRESENTATIONS WITH NONSINGULARITY CONDITIONS FOR CERTAIN CLASS OF POSETS

We consider such representations of a poset $A \cup B$ restrictions of which on A and B are nonsingular matrices, and show how to get rid of these conditions in one partial case.

In this paper we consider such representations of a partially ordered set (poset) of the form $A \cup B$, restrictions of which on the subsets A and B are (on the matrix language [1]) square non-singular matrices. We show how to get rid of these conditions, when A is a linear ordered set. Our results can be almost word for word extended to linear problems that are given by vector space categories [2] (in particular, to the problems considered in [3—6]).

1. Formulation of the main result. Throughout the paper, k denotes an arbitrary field; all posets are finite and all vector spaces are finite-dimensional. Under consideration linear maps, morphisms, functors and so on we use the right-side notations. Single-element subsets (of various sets) are identified with the elements.

For a poset S and a field k we denote by $mod_S k$ (by analogy with the category of finite-dimensional vector k-spaces modk) the category of S-spaces over k[7], i. e. the category with objects the vector k-spaces $U = \bigoplus_{x \in S} U_x$ and with morphisms $\delta: U \to U'$ those linear maps $\delta \in \operatorname{Hom}_k(U,U')$ for which $\delta_{xy} = 0$ if x > y or x and y are incomparable (such maps are called S-maps); here δ_{xy} denotes (as usual in analogous situations) the linear map of U_x into U'_y induced by δ . The set of all S-maps of U into U' (U and U' are S-spaces) is denoted by $\operatorname{Hom}_{S,k}(U,U')$. If U is a S-space and $C \subset S$, U_C denotes the subspace $\bigoplus_{x \in C} U_x \subset U$; if, moreover, V is a k-space and $\gamma \in \text{Hom}_k(V, U)$, γ_C denotes the map of V into U_C induced by γ ; if γ is a map of a S-space U into a Sspace $U' \gamma_{C,D}$ denotes the map of U_C into U_D' induced by γ .

Representation of a poset S over k[1] is (in our terms) a triple (V,U,γ) formed by spaces $V \in \text{mod } k$, $U \in \text{mod }_S k$, and a linear map $\gamma \in \text{Hom}_k(V,U)$. A morphism of representations $(V,U,\gamma) \to (V',U',\gamma')$ is given by a pair (μ,ν) of linear maps $\mu \in \text{Hom}_k(V,V')$ and $\nu \in \text{Hom}_{S,k}(U,U')$ such that

 $\gamma v = \mu \gamma'$. Thus defined category is denoted by $R_k(S)$. For a lower subset $C \subset S$ (i.e. $y \in C$ and x < yimply $x \in C$) we denote by $R_k(S,C)$ the full subcategory of $R_k(S)$ consisting of all objects (V, U, γ) with $\gamma_C: V \to U_C$ being isomorphism (in mod k); intersection of the full subcategories $R_k(S,C)$ and $R_k(S,D)$ is denoted by $R_k(S,C,D)$. If C is a poset, it representations (0, U, 0) and (k, U, 1), where $U_x = k$ and $U_y = 0$ for $y \neq x$ (1: $k \rightarrow k$ is the identity map), are denoted by I_x and $I_{x,1}$, respectively; the representation (k,0,0) is denoted by I_0 . Put $E(C) = I_0 \cup \{I_x, I_{x,1} | x \in C\}$. Denote by $\langle n \rangle$ the linear ordered set (chain) $\{1 < 2 < \cdots < n\}, n \ge 0$. The direct sum of posets C and D is denoted by $C \parallel D$ (i. e. $C \parallel D = C \cup D$, where $C \cap D = \emptyset$ and the order relation of $C \cup D$ is the smallest order relation containing the order relations of C and D). C^{op} denotes the poset dual to C.

If M is a set of indecomposable (in our cases mutually nonisomorphic) objects of an additive category Φ , we denote by Φ/M the full subcategory of Φ consisting of all objects without direct summands from M(Y) is a direct summand of X if X is isomorphic to some $Y \oplus Z$).

In this paper we shall prove the following theorem.

Theorem. Let B be a poset and $n \ge 2$ a natural number. Then the category $R_k(\langle n \rangle \parallel B, \langle n \rangle, B)$ is equivalent to the category $R_k(\langle n-2 \rangle \parallel B^{op})/\langle E(\langle n-2 \rangle) \rangle$.

The cases n=0 and n=1 (which are not covered by the Theorem) are trivial: the category $R_k(\langle 0 \rangle || B, \langle 0 \rangle, B)$ is null, and indecomposable objects of the category $R_k(\langle 1 \rangle || B, \langle 1 \rangle, B)$ are exhausted (up to isomorphism) by the following representations $H(x)=(V,U,\gamma), x \in B: U_x=k, U_y=0, \text{ for } y \in B, y \neq x, V=U_1=U_B \text{ and } \gamma_1=g_B=1_V.$

2. Proof of the theorem. Recall that a functor $F: \Phi \to \Psi$ is called faithful (respectively, full) if for an arbitrary $X,Y \in Ob \Phi$ the map $F: Hom_{\Phi}(X,Y) \to Hom_{\Psi}(XF,YF)$ is injective (respectively, surjective); a functor F is called dence if each $Y \in Ob \Psi$ is isomorphic to some XF (a special case of a dence functor is a surjective on objects functor, i. e. such that the map $F: Ob \Phi \to Ob \Psi$ is surjective). According to the well-known theorem a functor F is equivalence of categories iff it is full faithful and dence.

First step: a removal of the invertibility condition for $\gamma_{\langle n \rangle}$. For a poset C put $J(C) = \{I_X | x \in C\}$. B denotes (as earlier) an arbitrary poset; n is a natural number.

Proposition 1. The category $R_k(\langle n \rangle | B, \langle n \rangle, B)$ is equivalent to the category $R_k(\langle n-1 \rangle | B, B) / J(\langle n-1 \rangle)$.

Proof. Put $B(m) = \langle m \rangle || B$ and define the functor $F = F_n : R_k(\langle n \rangle || B, \langle n \rangle, B) \rightarrow R_k(\langle n-1 \rangle || B, B)$ in the following way: $(V, U, \gamma)F = (V, U_{B(n-1)}, \gamma_{B(n-1)})$ on objects and $(\mu, \nu)F = (\mu, \nu_{B(n-1),B(n-1)})$ on morphisms.

Let $(\mu, \nu)F = 0$. It follows from the equalities $(\mu, \nu_{B(n-1),B(n-1)}) = 0$, $\gamma \nu = \mu \gamma'$ and the definition of $\langle n \rangle \parallel B$ -maps that $\mu = 0$, $\nu_{B,B} = 0$, $\nu_{B,\langle n \rangle} = 0$, $\nu_{\langle n \rangle,B} = 0$ and $\gamma_{\langle n \rangle} \nu_{\langle n \rangle,\langle n \rangle} = 0$; hence $\mu = 0$ and $\nu = 0$ (since $\gamma_{\langle n \rangle}$ is an isomorphism in mod k). Thus, the functor F is faithful.

Let $(\alpha,\beta):(V,U,\gamma)F \to (V',U',\gamma')F$ is a morphism of $R_k(\langle n-1\rangle || B, B)$. Consider the following morphism (μ,ν) of $R_k(\langle n\rangle || B, \langle n\rangle, B): \mu = \alpha$, $\nu_{\langle n\rangle,B} = 0$, $\nu_{B,\langle n\rangle} = 0$, $\nu_{n,\langle n-1\rangle} = 0$, $\nu_{\langle n-1\rangle,\langle n-1\rangle} = 0$, $\nu_{B,B} = \beta_{B,B}$, and $\nu_{\langle n-1\rangle,n}$, $\nu_{n,n}$ are uniquely given by the equality $\gamma_{\langle n-1\rangle}\nu_{\langle n-1\rangle,n} + \gamma_n\nu_{n,n} = \alpha\gamma_n'$ (since $\gamma_{\langle n\rangle}$ is an isomorphism in mod k). It is easy to see that $(\mu,\nu)F = (\alpha,\beta)$, and hence the functor F is full.

Show, finally, that for each object $(V,U,\gamma)\in R_k(\langle n-1\rangle || B,B)/J(\langle n-1\rangle)$ there exist an object $(\overline{V},\overline{U},\overline{\gamma})\in R_k(\langle n\rangle || B,\langle n\rangle,B)$ such that $(\overline{V},\overline{U},\overline{\gamma})F=(V,U,\gamma)$. Since the map $\gamma_{\langle n-1\rangle}:V\to U_{\langle n-1\rangle}$ is an epimorphism (in mod k), it can be "continue" to some iso-morphism $\gamma':V\to U_{\langle n-1\rangle}\oplus U'$ (U' is a k-space). Then in the capicity of an object $(\overline{V},\overline{U},\overline{\gamma})$ can take the following representation: $\overline{V}=V$, $\overline{U}=U\oplus U'$ with $\overline{U}_X=U_X$ for $x\in B(n-1)$, $\overline{U}_n=U'$, and $\overline{\gamma}=(\gamma,\gamma_n')$, where γ_n' is the map of V into $U'=\overline{U}_n$ induced by γ' .

Thus, the functor F realize equivalence between the categories indicated in our Proposition.

Second step: a removal of the invertibility condition for γ_B . Besides the category

 $R_k(S) = R_k^-(S)$ of representations of the poset S we shall consider the category $R_k^+(S)$ with objects the triples (V,U,γ) , where $V \in \text{mod } k \ U \in \text{mod }_S k$ and $\gamma \in \text{Hom}_k(U,V)$, and with morphisms $(V,U,\gamma) \to (V',U',\gamma')$ the pairs (μ,ν) of linear maps $\mu \in \text{Hom}_k(V,V')$, $\nu \in \text{Hom}_{S,k}(U,U')$ such that $\gamma \mu = \nu \gamma'$. Denote by I_0^{\pm} the object (k,0,0) of $R_k^{\pm}(S)$ (then $I_0 = I_0^-$).

For an arbitrary poset C and $x \in C$ introduce the objects I_x^+ and $I_{x,1}^+$ analogous to the objects $I_x = I_x^-$ and $I_{x,1} = I_{x,1}^-$ of $R_k(C) = R_k^-(C)$: $:I_x^+ = (0,U,0)$ and $I_{x,1}^+ = (k,U,1)$, where $U_x = k$ and $U_y = 0$ for $y \neq x$. Put $J^+(C) = \{I_x^+ \mid x \in C\}$, $E^+(C) = I_0^+ \cup \{I_x^+, I_{x,1}^+ \mid x \in C\}$, $J^-(C) = J(C)$, $E^-(C) = E(C)$. If S is a poset and $C \subset S$, the map of U_C into V induced by a map $\gamma \in \operatorname{Hom}_k(U,V)$ (where $U \in \operatorname{mod}_S k$ and $V \in \operatorname{mod} k$) is denoted by γ_C (as for $\gamma \in \operatorname{Hom}_k(V,U)$).

Proposition 2. There exist a full and faithful functor $G_n: R_k^-(\langle n \rangle || B, B) \to R_k^+(\langle n-1 \rangle || B)$ that realize equivalence between the categories $R_k^-(\langle n \rangle || B, B)/J^-(\langle n \rangle)$ and $R_k^+(\langle n-1 \rangle || B)/E^+(\langle n-1 \rangle)$.

Note that Proposition 2 remove the invertibility conditon for γ_B , but we go out beyond the considered categories (the categories of representations of posets); in connection with this see Third step.

Proof of the Proposition. Define first the functor $G=G_n$ on objects: $(V,U,\gamma)G=(\overline{V},\overline{U},\overline{\gamma})$, where $\overline{V}=U_{\langle n\rangle}$, $\overline{U}_{\langle n-1\rangle}=U_{\langle n\rangle/1}$, $\overline{U}_B=U_B$ with $\overline{U}_i=U_{i+1}$ for $i=1,\ldots,n-1$, $\overline{U}_x=U_x$, for any $x\in B$, $\overline{\gamma}_{\langle n-1\rangle}$ is the natural inclussion (of $\overline{U}_{\langle n-1\rangle}$ into \overline{V}) and $\overline{\gamma}_B=\gamma_B^{-1}\gamma_{\langle n\rangle}$. Define now the functor G on morphisms: $(\mu,\nu)G=(\overline{\mu},\overline{\nu})$, where $\overline{\mu}=\nu_{\langle n\rangle,\langle n\rangle}$, $\overline{\nu}_{\langle n-1\rangle,\langle n-1\rangle}=\nu_{\langle n\rangle,\langle n\rangle,i}$, $\overline{\nu}_{B,B}=\nu_{B,B}$, $(\overline{\nu}_{\langle n-1\rangle,B}=0$, $\overline{\nu}_{B,\langle n-1\rangle}=0$). It is easy to see that $(\overline{\mu},\overline{\nu})$ is a morphism of the category $R_k^+(\langle n-1\rangle || B)$ (when it is considered that the equality $\gamma\nu=\mu\gamma'$ is equivalent to the equalities $\gamma_{\langle n\rangle}\nu_{\langle n\rangle,\langle n\rangle}=\mu\gamma'_{\langle n\rangle,\langle n\rangle}$ and $\gamma_B\nu_{B,B}=\mu\gamma'_B$).

The functor G is faithful: $(\mu, \nu)G = 0$ implies $\nu = 0$ (since $\nu = \nu_{\langle n \rangle, \langle n \rangle} \oplus \nu_{B,B}$) and $\mu = 0$ (since $\mu \gamma_B' = \gamma_B \nu_{B,B}$ and γ_B' is an isomorphism in mod k).

The functor G is full: if (α, β) is a morphism from $(V, U, \gamma)G$ to $(V', U', \gamma')G$, then $(\mu, \nu)G = (\alpha, \beta)$ for the following morphism (μ, ν) of $R_{\overline{k}}(\langle n \rangle \parallel B, B)$: : $\mu = \gamma_B \beta_{B,B} (\gamma'_B)^{-1}$, $\nu_{\langle n \rangle, \langle n \rangle} = \alpha$, $\nu_{B,B} = \beta_{B,B}$.

It is obvious that objects XG don't contain of direct summands from $J^+(\langle n-1\rangle)$. Show that each object $Y = (V, U, \gamma)$ from $R_k^+(\langle n-1\rangle || B)/J^+(\langle n-1\rangle)$ is isomorphic to some XG. Since any indecomposuble object of $R_k^+(\langle n-1\rangle)$ is isomorphic to an object

from $E^+(\langle n-1 \rangle)$ (see [1]), the object $Y = (V, U, \gamma)$ is isomorphic to an object $Y' = (V', U', \gamma')$ such that $V' = W \oplus U'_{(n-1)}$ (W is a k-space) and $\gamma'_{(n-1)}$ is the natural inclusion (of $U'_{(n-1)}$ into V'). Then, as is easily seen, in the capacity of an object $X \in R_k^-(\langle n \rangle || B, B)$ can take the following object $(\overline{V}, \overline{U}, \overline{\gamma}): \overline{\overline{V}} = U_B', \quad \overline{U}_{\langle n \rangle} = V', \quad \overline{U}_B = U_B', \text{ with } \overline{U}_1 = W, \quad \overline{U}_i = U_{i-1}' \text{ for } i = 2, ..., n, \quad \overline{U}_x = U_x', \text{ for any } \overline{U}_x = U_x'$ $x \in B$, and $\overline{\gamma}_{(n)} = \gamma'_B$, $\overline{\gamma}_B = 1_{\overline{\nu}}$.

Thus, the functor G realize equivalence between the categories $R_k^-(\langle n \rangle || B, B)$ and $R_k^+(\langle n-1 \rangle || B)/$ $J^+((n-1))$. Since XG is isomorphic to the object $I_0^+, I_{1,1}^+, \dots, I_{n-1,1}^+$ iff X is (respectively) isomorphic to the object $I_1^-, I_2^-, ..., I_n^-$, the functor G realize $R_k^-(\langle n \rangle || B, B) / J^-(\langle n \rangle)$ $R_k^+(\langle n-1\rangle || B)/E^+(\langle n-1\rangle)$. The Proposition is proved.

Third, final, step: use of reflections. The poset dual to a poset S is denoted by S^{op} . We identify S and S^{op} as sets (then $x \le y$ for S^{op} iff $x \ge y$ for S).

- 1. Nazarova L. A., Roiter A. V. Representations of partially ordered sets // Zap. Nauchn, Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI).— 1972.— N 28.— P. 5—31 (in Russian).
- 2. Gabriel P., Roiter A. V. Representations of finitedimensional algebras // Encyclopaedia of Math. Sci., Vol. 73, Algebra VIII.— Springer-Verlag, 1992, 177 p.
- 3. Nazarova L. A., Roiter A. V. Representations and forms of weakly completed posets // Linear Algebra and Represent. Theory. -- Kiev: Inst. Math., 1983. -- P. 19-54 (in Russian).
- 4. Nazarova L. A., Bondarenko V. M., Roiter A. V. Tame partially ordered sets with involution // Proc. Of Steklov Inst. Math. - 1990. - N 183. - P. 177-189 (in Russian).

Proposition 3. The categories $R_k^+(S)/I_0^+$ and $R_k^-(S)/I_0^-$ are equivalent.

Proof. With objects of $R_k^+(S)$ (respectively, $R_k^-(S)$) it is possible to associate (in a natural way) the representations of the guiver S^+ (respectively, S^{-}) consisting of the points 0, x, where $x \in S$, and the arrows $(x,0): x \to 0$ (respectively, $(0,x): 0 \to x$). Hence we may consider the functors of reflections (at the point 0) $S_0^+: R_k(S^+) \to R_k(S^-)$ and $S_0^-: R_k(S^-) \to R_k(S^+)$, where $R_k(S^-)$ and $R_k(S^+)$ are the category of representation (over k) of the quivers S^- and S^+ , respectively (see the definition of reflections in [8]). These functors induce the equivalence between the category $R_k^+(S)/I_0^+$ and $R_k^-(S^{op})/I_0^-$ (see [9]). Now our Theorem follows from Propositions 1-3 if take account that $\begin{array}{l} I_{1}^{\pm}S_{0}^{\pm}\cong I_{1,1}^{\mp},...,I_{n-2}^{\pm}S_{0}^{\pm}\cong I_{1,n-2}^{\mp}\,,\\ I_{1,1}^{\pm}S_{0}^{\pm}\cong I_{1}^{\mp},...,I_{1,n-2}^{\pm}S_{0}^{\pm}\cong I_{n-2}^{\mp}\,\,(\text{and}\ \, \end{array}$

 $\langle n-2\rangle^{op}\cong\langle n-2\rangle$).

- 5. Bondarenko V. M., Zavadskij A. G. Tame posets with equivalence relation // Contemporary Math.— 1992 (Part 2).— N 131.— P. 237—251.
- 6. Nazarova L. A., Roiter A. V. Representations of bipartite completed posets // Comment. Math. Helvetici.— 1988.— N 63.— P. 498—526.
- 7. Bondarenko V. M. On clasification of linear operators up to S-similarity // Dop. Ukr. Acad.— 1997.— N 10.— P. 16-20 (in Russian).
- 8. Bernstein I. N., Gelfand I. M., Ponomarev V. A. Coxeter functors and Gabriel's theorem // Uspechi Mat. Nauk.— 1973.— N 28.— P. 9—34 (in Russian).
- 9. Drozd Yu. A. Coxeter transformations and representations of partially ordered sets // Funktsional. Anal. i Prilozhen.-1974.— N 8.— P. 34—42 (in Russian).

Бондаренко В. М.

ПРО ЗОБРАЖЕННЯ З УМОВОЮ НЕВИРОДЖЕНОСТІ для одного класу частково впорядкованих **МНОЖИН**

Розглядаються зображення частково впорядкованої множини A U B, обмеження яких на A і Bc невиродженими матрицями; показано, як можна звільнитися від цих умов в одному частковому випадку.