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ON REPRESENTATIONS WITH NONSINGULARITY
CONDITIONS FOR CERTAIN CLASS OF POSETS

We consider such representations of a poset AU B restrictions of which on A and B are nonsingular matrices,
and show how to get rid of these conditions in one partial case.

In this paper we consider such representations
of a partially ordered set (poset) of the form AU B,
restrictions of which on the subsets A and B are (on
the matrix language [1]) square non-singular
matrices. We show how to get rid of these conditions,
when A is a linear ordered set. Our results can be
almost word for word extended to linear problems
that are given by vector space categories [2] (in
particular, to the problems considered in [3-—6]).

1. Formulation of the main result. Throughout
the paper, k denotes an arbitrary field; all posets
are finite and all vector spaces are finite-dimensional.
Under consideration linear maps, morphisms,
functors and so on we use the right-side notations.
Single-element subsets (of various sets) are identified
with the elements.

For a poset Sand a field £ we denote by modg &
(by analogy with the category of finite-dimensional
vector k-spaces modk) the category of Sspaces over
k[7],1. e. the category with objects the vector &-spaces
U=®,.sU, and with morphisms 8:U — U’ those
linear maps 6eHom(U,U’) for which &,,=0
if x>y or x and y are incomparable (such maps
are called S-maps); here &, denotes (as usual in
analogous situations) the linear map of U, into Uy,
induced by 8. The set of all SSmaps of U intoU’ (U
and U’ are S-spaces) is denoted by Homg ; (U,U").
If Uisa S-space and C < S,U denotes the subspace
®,ec U, cU; if, moreover, Vis a &-space and
yeHom (V,U), Yo denotes the map of VintoU¢
induced by y; if y is a map of a S-space U into a $-
space U'yc,p denotes the map of Uc into
Upinduced by .

Representation of a poset Sover k[1] is (in our
terms) a triple (V,U,y) formed by spaces V emod &,
Uemodg k , and a linear map yeHomy(V,U). A
morphism of representations (V, U,y) = (V), U,Y")
is given by a pair (u,v) of linear maps
peHom;(V,V') and veHomg ;(U,U’) such that
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yv = 1y'. Thus defined category is denoted by R;.(S) .
For a lower subsetCcS (i.e.yeC andx<y
implyxeC) we denote by R.(S,C) the full
subcategory ofR,(S) consisting of all
objects(V,U,y) withyc:V — U being isomorphism
(in modk); intersection of the full subcategories
R;(S,C) and R,.(S, D) is denoted by R, (S,C, D). If
Cis a poset, it representations (0,U,0) and (&, U,1),
whereU, =k andU, =0 fory=x (l:k—k is the
identity map), are denoted by I, and I,
respectively; the representation (&,0,0) is denoted by
Iy. Put E(C)=1y{l,I1|x €C}. Denote by(n)
the linear ordered set (chain) {I<2<.--<n}, n=0.
The direct sum of posets C'and Dis denoted by C || D
(i.e. C||D=CuUD,whereC D= and the order
relation of CUD is the smallest order relation
containing the order relations of C and D).C%
denotes the poset dual to C.

If M is a set of indecomposable (in our cases
mutually nonisomorphic) objects of an additive
category @, we denote by ®/M the full subcategory
of @ consisting of all objects without direct
summands from M (Yis a direct summand of X if
X is isomorphic to someY ® Z).

In this paper we shall prove the following
theorem.

Theorem. Let B be a poset and n>?2 a natural
number. Then the category R;.((n)||B,{n), B) is
equivalent to the category R, ((n-2)||B°)/
/E(n-2)). B

The casesn=0 and n=1 (which are not covered
by the Theorem) are trivial: the category
R;.({0)]| B,<0), B) is null, and indecomposable
object§ of the category R;(()||B,(l),B) are
exhausted (up to isomorphism) by the following
representations H(x)=(V,Uyy), xeB: U, =k,
Uy=0, foryeB, y=#x, V=U-=Up and
T =g~ 1



2. Proof of the theorem. Recall that a
functor F: ® > ¥ is called faithful (respectively,
full) if for an arbitrary X,Y eOb® the map
F:Homg(X,Y) > Homy (XF,YF) is injective
(respectively, surjective); a functor F is called dence
if each Y eOb ¥ is isomorphic to some XF (a
special case of a dence functor is a surjective on
objects functor, i.e. such that the map
F:0b®— Ob V¥ is surjective). According to the
well-known theorem a functor F'is equivalence of
categories iff it is full faithful and dence.

First step: a removal of the invertibility
condition for v, . For a poset Cput J(O)=
={I.|x eC}. B denotes (as earlier) an arbitrary
poset; 1 is a natural number.

Proposition 1. The category R, ((n)|| B, (n), B)
Is equivalent to the category RA.((n:l)llB, By/
/I(n~1). B

Proof. Put B(m) = (m) || B and define the functor
F =F,: R .({n)|| B, (n), B) > R.((n-1)|| B, B) in the
following wa)?: (V,U,y)F=(V,U,,(,,_|;,y,,(,,_,)) on
objects and (1, VIF = (1, V g, _y.ay) ON morphisms.

Let (1, V)F =0 . It follows from the equalities
(M Ve smon) =0, yv=py" and the definition of
(n)|| B-maps that p=0, vyz=0, v, =0,
Vs =0 and Y, Venm =0; hence p=0 and
v =0 (since y,,, is anisomorphism inmod & ). Thus,
the functor F is faithful.

Let (a,B): (V,Uy)F - (VU ¥)F is a mor-
phism of R, ((n—1){] B, B). Consider the following
morphism (1,v) " of Rk.((n)l_l B, {(n), B)y:p=0a,

Vo8 =0, vy =0, V=0, Voo =
= Baty.ta-y » VB B =Ppp, and Vin-1ns Vnn @aI€
uniquely given by the equality

YonetyVen-tyn T ¥aVan = 0¥, (since v, is an isomor-
phism inmodk). It is easy to see that
(4, V)F =(a,,B) , and hence the functor F is full.

Show, finally, that for each object
V,Uxy)e R((n-1lI B,B)/J((n—1)) there exist an
object (V,U,Y)e R, ((m)liB,(n),B) such that
V,UPF=V,Uy). Since the map
Y (n-1y -V > U,y is an epimorphism (in mod k), it
can be “continue” to some iso-morphism
Y1V > Uy ty®U' (U'is a k-space). Then in the
capicity of an object (V,U,¥) can take the following
representation: ¥V =V, U =U®U’ withU,=U,
forx e B(n-1), U,=U", and ¥ =(y,y.), where y|
is the map of V into U’ =U,, induced by y'.

Thus, the functor Frealize equivalence between
the categories indicated in our Proposition.

Second step: a removal of the invertibility
condition for 1vy,. Besides the category

R;.(S) = R; (S) of representations of the poset § we
shall consider the category Rj(S) with objects the
triples (V,U,y), where V' emodk U emodg k and
y € Hom (U,V) , and with morphisms
WV, U,y)—> (V,U',¥") the pairs (u,v) of linear maps
peHom, (V,V), veHomg, (U,U) such that
yu=vy'. Denote by I§ the object (k,0,0) of RE(S)
(then Iy=1j).

For an arbitrary poset Candx €C introduce
the objects I andI{; analogous to the objects
I,=I7 and I, =I5 of Ri(C)=R;(O):
17 =(0,U,0) and I, =(k,U,1), where U, = k and
U,=0 for y=x. Put JY(C)={Iy|xeC},
EYO) =1 VI I5lx eCY, I (O =J(C),E(O) =
=E(C). If Sis aposet and C < S, the map of
Uc into Vinduced by a map y € Hom, (U,V) (where
Uemodgk and V emodk) is denoted by v .(as
for y e Hom, (V,U)).

Proposition 2. There exist a full and faithful
functor G,:R;(m)||B, B)~> R{(n~1)||B) that
realize equivalence between the categories
R ((ny|| B, BY[J~((my) and R ((n—-1y|| BY E*((n-1)).

Note that Proposition 2 remove the invertibility
conditon for y,, but we go out beyond the
considered categories (the categories of repre-
sentations of posets); in connection with this see
Third step.

Proof of the Proposition. Define first the
functorG =G, on objects: (V,U,7)G =(V,U,7),
where V = U(n} , ij(n~l) = U<n>“, (73 =Up with
U;=Uyfori=1..,n-1,U,=U,, forany xeB,
Y-y is the natural inclussion (of Uy,_yy into V')
and ¥, =Y;¥,. Define now the functor G on
morphisms: (W, v)G =(1,V), where L=V, .,
Vin-tyin-ty = Vimy iy s Ve =Ves, (Vs =0,
Ve =0). It is easy to see that (,v) is a
morphism of the category R} ((n~1)|| B) (whenitis
considered that the equality yv = ny s equivalent
to the equalities and
YsVas =HV3).

The functor G is faithful: (u,v)G =0 implies
v=0 (sincev=v, ,®vy;) and p=0 (since
WYz =7zVs, and yj is an isomorphism in mod k).

The functor G is full: if(x,B) is a morphism
from (V,U,y)G to (V',U',y)G, then (1,v)G =(a,f)
for the following morphism (,v) of Ry ((m)|| B, B):
D n=YBa s (Vs s Ve =@, Vps =Bga.

It is obvious that objects XG don’t contain of
direct summands from J*((n—1)). Show that each
object Y =(¥,U,y) from RE((n~D|| B /I (n-1)
is isomorphic to some XG. Since any indecompo-
suble object of R{ ((n~-1)) isisomorphic to an object

T
YimVemam = Wimim



from E*((n—-1)) (see [1]), the object Y =(¥,U,y) is
isomorphic to an object Y'=(V",U",y") such that
V'=W®U(,_, (W isa k-space) and Y,,.,, is the
natural inclusion (of U,_jy into?”). Then, as is
easily seen, in the capacity of an object
X eR; ((n)]| B, B) can take the following object
7,0,7): V=Ug, U,=V', Ug=Ug, with
O=W,U;=U;_ for i=2..,n, U, =U, forany
xeB,and ¥, =Y;, Y5 =17.

Thus, the functor G realize equivalence between
the categories Rj ((n)|| B, B) and R{((n-1)|| B)/
1J*((n-1)). Since XG is isomorphic to the object
I§ I}, Iy_yy iff X is (respectively) isomorphic to
the object I',15,...,1,, the functor G realize
equivalence R ((n)|| B, BY/ J~({n)) with
Rf(n-1)|| By/E*(n~1). The Proposition is
proved. B

Third, final, step: use of reflections. The poset
dual to a poset Sis denoted by S¥. We identify §
and S as sets (then x < y for S? iff x>y for ).
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IMPO 30BPAXKEHHA 3 YMOBOIO HEBUPOJIA2KEHOCTI
AJ OJHOI'O KITACY YACTKOBO BIIOPAAKOBAHMUMX
MHO2KHNH

PosrnsimaroTbest 300paskeHHsT YaCTKOBO BHOPSIAKOBaHOI MHOXMHU A U B, obMe-
JKEHHS IKUX Ha A i B ¢ HeBUPOMKEHUMI MaTPULISIMU; TTOKa3aHO, SIK MOXKHA 3BiJTbHM-
TUCS BilIl LINX YMOB B OQHOMY YaCTKOBOMY BMITANIKY.



