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ANALYTICAL APPROACH 
FOR CALCULATING THE CHEMOTAXIS 

u d c  577.3 SENSITIVITY FUNCTION

We consider the chemotaxis problem for a one-dimensional system. To analyze the interac­
tion of bacteria and an attractant, we use a modified Keller-Segel model, which accounts for 
the attractant absorption. To describe the system, we use the chemotaxis sensitivity function, 
which characterizes the nonuniformity of the bacteria distribution. In particular, we investi­
gate how the chemotaxis sensitivity function depends on the concentration of an attractant at 
the boundary of the system. It is known that, in the system without absorption, the chemotaxis 
sensitivity function has a bell shape maximum. Here, we show that the attractant absorption 
and special boundary conditions for bacteria can cause the appearance of an additional maxi­
mum in the chemotaxis sensitivity function. The value of this maximum is determined by the 
intensity of absorption.
K e y w o r d s :  chemotaxis, attractant, bacteria, absorption.

1. Introduction
It is well known that when a bacterium like E. coli 
is placed in some substance (which is called at­
tractant) with the concentration gradient, then 
the bacterium moves toward the attractant gradi­
ent. This phenomenon is known as the chemotaxis 
[1-6]. Although many interesting and significant re­
sults have been obtained in this area (e.g., see [7-22]), 
we are going to pay some attention to the process 
of the bacteria redistribution in the presence of an 
attractant.

Frequently, we do not need to know the exact spa­
tial distribution of bacteria in the system. What we 
need is just some numerical characteristics that could 
be measured in an experiment. One of them is the 
chemotaxis sensitivity function [6]. Namely, we will 
focus our attention on the one-dimensional system 
with an attractant that is injected into the system 
at the left boundary. Technically, it could be done by 
placing a capillary with the attractant [6]. The sys­
tem also contains bacteria which can interact with the 
attractant. To investigate the system, we will use the 
methodological approach that was developed in [6]. In 
particular, our main goal will be the chemotaxis sensi-
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tivity function, which characterizes the nonuniformity 
of the bacteria distribution. As was shown in [6], this 
function depends on the attractant concentration in 
a nontrivial way. Those results were obtained for the 
system with the linear distribution of an attractant, 
that can be realized in the case where bacteria do 
not absorb the attractant. Here, we consider a more 
complex situation. But first of all, we will make some 
comments about how we are to define the chemotaxis 
sensitivity function.

Consider a one-dimensional system, whose spatial 
coordinate x  can change from 0 to L (i.e. 0 < x <  
< L). Let it be that a function b(x) determines the 
spatial distribution of bacteria. We also assume that 
the system contains an attractant, and it is injected 
into the system at the left boundary with the help of 
some special capillary. The capillary, as is supposed, 
is placed within the region 0 < x <  rc, where rc 
is the size of the capillary. At the right boundary 
of the system, the concentration of the attractant is 
fixed at a level lower than it is at the left bound­
ary. Then the concentration of bacteria should be the 
highest at the left boundary, within the region of the 
capillary.

For the above-described one-dimensional system, 
the chemotaxis sensitivity function can be defined as
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follows [6]:

F =  —  ~ 1. (1)
rc

The parameter Pi, in formula (1) is the probability to 
find a bacterium within the region 0 <  x < rc, and it 
is determined like this:

rc

f  b(x)dx
Pb =  y ----------• (2)

f  b(x)dx 
o

Actually, in formula (1), we have the ratio of the prob­
ability Pb for a bacterium to be within the region of 
the capillary, to the probability ^  for a bacterium 
to be within the region of the capillary, if bacteria 
are distributed uniformly in the system. Thus, the 
chemotaxis sensitivity function is a numerical char­
acteristics giving some notion of the bacteria dis­
tribution. If bacteria are distributed uniformly, then 
F =  0. In the general case, it can be of any sign. The 
greater the chemotaxis sensitivity function (by the 
modulus), the more nonuniform is the bacteria dis­
tribution.

It is also notable that, in the limiting case where 
rc -C L, we can rewrite the expression for the chemo­
taxis sensitivity function as [6]

„  W O )
F =  1 ----------

f  b(x)dx
(3)

Thus, to calculate the chemotaxis sensitivity func­
tion, it is enough to know the total amount of bac­
teria in the system and the concentration of bacteria 
at the left boundary.

Next, we consider a model that describes the one­
dimensional system with bacteria and an attrac- 
tant. It is assumed that bacteria are redistributed ac­
cording to the attractant gradient, and the attractant 
is absorbed by bacteria. As was mentioned above, to 
characterize such a system, we will use the chemotaxis 
sensitivity function.

2. Basic Model
To calculate the chemotaxis sensitivity function for 
the system with bacteria that absorb the attractant, 
we use a model of the Keller-Segel kind [23-25]. As

is known, the classical Keller-Segel model is based on 
the nonlinear partial differential equations [23]

dta(t,r) =  DaAa{t,r) + fi{a ,b ),  (4)
dtb(t,r) =  D bAb(t, r) +  f 2(a,b), (5)

where dt denotes the partial derivative with re­
spect to time t, 6(f,r) stands for the bacteria con­
centration, and a(t, r) is the attractant concentra­
tion. The parameters Da and Db are the diffusion 
coefficients. The function /i(a , b) accounts for the ab­
sorption and the secretion of the attractant, and the 
function /2 (a, b) defines the chemotactic flow of bac­
teria. If these functions are specified (as well as the 
boundary and initial conditions), then we can solve 
the system of equations (4)-(5), at least in a nu­
merical form [26-34]. As was mentioned above, the 
function /1 (a, b) describes the attractant absorption 
(the attractant secretion will be accounted by the 
boundary conditions). Our assumptions concerning 
this function are as follows:

• the intensity of the attractant absorption is pro­
portional to the bacteria density;

• at low attractant concentration, the intensity of 
the attractant absorption is proportional to the at­
tractant concentration;

• at high attractant concentrations, the intensity 
of the attractant absorption does not depend on the 
attractant concentration.

All these allow us to consider the function f\(a,b) 
to be like this:
fi(a,b) =  -  fci ab , (6)

CL 1 ~ r CL

where k] and oq are phenomenological parameters 
of the model. Our basic assumption for the function 
/ 2(0, 6) is that the bacteria flux j  5 is determined by 
the bacteria concentration, its gradient, and the gra­
dient of the attractant. In particular, we use the fol­
lowing formula for the bacteria flux:

j  b =  - D bVb + b<p(a)Va. (7)

The first term in Eq. (7) determines the flow of bac­
teria due to the diffusion, and, thus, Db stands for 
the diffusion coefficient. The second term determines 
the bacteria flow caused by the inhomogeneity of the 
attractant distribution. It is supposed that this par­
ticular term is proportional to the bacteria concen­
tration and to the attractant gradient. This term de-
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pends also on the attractant concentration in a non­
linear way. To account this dependence, we use the 
function tp{a).

Thus, we can rewrite the equation that determines 
the temporal evolution of the bacteria distribution. In 
particular, we have the following:

dtb =  D bAb -  V (bip(a)Vaj. (8)

In the stationary case, we get the equation, which ties 
the bacteria distribution and the attractant distribu­
tion:

D bAb — V (bip(a)Va^ =  0. (9)

It can be reduced to the first-order differential equa­
tion of the form

D bX/b — b<p(a)S7a =  0. (10)

For the one-dimensional geometry (where 0 < x < L), 
this equation with the boundary condition

u\z=0 = o (11)

(which means the zero bacteria flux at the left bound­
ary) produces the next formula determining the rela­
tion between the bacteria concentration b(x) and the 
attractant concentration a(x):

b(x) =  A exp j  1p(a)daj. (12)

The constant of integration A should be determined 
by another boundary condition for the bacteria dis­
tribution, which we will consider and discuss later.

To make some quantitative analysis, we have to 
specify the function <p(a) (and by it, the function 
/ 2(0, &)). Here, we take into account that the chemo- 
taxis bacteria flow is proportional to the attractant 
gradient at low attractant concentrations, it is de­
creased (down to zero) with increasing the attractant 
concentration, and it is also proportional to the bac­
teria concentration. According to this, we can present 
the function f 2(a,b) in the form

Fig. 1 . Bacteria concentration as a function of the attractant 
concentration. It is taken that a =  a 2 x 10p. The solid line 
shows the dependence by formula (15). The points (squares) 
correspond to the dependence that is presented with formula 
(16). It is also taken that N  ~  38.56 and C2/C1 ~  166.67

Then relation (12) between the bacteria and attrac­
tant concentrations can be rewritten like this:

b(x) =  A exp ' k2 1 \
. D b a2 +  a)

(15)

Equation (15} givgs th^relation between the bacte­
ria and attractant concentrations. We can compare 
it to the similar relation that was obtained in [6] in 
the particular case with a linear distribution of the 
attractant in the system (the system without absorp­
tion). It is of the form [6]

b(x) =  A
ci +  a(a:)VV 
c2 +  a(x)J ’

(16)

where A is a normalization constant (just the same 
as in Eq. (15)), c i,2 and N  are parameters of the 
model used in [6]. Formally, relations (15) and (16) 
are different. Nevertheless, numerical estimations for 
the dimensionless parameter N  give that N  1 for 
the real systems. So, if we perform the limiting tran­
sition N  — > oo, then formula (16) yields:

b(x) ~  A exp ( —N — — y—r\ (17)V V  c2 +  a(x)J

= (13)

with phenomenological parameters fc2 and a2- Thus, 
the function ip(a) is as follows:

V(a)
k2

(a2 +  a)2 '
(14)

We see that if c2 =  a2 and k2 =  D bN (c2 — ci), 
then Eqs. (15) and (17) determine the same depen­
dences. To estimate and to compare the dependences 
that are given by Eqs. (15) and (16), we use the fol­
lowing values for the parameters (according to the 
data in [6]): N  ss 38.56 and c2/c\ ~  166.67. Figure 1 
presents the bacteria concentration as a function of
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the attractant concentration, which is calculated ac­
cording to formulae (15) and (16). For the attractant 
concentration, it is taken that a =  a2 x 1(P. As we 
can easily see from Fig. 1, formulae (15) and (16) give 
actually the same dependences.

3. Attractant Distribution

In view of the previous results, we get the following 
differential equation for the stationary distribution of 
the attractant:

Da A.a(x) — ki A exp k2 1 \ a(x)
D ba2 +  a j  a i +  a(x) = 0• (18)

where the bacteria distribution is given by the expres­
sion

6(z>w-4exp( r r ^ 5 )} (25)
Thus, to solve the problem and to find the value of 
the chemotaxis sensitivity function (basing on some 
additional restriction imposed on the bacteria distri­
bution function b(z)), we have to specify the constant 
A in relation (25), to solve then Eq. (21) with the 
boundary conditions (22) and (23), and, after that, 
to calculate the chemotaxis sensitivity function F  ac­
cording to relation (24).

It should be supplemented with some boundary con­
ditions for the attractant concentration, and with 
an additional condition for the bacteria distribution 
function. We consider the boundary conditions for 
the attractant distribution, when the attractant con­
centration is fixed at the boundaries. This means that

4. Chemotaxis Sensitivity Function

Next, we consider the chemotaxis sensitivity function 
and, in particular, clarify how it depends on the at­
tractant concentration at the left boundary of the sys­
tem. It is understood that the chemotaxis sensitivity 
function reads

a(x =  0) =  Co, (19)
a(x =  L) =  Ci, (20)

and the parameters Co and C\ (we assume that Co > 
> Ci) are given.

Our next step deals with redefining some parame­
ters. In particular, for the sake of simplicity, we use 
the substitutions x =  Lz and a(x) =  a2s(z). Then we 
get the following equation:

s” (z) -  aAexp  =  o (21)
'  V 1 + s(z )J  A +  s(z) v ’

where we have used the parameters a  =  ^ , /3 =
=  jj l̂2 and A =  The boundary conditions are 
transformed to these ones:

s(z =  0) =  —  =  7o, (22)
a  2

s(z =  1) =  —  =  'll. (23)
a2

In this case, the chemotaxis sensitivity function F  is 
determined by the relation

f  b(z)dz
0

(24)

F  = m

fb(z)dz  
0

(26)

and it is formally independent of A. Nevertheless, the 
solution for the bacteria distribution s(z) is deter­
mined by Eq. (21), which contains the parameter A. 
So, the chemotaxis sensitivity function depends im­
plicitly on how we determine A. It depends, in turn, 
on the restriction we apply for the concentration b(z) 
of bacteria. Here, we will consider three regimes that 
specify the distribution of bacteria:

• the concentration of bacteria at the right bound­
ary is fixed;

• the total amount (or mass) of bacteria in the sys­
tem is fixed;

• the concentration of bacteria at the right bound­
ary is changed with changing the attractant concen­
tration, to supply the parameter A to be fixed.

Fixing the bacteria concentration at the right 
boundary, 6(1) =  B 1, gives the restriction

A exp ß
1 + 7 i

=  B  i. (27)

Let the value of the parameter B\ be given. Then, to 
solve the problem, we have to solve Eq. (21), which
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is transformed, in this case, to the following:

'(z )- aB1exp(IA - ) e x p ( - T- A ;y) s (~ )
A+s(z) =  0.

(28)

Then, knowing the distribution 5(2), we calcu­
late the chemotaxis sensitivity function according to 
Eq. (24). Figure 2 illustrates how the chemotaxis sen­
sitivity function depends on the attractant concentra­
tion at the left boundary of the system. I11 particular, 
we take 70 =  10p and 71 =  £70, where £ =  0.75 is 
fixed, and the parameter p changes from —3 to 3. We 
also took A =  10 and /3 — 38.56.

As we can see, the dependence of the chemotaxis 
sensitivity function on the attractant concentration at 
the left boundary (more precisely, on the parameter 
p) has a bell shape maximum. The value of the max­
imum depends on the parameters of the model. But 
the matter of fact is that the maximum exists, and 
that it is the only maximum.

Fixing the total amount of bacteria in the system 
JQ b(z) =  B2 gives the following restriction:

1

AJ exp{ - r r ^ ) dz = B*' m
0

In this case, to find the chemotaxis sensitivity func­
tion, we have actually to solve a system of equa­
tions. The first one is Eq. (21). It contains the pa­
rameter A. On the other hand, this parameter is to 
satisfy relation (29), which contains, in turn, the solu­
tion s(z) of Eq. (21). Numerical calculations for this 
problem show that the dependence of the chemotaxis 
sensitivity function on the attractant concentration 
(at the left boundary) is the same qualitatively as in 
the previous case (when we fix the bacteria concentra­
tion at the right boundary). Figure 3 compares these 
two cases. It contains the plots for the chemotaxis 
sensitivity functions that were calculated a) with a 
fixed bacteria concentration at the right boundary, 
and b) with a fixed total amount of bacteria in the 
system.

The third scenario is when we change the con­
centration of bacteria at the right boundary syn­
chronously with changing the attractant concentra­
tion at the left boundary. In particular, we take the

Fig. 2. Dependence of the chemotaxis sensitivity function on 
the attractant concentration at the left boundary. It is taken 
that 70 =  10p, 71 =  £ 70, A =  10, and (3 =  38.56. The dotted 
line is for the value a B i =  1 , the dashed line is for the value 
a B i =  10, and the solid line is for the value aB\ =  100

Fig. 3. Dependence of the chemotaxis sensitivity function on 
the attractant concentration at the left boundary. It is taken 
that 70 =  10p, 71 =  £ 70? A =  10, and /3 =  38.56. The dashed 
line is for the value olB\ =  10 (the bacteria concentration at 
the right boundary is fixed), and the solid line is for the value 
aB 2 =  100 (the total amount of bacteria is fixed)

following boundary condition for the bacteria con­
centration:

&(i) =  s 3 exp (3°)

This gives the condition A =  B3 for solving Eq. 
(21). Figure 4 shows how the chemotaxis sensitivity 
function looks like in this case. The most important 
thing is that it may have two maxima. In particular, 
increasing the value of the product aB 3 leads to the
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Fig. 4- Dependence of the chemotaxis sensitivity function on 
the attractant concentration at the left boundary. It is taken 
that 70 =  10p, 71 =  £ 70, A =  10, and /3 =  38.56. The dotted 
line is for the value a i?3 =  100, the dashed line is for the value 
aBs =  500, and the solid line is for the value 0 /3,3 =  1000

Fig. 5. Chemotaxis sensitivity function and the bacteria to­
tal amount. It is taken that 70 =  10p, 71 =  £ 70, A =  10, 
/3 =  38.56, the value otBz — 1000. The dotted line shows 
the concentration of bacteria at the right boundary, the solid 
line shows the total amount of bacteria in the system, and 
the dashed line demonstrates how the chemotaxis sensitivity 
function depends on the attractant concentration at the left 
boundary of the system. The bacteria concentration is taken 
without multiplier B3 (which is a constant)

appearance of an additional maximum at high con­
centrations of the attractant. So, it is clear that this 
effect is caused by the attractant absorption. It is also 
notable that the way we take the boundary condition 
for bacteria is of importance. Figure 5 illustrates how 
the total amount of bacteria and the bacteria concen­
tration at the right boundary are changed with chang-

Fig. 6 . Attractant distribution s(z)/70 for the different values 
of the parameter p (it is taken that 70 =  10p, 71 =  £ 70, A =  10, 
/3 =  38.56, and the value 01B3 =  1000): the solid line is for the 
value p =  0, the dashed line is for the value p =  0.9, the dash- 
dotted line is for the value p =  1.3, the solid line with triangular 
markers is for the value p =  2, and the dotted line is for the 
value p =  4

Fig. 7. Bacteria distribution 6(z)/6(0) for the different values 
of the parameter p (it is taken that 70 =  10p, 71 =  £ 70, 
A =  10, /3 =  38.56, the value C1B3 =  1000): the solid line is 
for the value p =  0, the dashed line is for the value p =  0.9, 
the dash-dotted line is for the value p =  1.3, the solid line with 
triangular markers is for the value p =  2, and the dotted line 
is for the value p =  4

ing the attractant concentration at the left boundary 
of the system. All these characteristics are normal­
ized to the B 3 constant. For the sake of simplicity, 
Fig. 5 also contains the plot for the chemotaxis sen­
sitivity function. What we can see is that the region 
of the second additional maximum coincides with the 
region, where the bacteria concentration is increased.
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5. Discussion

So, when we fix the bacteria concentration at the right 
boundary or the total amount of bacteria in the sys­
tem, then the chemotaxis sensitivity function has a 
bell shape maximum. It has a quite obvious expla­
nation [6]. Matter of fact is that when we increase 
the attractant concentration, then the gradient of the 
attractant concentration is increased as well. Due to 
increasing the gradient, the bacteria distribution be­
comes more nonuniform, and, thus, the chemotaxis 
sensitivity function is increased. But, at high levels of 
the attractant concentration, the bacteria reaction on 
the attractant gradient is decreased. In other words, 
bacteria “do not feel” the gradient, when the attrac­
tant concentration is significant. Thus, the bacteria 
distribution becomes more uniform, and the chemo­
taxis sensitivity function is decreased. From physio­
logical point of view, this can be explained in the 
way a bacterium behaves in the system with an at­
tractant. What we know is that every bacterium has 
receptors which can interact with an attractant (e.g., 
see [6] and references therein). The amount of re­
ceptors that are in interaction with the attractant 
determines the methylation level of the bacterium 
[6]. Any bacterium moves straight with a constant 
velocity. But, from time to time, it changes the direc­
tion of its motion. These acts are called tumbles. It is 
generally accepted that the new direction of motion 
is selected randomly. The frequency of tumbles de­
pends on the methylation level of the bacterium. The 
greater the methylation level, the smaller the tum­
ble frequency. Actually, this is the simplified mecha­
nism of how bacteria behave within the system with 
an attractant. It is clear that if the attractant con­
centration is high enough, then the methylation level 
can be at the highest possible level. Thus, bacteria 
cannot react to the changes of the attractant concen­
tration [6].

In our model, the effect of the bell shape chemo­
taxis sensitivity function can be explained, if we 
account for the relation between the bacteria and 
attractant concentrations (see equation (15) and 
Fig. 1). It gives that when the attractant concentra­
tion is high, then the bacteria concentration is at the 
saturation level. The further increase of the attrac­
tant concentration does not change the bacteria con­
centration. Thus, the presence of the gradient of the 
attractant concentration is not tested by bacteria.

The situation with two maxima of the chemotaxis 
sensitivity function is explained in the way that when 
we change the bacteria concentration at the right 
boundary, then we actually change the total amount 
of bacteria in the system. If bacteria did not absorb 
an attractant, then the change of their total amount 
would not affect the attractant distribution. In turn, 
it would not change the bacteria distribution. Due 
to the attractant absorption, increasing the total 
amount of bacteria in the system changes the at­
tractant distribution. The situation is illustrated in 
Fig. 6, where the plots are presented for the attrac­
tant distribution s(z)/70 for different values of the 
parameter p. In particular, we can see that, at the 
value p =  0, the distribution is almost linear. With 
the further increase of the parameter p, the distribu­
tion becomes more nonlinear, but then it comes back 
to the almost linear trend. Say, for the value p =  4 
(the solid line in Fig. 6), the attractant distribution 
is very close to the distribution for the value p =  0 
(the dotted line in Fig. 6).

The bacteria distribution is changed in a slightly 
different way. Figure 7 contains plots for the bacteria 
distribution b(z)[h(0) in the system for some values 
of the parameter p. For example, for p =  0 (the solid 
line in Fig. 7), it decreases monotonously from the 
left boundary to the right boundary. With increasing 
the value of the parameter p , the slope of the curve is 
decreased (in Fig. 7, see the dashed line for p — 0.9) 
simultaneously with appearing the minimum in the 
distribution (in Fig. 7, see the dash-dotted line for 
p =  1.3 and the solid line with triangular markers for 
p =  2). Then decreasing the value of the minimum 
gives the almost homogeneous distribution of bacte­
ria in the system (in Fig. 7, see the dotted line for 
P =  4).
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АНАЛІТИЧНИЙ ПІДХІД 
ЩОДО РОЗРАХУНКУ ФУНКЦІЇ 
ЧУТЛИВОСТІ ХЕМОТАКСИСУ

Р е з ю м е

Досліджується проблема хемотаксису для одновимірної си­
стеми. Аналіз взаємодії бактерій з атрактантом виконується 
на основі модифікованої моделі Келлера-Зегеля. Для опису 
системи використовується функція чутливості хемотаксису, 
яка є характеристикою неоднорідності розподілу бактерій. 
Зокрема, вивчається питання про те, як функція чутливо­
сті хемотаксису залежить від концентрації атрактанту на 
границях системи. Відомо, що системи без абсорбції атра­
ктанту описуються функцією чутливості хемотаксису з ма­
ксимумом куполоподібної форми. В даній роботі показано, 
що абсорбція атрактанту та спеціальні граничні умови мо­
жуть зумовити виникнення додаткового максимуму у фун­
кції чутливості хемотаксису. Величина такого максимуму 
визначається інтенсивністю абсорбції атрактанту.
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