
Ministry of Education and Science of Ukraine 
National University of "Kyiv-Mohyla Academy" 

Network Technologies Department of the Faculty of Informatics 

 

Development of CI / CD platform deployment automation module for 
group software development 

Text part of master work  
in specialty “Computer Science and Information Technologies” 112 

 

Coursework supervisor 
Cherkasov D.I. senior teacher, Ph.D. 

___________________________ 
(signature) 

“____” ____________ 2021 yr. 

 

Made by student 
Ivanov O.A 

“____” ____________ 2021 yr. 

 

 

 

Kyiv 2021 



Ministry of Education and Science of Ukraine 
National University of "Kyiv-Mohyla Academy" 

Network Technologies Department of the Faculty of Informatics 
APPROVED 

Head of Department of Computer Science 
associate professor of Computer Science 

_______________________ S.S. Gorokhovsky 
(signature)_____________________________ 

“____” ____________ 2020 yr. 
 
 
 

INDIVIDUAL TASK 
for master work 

For the student of the Faculty of Informatics of 1 course of master program 
THEME Development of CI / CD platform deployment automation module 
for group software development 
 
 
Output data: 
Text part content of coursework: 
An individual task 
Calendar plan 
Abstract 
Introduction 
Part 1: Problem statement. Existing approaches 
Part 2: Review of existing solutions and key principles 
Part 3: Solution development 
Summary 
References 
 
 
 
 
 
 
 
Issue date “____” ____________ 20   yr. Supervisor __________________ 
                                                                                     (signature) 

Task received __________________ 
(signature)__________  

  



Theme: Development of CI / CD platform deployment automation module for group 

software development 

Calendar plan of master work execution: 

№ Stage name Deadline Note 

1. Getting of master topic 20.03.2021  

2. Searching of appropriate literature 25.03.2021  

3. Part 1: Problem statement. Existing 
approaches 

01.04.2021  

4. Part 2: Review of existing solutions and key 
principles 

01.04.2021  

5. Part 3: Solution development 01.04.2021  

6. Documentation forming 25.04.2021  

14. Writing master work summary 01.05.2020  

15. Master work analysis with the supervisor 10.05.2021  

16. Master work changing according to the 
supervisor’s remarks 

20.05.2021  

17. Creating of the presentation 05.06.2021  

18. Defending of the master work 17.06.2021  

 

  

Student Ivanov O.A. 
Supervisor Cherkasov D.I. 
“____” ________________ 
 

  



ABSTRACT ....................................................................................................................... 5 

INTRODUCTION .............................................................................................................. 6 

1. PROBLEM STATEMENT. EXISTING APPROACHES .......................................... 8 

1.1 Delivery Pipeline ....................................................................................................... 8 

1.2 Azure DevOps ....................................................................................................... 9 

1.3 AWS CodeCommit CodeBuild CodeDeploy ...................................................... 11 

1.3.1 AWS CodeCommit ........................................................................................... 11 

1.3.2 AWS CodeBuild ............................................................................................... 12 

1.3.3 AWS CodeDeploy............................................................................................. 12 

1.4 GCP Cloud Build ................................................................................................. 13 

2. REVIEW OF EXISTING SOLUTIONS AND KEY PRINCIPLES ........................... 15 

2.1 Continuous Integration ............................................................................................ 15 

2.2 The deployment pipelines ....................................................................................... 17 

2.3 Tools and approaches for CI/CD ............................................................................ 19 

3. SOLUTION DEVELOPMENT ................................................................................... 22 

3.1 Creating Kubernetes ................................................................................................ 22 

3.1.1 Kubernetes on Azure ......................................................................................... 22 

3.1.2 Kubernetes on GCP ........................................................................................... 26 

3.1.3 Kubernetes on AWS.......................................................................................... 31 

3.2 Jenkins installation into Kubernetes ....................................................................... 39 

3.3 Requirement’s installation and validation ........................................................... 43 

SUMMARY ..................................................................................................................... 50 

REFERENCES ................................................................................................................. 50 

ABBREVIATIONS AND TERMS .................................................................................. 53 

APPENDIX ...................................................................................................................... 54 

 

  



ABSTRACT  

 

 In the presented work we reviewed the main CI/CD principles and delivery 

workflow. We provided definition and benefits for each of part of the CI/CD.  

 Latter we covered definition of CI and CD. Provided tools analysis and narrowed 

audience for expected module. We have chosen the platform base and picked up clouds 

for developing solution. 

 After that we developed modules for automatics deployment into cloud as easiest 

for user as possible and created all necessary scripts with ability to integration in bigger 

system or launching out of the box. 

 In the end test runs were done for every script and compared result and difficult of 

managing. Based on achieved results we provided the feedback. 

  



INTRODUCTION  

  

Each day billions of ideas appears in human minds. Some of them dies right after 

born. Others stick to us and moving us forward, like new technologies, approaches, 

solutions and tools. This process helps mankind evolve. The ideas in IT sphere are 

different from other. Inside IT you should move faster than your competitors to bring your 

idea in life and delivery it to customer. A lot of brilliant ideas are died on the start, the 

reasons different, however most of them related to speed of development.  

Modern ideas are complicated and needs many resources and qualified workers. 

Especially high skilled developers, appropriate infrastructure, and environment for 

development. To became product every idea should pass SDLC through the delivery 

pipeline. And the main problem hided here. The development team might be super skilled, 

but due to poor integration process, they fail. Modern market proposes solutions for small 

teams and even to individuals, but they have limitation.  

The building effective CI\CD system from the very beginning of the project, or for 

idea evaluation, will help teams to be success faster, save time and costs. In real life even 

huge enterprise solution creates CI\CD for months. The startups and small team have no 

time for so long term.  

Another challenge that appears is infrastructure. Startups and small team, as usual, 

has limitation in money, so they must move to the cloud, this is cheaper, fast, and every 

cloud provider has a free plan, and some of the resources, even after ending of trial, 

remains free forever.  

Bringing automation into the process of creating CI\CD into the cloud will 

significantly reduce the time of preparation, will allow a small team to start faster, and 

increase chances for success in the future.  

What makes this paper relevant, as were stated before, is the fact of speedup 

development process, creating CI\CD from the very beginning, is crucial for startups. 

Moreover, if we bring this option as cloud agnostic solution it will allow teams to migrate 

faster and it is also increase chances for success.  



The objective of this paper is to analyze existing approaches to the problem 

solution, characterize, explore and solve main problems that might arise when 

automatically deploy CI\CD system into the cloud. As a result of the research, a 

automation module for deployment CI\CD into the cloud should be developed and tested. 

The object of study in this paper is automatic creation of CI\CD in the cloud 

environment. 

The research methods include analyzing of available articles, papers, best practices, 

and development of a working module for automatic deploy CI/CD platform in the cloud. 

 



1. PROBLEM STATEMENT. EXISTING APPROACHES  

1.1 Delivery Pipeline 

Every time that you start project you should know the release date (the point in time 

then end user will be able to use your product). A lot of estimation, planning and other 

activities could be done before, but this date will be delayed due to bugs or undetected 

defects in software. 

  

Figure 1.1 The delivery pipeline 

 

On the Figure 1.1 shown general approach of Software delivery. Code, that was 

written by developer, should pass through all this stages. On the other hands: such 

structure is not implemented at every project. Common situations that code deployed 

manually, or test coverage is low and as a result CI system are not informative.  

 Continuous Integration, Delivery, and Deployment are relatively new development 

practices that have gained a lot of popularity in the past few years. Continuous Integration 

is all about validating software as soon as it's checked in to source control, more or less 

guaranteeing that software works and continues to work after new code has been written. 

Continuous Delivery succeeds Continuous Integration and makes software just a click 

away from deployment. Continuous Deployment then succeeds Continuous Delivery and 

automates the entire process of deploying software to your customers (or your own 

servers).[2] 

If Continuous Integration, Delivery, and Deployment could be summarized with 

one word, it would be Automation. All three practices are about automating the process 

of testing and deploying, minimizing (or eliminating) the need for human intervention, 

minimizing the risk of errors, and making building and deploying software easier up to 



the point where every developer in the team can do it (so you can still release your 

software when that one developer is on vacation or crashes into a tree).[2]  

And automation should be done with appropriate tools and approaches. The speed 

and quality of implementation CI\CD system into your project will make a significant 

impact on your software quality, also it will decrease time to market for your product.  

However, you should have qualified engineers in your team to make CI/CD system 

up and running in a short time with high quality. If you’re working in a large company 

with good competency, it won’t be hard, but for small teams, startups, and for single 

enthusiasts, CI/CD launch from scratch could become a problem. The main idea of this 

work is to make their life easier. 

 
1.2 Azure DevOps  

 
Azure DevOps is a cloud solution from Microsoft that helps developers build 

software faster and better. The composition includes the following services: 

1.  Azure Pipelines - CI service support for any language, connection to GitHub and 

any Git repository. 

2.  Azure Boards - a powerful workflow control tool: kanban boards, job logs, 

dashboards and custom reports. 

3.  Azure Artifacts - Maven, npm and NuGet channels. 

4.  Azure Repos - Closed cloud repositories Git unlimited storage for project files 

Joint requests for inclusion, improved file management and more. 

5.  Azure Test Plans - a comprehensive solution for planning and random testing. 

All Azure DevOps services are open and extensible. They are perfect for any type 

of application, regardless of environment and platform. They can be used together as a 

comprehensive DevOps solution or separately with other services [15]. 

 Azure Boards - Plan, track, and discuss work across teams. Define and update 

issues, bugs, user stories, & other work with customizable Scrum, Kanban, and Agile 

tools. The Azure Boards app for Microsoft Teams enables users to perform the following 

tasks: 



1. Set up and manage subscriptions for creating and updating work items 

2. Manage other work item events 

3. Receive and manage notifications for work item events in their Teams channel 

4. Create work items from conversations in the channel 

5. Search and share work items with other members in the channel using the 

messaging extension 

6. View work item previews from their URLs to initiate discussions and keep the 

conversations contextual. 

Azure Pipelines automatically builds and tests code projects to make them available 

to others. It works with just about any language or project type. Azure Pipelines combines 

continuous integration (CI) and continuous delivery (CD) to test and build your code and 

ship it to any target constantly and consistently. Implementing CI helps to catch bugs early 

in the development cycle, which makes them less expensive to fix. Automated tests 

execute as part of the CI process to ensure quality. Artifacts are produced from CI systems 

and fed to release processes to drive frequent deployments. The Build service in TFS helps 

you set up and manage CI for your applications. Deploying and testing in multiple 

environments drives quality. CI systems produce the deployable artifacts including 

infrastructure and apps. Automated release processes consume these artifacts to release 

new versions and fixes to existing systems. Monitoring and alerting systems run 

continually to drive visibility into the entire CD process. The Release service in TFS helps 

you set up and manage CD for your applications. Continuous Testing (CT) on-premises 

or in the cloud is the use of automated build-deploy-test workflows, with a choice of 

technologies and frameworks, that test your changes continuously in a fast, scalable, and 

efficient manner [15]. 

Azure Artifacts is a package management solution integrated into Azure DevOps 

that allows developers to create and share Maven, npm, and NuGet packages via feeds 

that can be both public and private to an organization with teams of any size. Azure 

Artifacts also allows include upstream feeds into configured package feeds to allow to 

cache packages that applications are dependent. This allows developers to continue to take 



dependencies on packages that application is using even if they are no longer available 

from the original source feed [15].  

Azure Artifacts additionally allows team to store other artifacts on feed in what are 

called universal packages that can be customized to meet developer’s needs. One example 

of a universal package use case would be to host an internal PowerShell gallery where 

team could upload scripts and PowerShell modules that are used inside company [16]. 

Azure DevOps Services and TFS projects contain Git repositories, work items, 

builds, and releases. Azure DevOps and TFS provide rich and powerful tools everyone in 

the team can use to drive quality and collaboration throughout the development process. 

The easy-to-use, browser-based test management solution provides all the capabilities 

required for planned manual testing, user acceptance testing, exploratory testing, and 

gathering feedback from stakeholders [16]. 

 

1.3 AWS CodeCommit CodeBuild CodeDeploy 
  
1.3.1 AWS CodeCommit 

 

CodeCommit is a managed source control service that hosts private Git repositories. 

CodeCommit eliminates the need for managing your own source control system or scaling 

its infrastructure. CodeCommit could be used to store anything from code to binaries. It 

supports the standard functionality of Git, so it works seamlessly with existing Git-based 

tools. CodeCommit features: 

1. Fully managed service hosted by AWS. 

2. Encrypted repositories. 

3. Pull requests support. 

4. Scaling version control projects. 

5. No limit on the size of repositories or files. 

6. Integration with other AWS and third-party services. 

7. Migration to CodeCommit from any Git-based repository. 



CodeCommit provides a console for the easy creation of repositories and the listing 

of existing repositories and branches. In a few simple steps, users can find information 

about a repository and clone it to their computer, creating a local repo where they can 

make changes and then push them to the CodeCommit repository. Users can work from 

the command line on their local machines or use a GUI-based editor. [17] 

 

1.3.2 AWS CodeBuild 

 

AWS CodeBuild is a fully managed build service in the cloud. CodeBuild compiles 

source code, runs unit tests, and produces artifacts that are ready to deploy. CodeBuild 

eliminates the need to provision, manage, and scale own build servers. It provides 

prepackaged build environments for popular programming languages and build tools such 

as Apache Maven, Gradle, and more. You can also customize build environments in 

CodeBuild to use your own build tools. CodeBuild scales automatically to meet peak build 

requests. [18] CodeBuild benefits: 

1. Fully managed (CodeBuild eliminates the need to set up, patch, update, and manage 

your own build servers). 

2. On demand (CodeBuild scales on demand to meet your build needs. You pay only 

for the number of build minutes you consume). 

3. Out of the box (CodeBuild provides preconfigured build environments for the most 

popular programming languages). 

 

1.3.3 AWS CodeDeploy 

 

AWS CodeDeploy is a deployment service that enables developers to automate the 

deployment of applications to instances and to update the applications as required. 

CodeDeploy can deploy application content that runs on a server and is stored in Amazon 

S3 buckets, GitHub repositories, or Bitbucket repositories. CodeDeploy can also deploy 



a serverless Lambda function. You do not need to make changes to your existing code 

before you can use CodeDeploy. CodeDeploy benefits: 

1. Server, serverless, and container applications. 

2. Automated deployments. 

3. Maximizing application availability during update. 

4. Automatic or manual rolling back. 

5. Centralized control and tracking deployment status. 

6. Concurrent deployments. 

CodeDeploy provides two deployment type options: 

In-place deployment: The application on each instance in the deployment group is 

stopped, the latest application revision is installed, and the new version of the application 

is started and validated.  

Blue/green deployment: The behavior of your deployment depends on which 

compute platform you use. For example, Blue/green on an AWS Lambda compute 

platform: Traffic is shifted from your current serverless environment to one with your 

updated Lambda function versions. You can specify Lambda functions that perform 

validation tests and choose the way in which the traffic shifting occurs. All AWS Lambda 

compute platform deployments are blue/green deployments. For this reason, you do not 

need to specify a deployment type. [19] 

 
1.4 GCP Cloud Build 

 

Cloud Build is a service that executes your builds on Google Cloud Platform's 

infrastructure. Cloud Build can import source code from a variety of repositories or cloud 

storage spaces, execute a build to your specifications, and produce artifacts such as Docker 

containers or Java archives. 

Build config can be created by team to provide instructions to Cloud Build on what 

tasks to perform. Team can configure builds to fetch dependencies, run unit tests, static 

analyses, and integration tests, and create artifacts with build tools such as docker, gradle, 

maven, bazel, and gulp. Cloud Build executes build as a series of build steps, where each 



build step is run in a Docker container. Executing build steps is analogous to executing 

commands in a script. Development team can either use the build steps provided by Cloud 

Build and the Cloud Build community, or write your own custom build steps: 

1. Build steps provided by Cloud Build: Cloud Build has published a set of supported 

open-source build steps for common languages and tasks. 

2. Community-contributed build steps: The Cloud Build user community has provided 

open-source build steps. 

3. Custom build steps: You can create your own build steps for use in your builds. 

Each build step is run with its container attached to a local Docker network named 

cloudbuild. This allows build steps to communicate with each other and share data. 

Standard Docker Hub images could be used in Cloud Build, such as Ubuntu and Gradle. 

[20] 

The following steps describe, in general, the lifecycle of a Cloud Build build: 

1. Prepare your application code and any needed assets. 

2. Create a build config file in YAML or JSON format, which contains instructions 

for Cloud Build. 

3. Submit the build to Cloud Build. 

4. Cloud Build executes your build based on the build config you provided. 

5. If applicable, any built images are pushed to Container Registry. Container Registry 

provides secure, private Docker image storage on Google Cloud. 

  



2. REVIEW OF EXISTING SOLUTIONS AND KEY PRINCIPLES 
 

2.1 Continuous Integration 
 

Continuous integration was first written about in Kent Beck’s book Extreme 

Programming Explained (first published in 1999). As with other Extreme Programming 

practices, the idea behind continuous integration was that, if regular integration of your 

codebase is good, why not do it all the time? In the context of integration, “all the time” 

means every single time somebody commits any change to the version control system. As 

one of our colleagues, Mike Roberts, says, “Continuously is more often than you think” 

[1]. 

Continuous integration (CI) is the process of integrating new code written by 

developers with a mainline or “master” branch frequently throughout the day. This 

contrasts with having developers working on independent feature branches for weeks or 

months at a time, merging their code back to the master branch only when it is completely 

finished. Long periods of time in between merges means that much more has been 

changed, increasing the likelihood of some of those changes being breaking ones. With 

bigger changesets, it is much more difficult to isolate and identify what caused something 

to break. With small, frequently merged changesets, finding the specific change that 

caused a regression is much easier. The goal is to avoid the kinds of integration problems 

that come from large, infrequent merges. [3] 

In order to make sure that the integrations were successful, CI systems will usually 

run a series of tests automatically upon merging in new changes. When these changes are 

committed and merged, the tests automatically start running to avoid the overhead of 

people having to remember to run them—the more overhead an activity requires, the less 

likely it is that it will get done, especially when people are in a hurry.[1] 

The outcome of these tests is often visualized, where “green” means the tests passed 

and the newly integrated build is considered clean and failing or “red” tests means the 

build is broken and needs to be fixed. With this kind of workflow, problems can be 

identified and fixed much more quickly.[3] 



Continuous integration represents a paradigm shift. Without continuous integration, 

your software is broken until somebody proves it works, usually during a testing or 

integration stage. With continuous integration, your software is proven to work (assuming 

a sufficiently comprehensive set of automated tests) with every new change—and you 

know the moment it breaks and can fix it immediately. The teams that use continuous 

integration effectively can deliver software much faster, and with fewer bugs, than teams 

that do not. Bugs are caught much earlier in the delivery process when they are cheaper 

to fix, providing significant cost and time savings. Hence, CI an essential practice for 

professional teams, perhaps as important as using version control.[1] 

Here are few benefits that have made continuous integration essential to any 

software development lifecycle.[4] 

Early Bug Detection: If there is an error in the local version of the code that has 

not been checked previously, a build failure occurs at an early stage. Before proceeding 

further, the developer will be required to fix the error. This also benefits the QA team 

since they will mostly work on builds that are stable and error-free. 

Reduces Bug Count: In any application development lifecycle, bugs are likely to 

occur. However, with Continuous Integration and Continuous Delivery being used, the 

number of bugs is reduced a lot. Although it depends on the effectiveness of the automated 

testing scripts. Overall, the risk is reduced a lot since bugs are now easier to detect and fix 

early. 

Automating the Process: The Manual effort is reduced a lot since CI automates 

build, sanity, and a few other tests. This makes sure that the path is clear for a successful 

continuous delivery process. 

The Process Becomes Transparent: A great level of transparency is brought in 

the overall quality analysis and development process. The team gets a clear idea when a 

test fails, what is causing the failure and whether there are any significant defects. This 

enables the team to make a real-time decision on where and how the efficiency can be 

improved. 



Cost-Effective Process: Since the bug count is low, manual testing time is greatly 

reduced and the clarity increases on the overall system, it optimizes the budget of the 

project. 

 

2.2 The deployment pipelines 

 

 Continuous integration is an enormous step forward in productivity and quality for 

most projects that adopt it. It ensures that teams working together to create large and 

complex systems can do so with a higher level of confidence and control than is achievable 

without it. CI ensures that the code that we create, as a team, works by providing us with 

rapid feedback on any problems that we may introduce with the changes we commit. It is 

primarily focused on asserting that the code compiles successfully and passes a body of 

unit and acceptance tests. However, CI is not enough.[2] 

 Continuous delivery is the next step of continuous integration in the software 

development cycle; it enables rapid and reliable development of software and delivery of 

product with the least amount of manual effort or overhead. In continuous integration, as 

we have seen, code is developed incorporating reviews, followed by automated building 

and testing. In continuous delivery, the product is moved to the preproduction (staging) 

environment in small frequent units to thoroughly test for user acceptance. The focus is 

on understanding the performance of the features and functionality related issues of the 

software. This enables issues related to business logic to be found early in the development 

cycle, ensuring that these issues are addressed before moving ahead to other phases such 

as deployment to the production environment or the addition of new features. Continuous 

delivery provides greater reliability and predictability on the usability of the intended 

features of the product for the developers. With continuous delivery, your software is 

always ready to release and the final deployment into production is a manual step as per 

timings based on a business decision.[5] 

The benefits of the continuous delivery process are as follows: 

- Developed code is continuously delivered 



- Code is constantly and regularly reviewed 

- High-quality software is deployed rapidly, reliably, and repeatedly 

- Maximum automation and minimal manual overhead 

The tools that perform continuous integration do the job of continuous delivery as well. 

 Continuous deployment is the fully matured and complete process cycle of code 

change, passing through every phase of the software life cycle to be deployed to 

production environments. Continuous deployment requires the entire process to be 

automated--also termed as automated application release--through all stages, such as the 

packaging of the application, ensuring the dependencies are integrated, deployment 

testing, and the production of adequate documentation for compliance.[3] 

The benefits of continuous deployment and automated application release are as 

follows: 

- Frequent product releases deliver software as fast as possible 

- Automated and accelerated product releases with the code change 

- Code changes qualify for production both from a technical and quality viewpoint 

- The most current version of the product is ready in shippable format 

- Deployment modeling reduces errors, resulting in better product quality 

- Consolidated access to all tools, process and resource data leads to quicker 

troubleshooting and time to market 

- Effective collaboration between dev, QA, and operation teams leads to higher 

output and better customer satisfaction 

- Facilitates lower audit efforts owing to a centralized view of all phase activities

  

At an abstract level, a deployment pipeline is an automated manifestation of your 

process for getting software from version control into the hands of your users. Every 

change to your software goes through a complex process on its way to being released. 

That process involves building the software, followed by the progress of these builds 

through multiple stages of testing and deployment. This, in turn, requires collaboration 

between many individuals, and perhaps several teams. The deployment pipeline models 



this process, and its incarnation in a continuous integration and release management tool 

is what allows you to see and control the progress of each change as it moves from version 

control through various sets of tests and deployments to release to users.[1] 

  

 

Figure 2.1 Basic deployment pipeline  

 

 The on figure 2.1 is a logical demonstration of how software will move along the 

various stages in this lifecycle before it is delivered to the customer or before it is live in 

production.  

  

2.3  Tools and approaches for CI/CD 
 

As was discussed in previous sections the main target for us is to make life easier 

for small teams or even individuals. So, we focused on free reliable tools that could be 

managed without specific knowledge and experience. Also, we should keep in mind that 

after some time the small team could grow and even a startup with 2 persons can grow 

into a huge company. So scaling is also important. We will start from most popular tool 

Jenkins.  

Jenkins is a self-contained, open-source automation server which can be used to 

automate all sorts of tasks related to building, testing, and delivering or deploying 

software. Jenkins can be installed through native system packages, Docker, or even run 

standalone by any machine with a Java Runtime Environment (JRE) installed.[6]  

  



Jenkins key features: 

 Easy installation and upgrade to various operating systems 

 Simple and easy to use interface 

 Extensible with a huge community-based plugin resource 

 Easy configuration of the environment in the user interface 

 Supports distributed master-slave architecture builds 

 Build schedules based on phrases 

 Supports execution of Windows shells and commands in pre-build steps 

 Supports notification of build status 

 

Another one is TeamCity. [7] TeamCity is the build management and continuous 

integration server for JetBrains. TeamCity is a continuous integration tool which helps to 

develop and deploy various types of projects. TeamCity runs in a Java environment and 

integrates Visual Studio and IDEs. The tool can be installed on both Windows and Linux 

servers, and supports projects like. NET and open stack. 

TeamCity 2020.1 provides conditional construction steps, allows build agents to be 

launched into a Kubernetes cluster, and integrates with Azure DevOps and Jira Software 

Cloud. It introduces more functionality in a multi-node system to secondary servers, 

comes with a new Slack notifier, and has several major enhancements to the experimental 

UI.  

TeamCity key features: 

 Provides several ways for the subproject to reuse parent project settings and 

configurations 

 The parallel runs jobs on various environments simultaneously 

 Allows to build history, view test history reports, pin, tag and add favorites 

 Easy to customize, interact and server extension 

 Keeps the CI Server stable and functional 



 Flexible user management, assignment of user roles, grouping of users, different 

user authentication methods and a log with all user actions to ensure transparency 

of all server activities.  

Also, a lot of other tools and solution present on market for example: Bamboo, 

CircleCI, GitLab, Travis CI, etc. [8]  

Let’s make a choice. Each of mentioned tools has both advantages and 

disadvantages. However, we should keep in mind that the solution will be used by users 

with low experience in CI/CD and most likely with limitations in money. Based on it we 

will develop module for automatic installation CI/CD systems into cloud environment. 

Each of cloud provider has trial plan that could be used for some time, and always free 

resources. Using this approach, we will save team from the responsibility of managing 

dedicated resources and reduce cost at the start.  

The platform for CI/CD will be Kubernetes. The key benefits – portability. Each of 

AWS GCP Azure has Kubernetes as a Platform. Soo migration will be easy. And it could 

be run on local machine using Minikube. We rejected pure Docker as it has no power for 

auto-recovery and scaling as Kubernetes has.  



3. SOLUTION DEVELOPMENT 

 

3.1 Creating Kubernetes 

3.1.1 Kubernetes on Azure 

The base requirement for us is creating Kubernetes in a cloud provider. There are 

two options for how Kubernetes could be run – full managed cluster (IaaS approach. We 

should create necessary resources and install Kubernetes on them.) Or use existing service 

for Kubernetes (PaaS approach. We will get Kubernetes but underlying resources are not 

our responsibility).  

First one will be Azure cloud. Solution will be created in PowerShell and bash and 

script will be same, as all commands will be used Azure CLI.  

The assumption for successful script execution is – all necessary software were installed 

on client machine. They are: azure cli (az module) and PowerShell or bash. The check for 

this software will be executed in validation module. In this way the error handling 

principle will be implemented.  

The next part of code responsible for user login into cloud account. It will clear all 

previous session for current user in Windows for Azure and initiate clean login. 
  
Write-Host "All necessary software installed. " 
 
#login into cloud. 
#Azure login will prompt user for login into cloud env; 
Clear-AzContext -Scope CurrentUser -Force 
az login 
 

After execution of this part PowerShell will open default browser with login prompt 

figure 3.1. 



 
Figure 3.1 Login prompt for Azure  

 

This will be the one interaction in script, all other steps are automated. And will be 

executed without user intervention. 

Before we start cluster creation, we should create resource group. This is logical 

separation in Azure environment, and it helps in resource organization and management. 

[9] 
#creating infrastructure I'll use the cheapest region in USA 
az group create --name $AzureResourceGroupName --location eastus  

 

In this part of script the resource group will be created. How ever the name for it is 

configurable and set in variable $AzureResourceGroupName. It was done for automation 

and integration, and this name will be reused later in the script.  

Next step is deploying Kubernetes cluster itself. The Azure has clear and full 

documentation so let’s use it – QuickStart: Deploy an Azure Kubernetes Service cluster 

using the Azure CLI [10] 

 



 
#enabling monitoring recording to Azure recommendation  https://docs.microsoft.com/en-
us/azure/aks/kubernetes-walkthrough 
az provider register --namespace Microsoft.OperationsManagement 
az provider register --namespace Microsoft.OperationalInsights 
 
#creating AKS cluster  
az aks create --resource-group $AzureResourceGroupName --name $AzureClusterName --node-
count 1 --enable-addons monitoring --generate-ssh-keys 
 
#Inastalation of kubectl 
az aks install-cli 
 
#Configure kubectl to work with newle created cluster 
az aks get-credentials --resource-group $AzureResourceGroupName --name $AzureClusterName --
overwrite-existing  

 

This code section responsible for Azure Kubernetes Service installation. According 

to best practices and Azure recommendation we will enable monitoring, then we will 

create cluster with one node below the param --node-count responsible for this. Also, 

cluster should have name, and again for automation and integration porpoise we are using 

variable $AzureClusterName.  

After execution of script next warning appeared figure 3.2 

Figure 3.2 Warning after first run 

 

From the first perspective it is only warning. However, it has significant impact of 

the script execution and helm charts implementation. Without this values in PATH next 

part of scrip will not work as expected. 

For the fix, this next function was introduced:  
#Function for PATH modification 
function Set-PathVariable { 
    param ( 
        [string]$AddPath, 
        [string]$RemovePath 
    ) 
    $regexPaths = @() 
    if ($PSBoundParameters.Keys -contains 'AddPath'){ 
        $regexPaths += [regex]::Escape($AddPath) 
    } 
 
    if ($PSBoundParameters.Keys -contains 'RemovePath'){ 
        $regexPaths += [regex]::Escape($RemovePath) 
    } 



     
    $arrPath = $env:Path -split ';' 
    foreach ($path in $regexPaths) { 
        $arrPath = $arrPath | Where-Object {$_ -notMatch "^$path\\?"} 
    } 
    $env:Path = ($arrPath + $addPath) -join ';' 
} 
  

This function will allow modification of PATH value and add new one if the not 

exist there.  The call for function will have next order: 
#Section will contain necessary patch updates. 
#Adding patches  
 
$addPathKubectl=$env:HOMEDRIVE+$env:HOMEPATH+'\.azure-kubectl' 
$addPathKubelogin=$env:HOMEDRIVE+$env:HOMEPATH+'\.azure-kubelogin' 
 
Set-PathVariable -AddPath $addPathKubectl; 
Set-PathVariable -AddPath $addPathKubelogin;  

 

For automation and integration, we have used system variables to HomeDrive and 

HomePath. After script restart and cleanup, we can see created resources in Azure portal 

figure 3.3 

 

Figure 3.3 Created resource in Azure 

 



According to documentation two resource group were created for AKS they are 

Jenkins-ci-test and MC_jenkins-ci-test_jenkins-ci-test_eastus. Two others responsible for 

monitoring. Let’s connect to the created cluster and check if it’s operable.  
PS C:\WINDOWS\system32> kubectl cluster-info 
Kubernetes master is running at https://jenkins-ci-jenkins-ci-test-8903b4-
f23210f8.hcp.eastus.azmk8s.io:443 
healthmodel-replicaset-service is running at https://jenkins-ci-jenkins-ci-test-8903b4-
f23210f8.hcp.eastus.azmk8s.io:443/api/v1/namespaces/kube-system/services/healthmodel-
replicaset-service/proxy 
CoreDNS is running at https://jenkins-ci-jenkins-ci-test-8903b4-
f23210f8.hcp.eastus.azmk8s.io:443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy 
Metrics-server is running at https://jenkins-ci-jenkins-ci-test-8903b4-
f23210f8.hcp.eastus.azmk8s.io:443/api/v1/namespaces/kube-system/services/https:metrics-
server:/proxy 
 
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'. 
 
PS C:\WINDOWS\system32>   

Cluster up and running.  

 

3.1.2 Kubernetes on GCP  

For Kubernetes installation in GCP we should have installed GCP SDK and 

PowerShell or bash. Also, we should keep in mind that some resources and they activation 

in GCP could be done only manually. Depending on our choices we should install 

appropriate component in addition to SDK. We should login first. 
#GCP clean login information  
gcloud auth revoke --all 
#Login into GCP 
gcloud auth login  

Like in previous section we cleaned up before login. And then forced user to login. 

The result of this code is shown on figure 3.4 



 

Figure 3.4 Login prompt for GCP  

 

 To procced with working in clean GCP account we should create project. Google 

Cloud projects form the basis for creating, enabling, and using all Google Cloud services 

including managing APIs, enabling billing, adding and removing collaborators, and 

managing permissions for Google Cloud resources.[11]  

For creating project, we should provide project id and project name. For this 

porpoise we will use variables. Also, to make clear context we will set newly created 

project as a default for next operations. The code for this activity below. 
#to operate in GCP Project should be created. 
 
$GCPProjectID='jenkins-into-gke2' 
$GCPProjectName='Jenkins-ci' 
 
gcloud projects create $GCPProjectID --name=$GCPProjectName --set-as-default   
 

After executing the project will be created in GCP console figure 3.5 



  

Figure 3.5 Project list in GCP cloud 

 

Next step in organization infrastructure in GCP is chouse the cluster type. We 

should review and pick up the most suitable Kubernetes cluster for us. Based on 

documentation One autopilot cluster or zonal cluster per billing account is free. [12] 

Autopilot is a new mode of operation in Google Kubernetes Engine (GKE) that is 

designed to reduce the operational cost of managing clusters, optimize your clusters for 

production, and yield higher workload availability. The mode of operation refers to the 

level of flexibility, responsibility, and control that you have over your cluster. In addition 

to the benefits of a fully managed control plane and node automations, GKE offers two 

modes of operation: 

 Autopilot: GKE provisions and manages the cluster's underlying infrastructure, 

including nodes and node pools, giving you an optimized cluster with a hands-off 

experience. 

 Standard: You manage the cluster's underlying infrastructure, giving you node 

configuration flexibility. 

With Autopilot, you no longer have to monitor the health of your nodes or calculate 

the amount of compute capacity that your workloads require. Autopilot supports most 



Kubernetes APIs, tools, and its rich ecosystem. You stay within GKE without having to 

interact with the Compute Engine APIs, CLIs, or UI, as the nodes are not accessible 

through Compute Engine, like they are in Standard mode. You pay only for the CPU, 

memory, and storage that your Pods request while they are running.[13]  

Based on this information our choice is the autopilot cluster. Let’s use information 

about cluster creation from SDK. From the very beginning we faced with limitation In 

GCP Kubernetes Engine API can be activated only in manual way. So, user should 

navigate to console and enabled API figure 3.6 

 

 

Figure 3.6 API activation at GCP 

 

After activation we should additionally install necessary component for GCP SDK. 

In our case it is beta [14]. Creation for cluster will be done by next command 
#Create autopilot cluster in us zones  
gcloud container clusters create-auto $GCPclusterName --project $GCPProjectID --region "us-
central1"  
 

After cluster creation we should connect to it. The connection information will be grab 
in the command 
#Get connection info for cluster 
gcloud container clusters get-credentials $GCPclusterName --region us-central1 --project 
$GCPProjectID 
  

The result of cluster installation on figure 3.7 
  



 

Figure 3.7 Cluster status in GCP 

For the test purpose let's install Jenkins into the newly created cluster. We will use 

the default version and helm to make sure that cluster scaling allocates necessary 

resources. Code for test installation below:  
#installing Jenkins into cluster 
 
#create new name space for Jenkins 
kubectl create namespace $GCPKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $GCPKubernetesNameSpace  

  

However, after 30 minutes the deployment failed with CrashLoopBackoff, the 

output on figure 3.8 

 

Figure 3.8 Failed deployment into autopilot cluster 

Fast investigation uncovered problem with performance, the allocated resource in 

free tire is not enough for serving Jenkins itself. The output screen presented on figure 3.9  

 

Figure 3.9 Error output from failed container. 



Based on this information our new decision is regional cluster. It’s also free per one 

billing account but will need additional input for resource management. Let’s update 

cluster creation command.  
#Create zonal cluster in us zones 
gcloud container clusters create  $GCPclusterName --project $GCPProjectID --region "us-
central1" --num-nodes 1 
  

After cluster creation, Jenkins installation was run again. The result better than on 

autopilot cluster.  Jenkins managed to install and start in les then 4 minutes figure 3.10  

 

Figure 3.10 Test Jenkins on zonal cluster in GCP 

 

3.1.3 Kubernetes on AWS  

 

Let’s procced with creation Kubernetes in EKS. According to documentation we 

should have created a lot of resources before starting EKS such as:  

1. An existing VPC and a dedicated security group that meet the requirements for 

an Amazon EKS cluster. 

2. An existing Amazon EKS cluster IAM role. 

3. Installed aws cli. 

Investigation of documentations brig us next result. Before starting, we need the 

aws access key and secret key for configuration. For humans we use username and 

password for authentication. But to authenticate any program we use an access key and 

secret key. 

To get those things we have to go to AWS account from AWS Web Console. Then 

go to “IAM” service click on “Users” then click on “Add User” and create one user. 

Then click on “Programmatic access” and if you read the description of this access 

you can see, it’s giving us “access key” and “secret key” figure 3.11. 



 

Figure 3.11 Programmatic user creation 

 

As you may see on figure 3.11, we should pass 5 stages and only after that 

we can use that user. It is much more difficult in comparation to Azure or GCP. 

Then we should configure our user. To do it we should execute command aws 

configure and provide keys generated in previous step and few other params such 

as default region and output format figure 3.12  

 

 

Figure 3.12 AWS profile configuration. 

 Next step is creating an Amazon VPC with public and private subnets that 

meets Amazon EKS requirements [21].  To Do so we should use documentation. 

And commands below 

aws cloudformation create-stack \ 

  --region us-west-2 \ 

  --stack-name my-eks-vpc-stack \ 



  --template-url https://s3.us-west-2.amazonaws.com/amazon-

eks/cloudformation/2020-10-29/amazon-eks-vpc-private-subnets.yaml 

After execution we will get created stack in AWS portal figure 3.13  

 

 

Figure 3.13 VPC stack in AWS 

 

Next step is creating a cluster IAM role and attach the required Amazon EKS IAM 

managed policy to it. To do is we should create json file with next context.  

{ 

  "Version": "2012-10-17", 

  "Statement": [ 

    { 

      "Effect": "Allow", 

      "Principal": { 

        "Service": "eks.amazonaws.com" 

      }, 

      "Action": "sts:AssumeRole" 

    } 

  ] 

} 



 

The we should create roe by next command  

aws iam create-role --role-name myAmazonEKSClusterRole  --assume-role-policy-

document file://cluster-role-trust-policy.json  

Attach the required Amazon EKS managed IAM policy to the role. 

aws iam attach-role-policy --policy-arn 

arn:aws:iam::aws:policy/AmazonEKSClusterPolicy --role-name 

myAmazonEKSClusterRole  

The output of execution presented on figure 3.14  

 

 

 

Figure 3.14 Role creation and attachments 

 Next step is creating cluster itself.  To do so we should execute next code: 

aws eks create-cluster --region us-west-2 --name Jenkins-cluster --kubernetes-version 

1.20 --role-arn arn:aws:iam::415238675148:role/myAmazonEKSClusterRole --

resources-vpc-config subnetIds=subnet-0813b235fa2398ef1,subnet-

09eb728945497b023,securityGroupIds=sg-00b30ed6f8ba0e3c9 

 

The output of creation is next: 

 

    "cluster": { 



        "name": "Jenkins-cluster", 

        "arn": "arn:aws:eks:us-west-2:415238675148:cluster/Jenkins-cluster", 

        "createdAt": "2021-06-02T22:31:26.046000+03:00", 

        "version": "1.20", 

        "roleArn": "arn:aws:iam::415238675148:role/myAmazonEKSClusterRole", 

        "resourcesVpcConfig": { 

            "subnetIds": [ 

                "subnet-0813b235fa2398ef1", 

                "subnet-09eb728945497b023" 

            ], 

            "securityGroupIds": [ 

                "sg-00b30ed6f8ba0e3c9" 

            ], 

            "vpcId": "vpc-0ee001417fc2a8224", 

            "endpointPublicAccess": true, 

            "endpointPrivateAccess": false, 

            "publicAccessCidrs": [ 

                "0.0.0.0/0" 

            ] 

        }, 

        "kubernetesNetworkConfig": { 

            "serviceIpv4Cidr": "10.100.0.0/16" 

        }, 

        "logging": { 

            "clusterLogging": [ 

                { 

                    "types": [ 

                        "api", 

                        "audit", 



                        "authenticator", 

                        "controllerManager", 

                        "scheduler" 

                    ], 

                    "enabled": false 

                } 

            ] 

        }, 

        "status": "CREATING", 

        "certificateAuthority": {}, 

        "platformVersion": "eks.1", 

        "tags": {} 

    } 

} 

Cluster created and operable figure 3.15  

 

 

Figure 3.15 Created cluster in AWS 

 

 However proposed way is hard for automation, contains a lot of manual work and 

resources created. In this case, we should change the strategy to something more user-

friendly. AWS provided eksctl A command line tool for working with EKS clusters that 

automates many individual tasks. Let’s use it. The pre-requirements are: chocolatey, 

kubectl, eksctl, helm.  

 For cluster creation we should use next command 
eksctl create cluster --version=1.19 --name=jenkins-cluster --node-private-networking --
alb-ingress-access --region=us-west-2 --asg-access --without-nodegroup  

 

The output: 



 

PS C:\Users\Oleksii_Ivanov1> D:\User Files\NaukMA\Diploma\git\ci-instalation\Instalation_into_AWS.ps1 

2021-06-02 23:07:05 eksctl version 0.52.0 

2021-06-02 23:07:05 using region us-west-2 

2021-06-02 23:07:06 setting availability zones to [us-west-2a us-west-2d us-west-2c] 

2021-06-02 23:07:06 subnets for us-west-2a - public:192.168.0.0/19 private:192.168.96.0/19 

2021-06-02 23:07:06 subnets for us-west-2d - public:192.168.32.0/19 private:192.168.128.0/19 

2021-06-02 23:07:06 subnets for us-west-2c - public:192.168.64.0/19 private:192.168.160.0/19 

2021-06-02 23:07:06 using Kubernetes version 1.19 

2021-06-02 23:07:06 creating EKS cluster "jenkins-cluster" in "us-west-2" region with  

2021-06-02 23:07:06 if you encounter any issues, check CloudFormation console or try 'eksctl utils describe-stacks --

region=us-west-2 --cluster=jenkins-cluster' 

2021-06-02 23:07:06 CloudWatch logging will not be enabled for cluster "jenkins-cluster" in "us-west-2" 

2021-06-02 23:07:06 you can enable it with 'eksctl utils update-cluster-logging --enable-types={SPECIFY-YOUR-LOG-

TYPES-HERE (e.g. all)} --region=us-west-2 --cluster=jenkins-cluster' 

2021-06-02 23:07:06 Kubernetes API endpoint access will use default of {publicAccess=true, privateAccess=false} for 

cluster "jenkins-cluster" in "us-west-2" 

2021-06-02 23:07:06 2 sequential tasks: { create cluster control plane "jenkins-cluster", 2 sequential sub-tasks: { wait for 

control plane to become ready, 1 task: { create addons } } } 

2021-06-02 23:07:06 building cluster stack "eksctl-jenkins-cluster-cluster" 

2021-06-02 23:07:08 deploying stack "eksctl-jenkins-cluster-cluster" 

2021-06-02 23:07:38 waiting for CloudFormation stack "eksctl-jenkins-cluster-cluster" 

cluster-cluster" 

2021-06-02 23:20:24 waiting for CloudFormation stack "eksctl-jenkins-cluster-cluster" 

2021-06-02 23:20:30 waiting for the control plane availability... 

2021-06-02 23:20:30 saved kubeconfig as "C:\\Users\\Oleksii_Ivanov1/.kube/config" 

2021-06-02 23:20:30 no tasks 

2021-06-02 23:20:30 all EKS cluster resources for "jenkins-cluster" have been created 

2021-06-02 23:20:36 kubectl command should work with "C:\\Users\\Oleksii_Ivanov1/.kube/config", try 'kubectl get nodes' 

2021-06-02 23:20:36 EKS cluster "jenkins-cluster" in "us-west-2" region is ready 

After that we should install nodegroup  
eksctl create nodegroup --cluster=jenkins-cluster --region=us-west-2 --name=jenkins-server-
ng --managed --nodes=2 --node-labels="lifecycle=OnDemand,intent=jenkins-server"  

 

The output  

PS C:\Users\Oleksii_Ivanov1> eksctl create nodegroup --cluster=jenkins-cluster --region=us-west-2 --name=jenkins-server-

ng --managed --nodes=2 --node-labels="lifecycle=OnDemand,intent=jenkins-server" 

2021-06-02 23:25:33  eksctl version 0.52.0 

2021-06-02 23:25:33  using region us-west-2 

2021-06-02 23:25:34  will use version 1.19 for new nodegroup(s) based on control plane version 



2021-06-02 23:25:41  1 nodegroup (jenkins-server-ng) was included (based on the include/exclude rules) 

2021-06-02 23:25:41  will create a CloudFormation stack for each of 1 managed nodegroups in cluster "jenkins-cluster" 

2021-06-02 23:25:41  2 sequential tasks: { fix cluster compatibility, 1 task: { 1 task: { create managed nodegroup "jenkins-

server-ng" } } } 

2021-06-02 23:25:41  checking cluster stack for missing resources 

2021-06-02 23:25:42  cluster stack has all required resources 

2021-06-02 23:25:42  building managed nodegroup stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:25:42  deploying stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:25:42  waiting for CloudFormation stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:25:59  waiting for CloudFormation stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:29:42  waiting for CloudFormation stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:29:59  waiting for CloudFormation stack "eksctl-jenkins-cluster-nodegroup-jenkins-server-ng" 

2021-06-02 23:30:00  no tasks 

2021-06-02 23:30:00  created 0 nodegroup(s) in cluster "jenkins-cluster" 

2021-06-02 23:30:01  nodegroup "jenkins-server-ng" has 2 node(s) 

2021-06-02 23:30:01  node "ip-192-168-2-233.us-west-2.compute.internal" is ready 

2021-06-02 23:30:01  node "ip-192-168-94-190.us-west-2.compute.internal" is ready 

2021-06-02 23:30:01  waiting for at least 2 node(s) to become ready in "jenkins-server-ng" 

2021-06-02 23:30:01  nodegroup "jenkins-server-ng" has 2 node(s) 

2021-06-02 23:30:01  node "ip-192-168-2-233.us-west-2.compute.internal" is ready 

2021-06-02 23:30:01  node "ip-192-168-94-190.us-west-2.compute.internal" is ready 

2021-06-02 23:30:01  created 1 managed nodegroup(s) in cluster "jenkins-cluster" 

2021-06-02 23:30:03  checking security group configuration for all nodegroups 

2021-06-02 23:30:03  all nodegroups have up-to-date configuration 

 

After the installation we should validate cluster configuration. The result on figure 

3.16  

 

 

Figure 3.16 AWS cluster verification 

 To check functionality let’s install Jenkins 
$AWSKubernetesNameSpace='jenkins-ci-test' 
 
#installing jenkins into cluster 



 
#create new name space for Jenkins 
kubectl create namespace $AWSKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run instalation command 
helm install jenkins-test jenkins/jenkins --namespace $AWSKubernetesNameSpace 

 

The result of installation presented on figure 3.17  

 

 

 

Figure 3.17 Kubernetes pods in AWS 

 

 As we can see cluster works as expected. And we are ready to start deploying 

Jenkins. 

 

3.2 Jenkins installation into Kubernetes 

 

Based on previous section we have operable platform and now time to install 

Jenkins into Kubernetes cluster. To achieve the best performance and productivity we will 

use latest helm charts, that officially distributed. As we used the same platform 

(Kubernetes) across all cloud the helm chart could be simply reused in every scripts with 

small modification. For example, let’s start from installation into Kubernetes, based in 

Azure cloud. The initial script will be next: 
#installing Jenkins into cluster 
 
#create new name space for Jenkins 
kubectl create namespace $AzureKubernetesNameSpace 



 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run instalation command 
helm install jenkins-test jenkins/jenkins --namespace $AzureKubernetesNameSpace  

 

 First of all, we should create a namespace in the cluster, for better resources 

organization and management. Then we should include official repository with Jenkins’s 

helm chart. That repository is managed and supported by Jenkins team and huge 

community. Next step is updating repository to latest stable version. And final step is 

installation Jenkins via helm chart call. The output provided on figure 3.18  

 

 

Figure 3.18 Jenkins installation output 

 

 As we can see on the output the namespace was created. All updates were 

downloaded from the repository, and installation was launched. After few minutes we can 

check the status of deployment using kubectl figure 3.19. 

 

 

 

Figure 3.19 The deployment status check. 



 

 From the deployment status, we can see that Jenkins ready in approximately 5 

minutes. Last check we should be able to see the Jenkins Admin console to check the 

functionality of Jenkins itself. To achieve this we should use commands that provided on 

figure 3.13 First of all we should obtain Jenkins admin password (Good practice is change 

it immediately after installation.) kubectl exec --namespace jenkins-ci-test -it svc/jenkins-

test -c jenkins -- /bin/cat /run/secrets/chart-admin-password Execution and password 

present on Figure 3.20 

 

 

 

Figure 3.20 Jenkins password  

 

 The password stored inside the container so only user with access to cluster could 

get it and this matches security practices. The next command will allow us to see the 

Jenkins admin panel on local host. We will lunch port forwarding from cluster in cloud to 

local machine kubectl --namespace jenkins-ci-test port-forward svc/jenkins-test 

8080:8080 after executing we should be able to se Jenkins on 127.0.0.1:8080 with 

possibility to login with admin password figure 3.21  

 



 

 

Figure 3.21 Jenkins home page on local host 

  

To make it more usable for user and teams we will expose service to open world.  
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer --
namespace $AzureKubernetesNameSpace  

 

 After the execution Jenkins will be available on external public IP that allocated to 

cluster figure 3.22  

 

 

Figure 3.22 Jenkins with public IP 

 



 Based on project needs additional customization is possible for this installation. The 

main recommendation is to install backup plugin in addition to default plugins list.  

 

3.3 Requirement’s installation and validation 

 

To make scripts automation successful. Necessary software should be installed. 

Let’s start from the Azure cloud and configure PowerShell script to install az, kubectl, 

helm. To do so we will use chocolatey – it is package manager for windows. [22] 

The code provided below.  
 
#section will contain instalation for prereqired software helm cli for clouds, etc.  
#Install the package manager for Windows chocolately 
Set-ExecutionPolicy Bypass -Scope Process -Force; 
[System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object 
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1')) 
 
#install kubectl for cluster communication  
choco install kubernetes-cli 
#Install helm for chart operating 
choco install kubernetes-helm 
 
#install az for communication with Azure  
Install-Module -Name Az -Scope CurrentUser -Repository PSGallery -Force  

 

For testing purpose, we will create clear VM in Azure. Let’s download script and 

start execution. The output provided on figure 3.23. 



 

 

Figure 3.23 Automation installation on “clear” VM 

  

 However, after the installation of az module we faced with error, provided on figure 

3.24 

 

Figure 3.24 Error after installation of az module 

 



 That error mean that module az were installed but it is not accessible in current 

PowerShell run. So we should separate modules installation from the main script and put 

it into additional file, that should be execute separately. During this procedure let’s 

provide small update to minimize interaction with user with adding -y flag to chocolately 

calls.  

 To make test result more reliable we redeploy VM in Azure to het clear installation. 

And after downloading from git start installation. We already got waring from Windows 

system figure 3.25  

  

 

Figure 3.25 Security waring from Windows system 

 

Next interruption is related to additional modules that should be added to PowerShell 

figure 3.26  

 

 

 

Figure 3.25 Additional package installation for Windows system 

 

 After the confirmation, all necessary software were installed without any error. We 

should keep in mind, that PowerShell should be reopened to make az module available 

[23].   

The final code version for Azure cloud provided below 



 
#section will contain instalation for prereqired software helm cli for clouds, etc.  
#Install the package manager for Windows chocolately 
Set-ExecutionPolicy Bypass -Scope Process -Force; 
[System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object 
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1')) 
 
#Install puthon3 
choco install python3 
  
#install kubectl for cluster communication  
choco install kubernetes-cli -y 
#Install helm for chart operating 
choco install kubernetes-helm -y 
 
#install az for communication with Azure  
choco install azure-cli -y  

 

 As we have chosen the Kubernetes platform the tools set will have only few 

differences from cloud to cloud. For example, for AWS cloud we should install 

corresponding cli.  
#Install aws cli and eksctl  
choco install awscli -y 
choco install eksctl -y 
  

 The same situation for GCP 
#Install gcp sdk 
choco install gcloudsdk -y  

 

Let’s test full set of cli for every cloud on clear Windows machine. Execution time 

approximately 5 minutes. Full logs outputs could be found in appendix A. 

 Next step is translation from PowerShell to shell, that could be executed on Linux 

machines. To do it we will create separate file Requirements_instalation_Linux.sh 

After the launch on clear Linux machine (Ubuntu 20.04 were used). We can see 

that all necessary software were installed without any errors. Logs output below: 

oleksii@linux:~$ helm version 

version.BuildInfo{Version:"v3.6.0", GitCommit:"7f2df6467771a75f5646b7f12afb408590ed1755", 

GitTreeState:"clean", GoVersion:"go1.16.3"} 

oleksii@linux:~$ kubectl version 

Client Version: version.Info{Major:"1", Minor:"21", GitVersion:"v1.21.1", 

GitCommit:"5e58841cce77d4bc13713ad2b91fa0d961e69192", GitTreeState:"clean", BuildDate:"2021-05-13T02:40:46Z", 

GoVersion:"go1.16.3", Compiler:"gc", Platform:"linux/amd64"} 

The connection to the server localhost:8080 was refused - did you specify the right host or port? 

oleksii@linux:~$ az --version 

azure-cli                         2.24.2 

core                              2.24.2 



telemetry                          1.0.6 

Python location '/opt/az/bin/python3' 

Extensions directory '/home/oleksii/.azure/cliextensions' 

Python (Linux) 3.6.10 (default, Jun  2 2021, 06:55:51) 

[GCC 9.3.0] 

Legal docs and information: aka.ms/AzureCliLegal 

Your CLI is up-to-date. 

Please let us know how we are doing: https://aka.ms/azureclihats 

and let us know if you're interested in trying out our newest features: https://aka.ms/CLIUXstudy 

oleksii@linux:~$ aws --version 

aws-cli/1.18.69 Python/3.8.5 Linux/5.4.0-1047-azure botocore/1.16.19 

oleksii@linux:~$ eksctl version 

0.52.0 

oleksii@linux:~$ gcloud --version 

Google Cloud SDK 343.0.0 

alpha 2021.05.27 

beta 2021.05.27 

bq 2.0.69 

core 2021.05.27 

gsutil 4.62 

minikube 1.20.0 

skaffold 1.25.0 

oleksii@linux:~$ 

 

 Making this thing will allow us to launch any installation to any cloud by simple 

copping context of file. Let’s do it for Azure and launch on fresh created machine. The 

result provided on figures 3.26-3.27. 

 

 

Figure 3.26 Download and launch script 



 

 

 

Figure 3.27 Finished execution of installation script 

 

 As we can see from figure 3.26, we have downloaded script from GitHub, and 

launch on prepared machine without any modification in this script. Next step is checking 

the cloud resources and make sure that we have Jenkins installed in newly created 

Kubernetes cluster. The result provided on figure 3.28. 

 

 

Figure 3.28 Created cluster and installed Jenkins 

 



 The same configuration changes will be created for each cloud GCP and AWS. And 

placed in corresponding files. 

The repository available via https://github.com/AlexIvan0v/msdp . The last stage is 

update README.md file. As we have faced with limitation from GCP and AWS that can 

not be automated we should add them into description. 

  



SUMMARY  

 

In this work we introduced and described the most important requirements that 

CI/CD system must meet in order to satisfy developers needs. To accomplish this task we 

explored existing approaches, reviewed best practices, main CI/CD principles and 

delivery workflow. Deep analysis was performed on top cloud providers (AWS GCP 

Azure) to uncover native CI/CD tools such as Azure DevOps, AWS CodeBuild 

CodeDeploy, CodeCommit and GCP Cloud Build. Also we have reviewed Jenkins and 

TeamCity as a CI/CD systems. Based on modern trends and business needs the platform 

for CI/CD system installation was chosen (Kubernetes). 

In the next part of work was designed and created scripts for automation 

infrastructure provision for every cloud provider (AWS, GCP, Azure), and scripts for CI 

system installation on the created infrastructure. Each part of work was done in two scripts 

language PowerShell and shell. The test result was presented in the text and in the 

appendixes. Created scripts could be used as independent parts or could be included into 

some automation jobs for bigger solution.  

   

 Based on the development result we can tell that the most easiest solution was 

created for Azure than GCP and the hardest one for AWS. This could be explained by the 

numbers of parts that could not be automated such as API and Billing activation for GCP 

and IAM user creation in AWS. 

 The work results were published in public GitHub repository and they are open 
for everyone.   



REFERENCES 

 
1. “Continuous delivery: reliable software releases through build, test, and 

deployment automation” / Jez Humble, David Farley/RR Donnelley in 

Crawfordsville, Indiana./ August 2010 

2. “Continuous Integration, Delivery, and Deployment” / by Sander Rossel / Packt 

Publishing / 2018 

3. “Effective DevOps” / by Jennifer Davis, Ryn Daniels / Published by O’Reilly 

Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472./ May 

2018 

4.    

5. “DevOps: Continuous Delivery, Integration, and Deployment with DevOps” / 

by by Sricharan Vadapalli / Packt Publishing / March 2018 

6. https://www.jenkins.io/  

7. https://www.jetbrains.com/teamcity/  

8. https://www.zfort.com/blog/Devops-as-a-Service-Cloud-Computing-AWS-

GCP-Azure-AliBaba-DigitalOcean  

9. https://docs.microsoft.com/en-us/azure/azure-resource-

manager/management/manage-resource-groups-portal  

10. https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough  

11. https://cloud.google.com/resource-manager/docs/creating-managing-projects  

12. https://cloud.google.com/kubernetes-engine  

13. https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview  

14. https://cloud.google.com/sdk/docs/components  

15. https://azure.microsoft.com/en-au/services/devops/  

16. https://newsignature.com/articles/all-about-azure-artifacts/  

17. https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html  

18. https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html  



19. https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-

codedeploy.html  

20. https://cloud.google.com/build/docs/overview  

21. https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html  

22. https://docs.chocolatey.org/en-us/choco/setup#non-administrative-install  

23. https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-

windows?tabs=azure-powershell  

  



ABBREVIATIONS AND TERMS 

 

CI (Continuous Integration) – practice of merging all developers' working copies 

to a shared mainline several times a day. 

CD (Continuous delivery) – is  an extension of continuous integration since it 

automatically deploys all code changes to a testing and/or production environment after 

the build stage. 

CD (Continuous deployment) – is a practice, every change that passes all stages of 

your production pipeline is released to your customers. There's no human intervention, 

and only a failed test will prevent a new change to be deployed to production. 

SDLC (software development lifecycle) - is a framework that development teams 

use to produce high-quality software in a systematic and cost-effective way. 

 

  



APPENDIX 

Appendix A  

Log outputs for Windows machine for  

“Requirements_instalation_Windows.ps1” 

(Informative) 

Windows PowerShell 

Copyright (C) Microsoft Corporation. All rights reserved. 

Try the new cross-platform PowerShell https://aka.ms/pscore6                                                                                                                                          

PS C:\Users\oleksii> d:                                                                                                 PS D:\> cd .\msdp-main\                                                                       

PS D:\msdp-main> ls                                                                                                      

 

    Directory: D:\msdp-main 

 

 

Mode                 LastWriteTime         Length Name 

----                 -------------         ------ ---- 

-a----          6/4/2021   3:35 PM            876 Instalation_into_AWS.ps1 

-a----          6/4/2021   3:35 PM           2365 Instalation_into_Azure.ps1 

-a----          6/4/2021   3:35 PM           1288 Instalation_into_GCP.ps1 

-a----          6/4/2021   3:35 PM             66 README.md 

-a----          6/4/2021   3:35 PM            781 Requirements_instalation_Windows.ps1 

 

 

PS D:\msdp-main> .\Requirements_instalation_Windows.ps1 

 

Security warning 

Run only scripts that you trust. While scripts from the internet can be useful, this script can potentially harm your 

computer. If you trust this script, use the Unblock-File cmdlet to allow the script to run without this warning 

message. Do you want to run D:\msdp-main\Requirements_instalation_Windows.ps1? 

[D] Do not run  [R] Run once  [S] Suspend  [?] Help (default is "D"): r 

Forcing web requests to allow TLS v1.2 (Required for requests to Chocolatey.org) 

Getting latest version of the Chocolatey package for download. 

Not using proxy. 

Getting Chocolatey from https://community.chocolatey.org/api/v2/package/chocolatey/0.10.15. 

Downloading https://community.chocolatey.org/api/v2/package/chocolatey/0.10.15 to 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\chocoInstall\chocolatey.zip 

Not using proxy. 

Extracting C:\Users\oleksii\AppData\Local\Temp\chocolatey\chocoInstall\chocolatey.zip to 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\chocoInstall 



Installing Chocolatey on the local machine 

Creating ChocolateyInstall as an environment variable (targeting 'Machine') 

  Setting ChocolateyInstall to 'C:\ProgramData\chocolatey' 

WARNING: It's very likely you will need to close and reopen your shell 

  before you can use choco. 

Restricting write permissions to Administrators 

We are setting up the Chocolatey package repository. 

The packages themselves go to 'C:\ProgramData\chocolatey\lib' 

  (i.e. C:\ProgramData\chocolatey\lib\yourPackageName). 

A shim file for the command line goes to 'C:\ProgramData\chocolatey\bin' 

  and points to an executable in 'C:\ProgramData\chocolatey\lib\yourPackageName'. 

 

Creating Chocolatey folders if they do not already exist. 

 

WARNING: You can safely ignore errors related to missing log files when 

  upgrading from a version of Chocolatey less than 0.9.9. 

  'Batch file could not be found' is also safe to ignore. 

  'The system cannot find the file specified' - also safe. 

chocolatey.nupkg file not installed in lib. 

 Attempting to locate it from bootstrapper. 

PATH environment variable does not have C:\ProgramData\chocolatey\bin in it. Adding... 

WARNING: Not setting tab completion: Profile file does not exist at 

'C:\Users\oleksii\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1'. 

Chocolatey (choco.exe) is now ready. 

You can call choco from anywhere, command line or powershell by typing choco. 

Run choco /? for a list of functions. 

You may need to shut down and restart powershell and/or consoles 

 first prior to using choco. 

Ensuring Chocolatey commands are on the path 

Ensuring chocolatey.nupkg is in the lib folder 

Chocolatey v0.10.15 

Installing the following packages: 

python3 

By installing you accept licenses for the packages. 

Progress: Downloading vcredist2015 14.0.24215.20170201... 100% 

Progress: Downloading vcredist140 14.29.30037... 100% 

Progress: Downloading chocolatey-core.extension 1.3.5.1... 100% 

Progress: Downloading KB3033929 1.0.5... 100% 

Progress: Downloading chocolatey-windowsupdate.extension 1.0.4... 100% 

Progress: Downloading KB3035131 1.0.3... 100% 

Progress: Downloading KB2919355 1.0.20160915... 100% 



Progress: Downloading KB2919442 1.0.20160915... 100% 

Progress: Downloading KB2999226 1.0.20181019... 100% 

Progress: Downloading python3 3.9.5... 100% 

 

chocolatey-core.extension v1.3.5.1 [Approved] 

chocolatey-core.extension package files install completed. Performing other installation steps. 

 Installed/updated chocolatey-core extensions. 

 The install of chocolatey-core.extension was successful. 

  Software installed to 'C:\ProgramData\chocolatey\extensions\chocolatey-core' 

 

chocolatey-windowsupdate.extension v1.0.4 [Approved] 

chocolatey-windowsupdate.extension package files install completed. Performing other installation steps. 

 Installed/updated chocolatey-windowsupdate extensions. 

 The install of chocolatey-windowsupdate.extension was successful. 

  Software installed to 'C:\ProgramData\chocolatey\extensions\chocolatey-windowsupdate' 

 

KB3035131 v1.0.3 [Approved] 

kb3035131 package files install completed. Performing other installation steps. 

Skipping installation because update KB3035131 does not apply to this operating system (Microsoft Windows 

10 Pro). 

 The install of kb3035131 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

KB3033929 v1.0.5 [Approved] 

kb3033929 package files install completed. Performing other installation steps. 

Skipping installation because update KB3033929 does not apply to this operating system (Microsoft Windows 

10 Pro). 

 The install of kb3033929 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

KB2919442 v1.0.20160915 [Approved] 

kb2919442 package files install completed. Performing other installation steps. 

Skipping installation because this hotfix only applies to Windows 8.1 and Windows Server 2012 R2. 

 The install of kb2919442 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

KB2919355 v1.0.20160915 [Approved] 

kb2919355 package files install completed. Performing other installation steps. 



Skipping installation because this hotfix only applies to Windows 8.1 and Windows Server 2012 R2. 

 The install of kb2919355 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

KB2999226 v1.0.20181019 [Approved] - Possibly broken 

kb2999226 package files install completed. Performing other installation steps. 

Skipping installation because update KB2999226 does not apply to this operating system (Microsoft Windows 

10 Pro). 

 The install of kb2999226 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

vcredist140 v14.29.30037 [Approved] 

vcredist140 package files install completed. Performing other installation steps. 

Downloading vcredist140-x86 

  from 'https://download.visualstudio.microsoft.com/download/pr/76a91598-ca94-410b-b874-

c7fa26e400da/91C21C93A88DD82E8AE429534DACBC7A4885198361EAE18D82920C714E328CF9/VC_redi

st.x86.exe' 

Progress: 100% - Completed download of 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\vcredist140\14.29.30037\VC_redist.x86.exe (13.14 MB). 

Download of VC_redist.x86.exe (13.14 MB) completed. 

Hashes match. 

Installing vcredist140-x86... 

vcredist140-x86 has been installed. 

Downloading vcredist140-x64 64 bit 

  from 'https://download.visualstudio.microsoft.com/download/pr/f1998402-3cc0-466f-bd67-

d9fb6cd2379b/A1592D3DA2B27230C087A3B069409C1E82C2664B0D4C3B511701624702B2E2A3/VC_redist

.x64.exe' 

Progress: 100% - Completed download of 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\vcredist140\14.29.30037\VC_redist.x64.exe (24 MB). 

Download of VC_redist.x64.exe (24 MB) completed. 

Hashes match. 

Installing vcredist140-x64... 

vcredist140-x64 has been installed. 

  vcredist140 may be able to be automatically uninstalled. 

 The install of vcredist140 was successful. 

  Software installed as 'exe', install location is likely default. 

 

vcredist2015 v14.0.24215.20170201 [Approved] 

vcredist2015 package files install completed. Performing other installation steps. 



 The install of vcredist2015 was successful. 

  Software install location not explicitly set, could be in package or 

  default install location if installer. 

 

python3 v3.9.5 [Approved] 

python3 package files install completed. Performing other installation steps. 

Installing 64-bit python3... 

python3 has been installed. 

Python installed to: 'C:\Python39' 

Restricting write permissions to Administrators 

  python3 can be automatically uninstalled. 

Environment Vars (like PATH) have changed. Close/reopen your shell to 

 see the changes (or in powershell/cmd.exe just type `refreshenv`). 

 The install of python3 was successful. 

  Software installed as 'exe', install location is likely default. 

 

Chocolatey installed 10/10 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

 

Installed: 

 - kb2919355 v1.0.20160915 

 - kb3033929 v1.0.5 

 - chocolatey-core.extension v1.3.5.1 

 - kb2999226 v1.0.20181019 

 - python3 v3.9.5 

 - vcredist2015 v14.0.24215.20170201 

 - kb2919442 v1.0.20160915 

 - vcredist140 v14.29.30037 

 - kb3035131 v1.0.3 

 - chocolatey-windowsupdate.extension v1.0.4 

Chocolatey v0.10.15 

Installing the following packages: 

kubernetes-cli 

By installing you accept licenses for the packages. 

Progress: Downloading kubernetes-cli 1.21.1... 100% 

 

kubernetes-cli v1.21.1 [Approved] 

kubernetes-cli package files install completed. Performing other installation steps. 

Extracting 64-bit C:\ProgramData\chocolatey\lib\kubernetes-cli\tools\kubernetes-client-windows-amd64.tar.gz to 

C:\ProgramData\chocolatey\lib\kubernetes-cli\tools... 

C:\ProgramData\chocolatey\lib\kubernetes-cli\tools 



Extracting 64-bit C:\ProgramData\chocolatey\lib\kubernetes-cli\tools\kubernetes-client-windows-amd64.tar to 

C:\ProgramData\chocolatey\lib\kubernetes-cli\tools... 

C:\ProgramData\chocolatey\lib\kubernetes-cli\tools 

 ShimGen has successfully created a shim for kubectl-convert.exe 

 ShimGen has successfully created a shim for kubectl.exe 

 The install of kubernetes-cli was successful. 

  Software installed to 'C:\ProgramData\chocolatey\lib\kubernetes-cli\tools' 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

Chocolatey v0.10.15 

Installing the following packages: 

kubernetes-helm 

By installing you accept licenses for the packages. 

Progress: Downloading kubernetes-helm 3.6.0... 100% 

 

kubernetes-helm v3.6.0 [Approved] 

kubernetes-helm package files install completed. Performing other installation steps. 

Downloading kubernetes-helm 64 bit 

  from 'https://get.helm.sh/helm-v3.6.0-windows-amd64.zip' 

Progress: 100% - Completed download of C:\Users\oleksii\AppData\Local\Temp\chocolatey\kubernetes-

helm\3.6.0\helm-v3.6.0-windows-amd64.zip (13.68 MB). 

Download of helm-v3.6.0-windows-amd64.zip (13.68 MB) completed. 

Hashes match. 

Extracting C:\Users\oleksii\AppData\Local\Temp\chocolatey\kubernetes-helm\3.6.0\helm-v3.6.0-windows-

amd64.zip to C:\ProgramData\chocolatey\lib\kubernetes-helm\tools... 

C:\ProgramData\chocolatey\lib\kubernetes-helm\tools 

 ShimGen has successfully created a shim for helm.exe 

 The install of kubernetes-helm was successful. 

  Software installed to 'C:\ProgramData\chocolatey\lib\kubernetes-helm\tools' 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

Chocolatey v0.10.15 

Installing the following packages: 

azure-cli 

By installing you accept licenses for the packages. 

Progress: Downloading azure-cli 2.24.2... 100% 

 

azure-cli v2.24.2 [Approved] 

azure-cli package files install completed. Performing other installation steps. 



Downloading azure-cli 

  from 'https://azcliprod.blob.core.windows.net/msi/azure-cli-2.24.2.msi' 

Progress: 100% - Completed download of C:\Users\oleksii\AppData\Local\Temp\chocolatey\azure-

cli\2.24.2\azure-cli-2.24.2.msi (47.98 MB). 

Download of azure-cli-2.24.2.msi (47.98 MB) completed. 

Hashes match. 

Installing azure-cli... 

azure-cli has been installed. 

  azure-cli may be able to be automatically uninstalled. 

Environment Vars (like PATH) have changed. Close/reopen your shell to 

 see the changes (or in powershell/cmd.exe just type `refreshenv`). 

 The install of azure-cli was successful. 

  Software installed to 'C:\Program Files (x86)\Microsoft\Edge\Application' 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

Chocolatey v0.10.15 

Installing the following packages: 

awscli 

By installing you accept licenses for the packages. 

Progress: Downloading awscli 2.2.9... 100% 

 

awscli v2.2.9 [Approved] 

awscli package files install completed. Performing other installation steps. 

Downloading awscli 64 bit 

  from 'https://awscli.amazonaws.com/AWSCLIV2-2.2.9.msi' 

Progress: 100% - Completed download of 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\awscli\2.2.9\AWSCLIV2-2.2.9.msi (26.48 MB). 

Download of AWSCLIV2-2.2.9.msi (26.48 MB) completed. 

Hashes match. 

Installing awscli... 

awscli has been installed. 

  awscli may be able to be automatically uninstalled. 

Environment Vars (like PATH) have changed. Close/reopen your shell to 

 see the changes (or in powershell/cmd.exe just type `refreshenv`). 

 The install of awscli was successful. 

  Software installed as 'MSI', install location is likely default. 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

Chocolatey v0.10.15 



Installing the following packages: 

eksctl 

By installing you accept licenses for the packages. 

Progress: Downloading eksctl 0.52.0... 100% 

 

eksctl v0.52.0 [Approved] 

eksctl package files install completed. Performing other installation steps. 

eksctl is going to be installed in 'C:\ProgramData\chocolatey\lib\eksctl\tools' 

Downloading eksctl 64 bit 

  from 'https://github.com/weaveworks/eksctl/releases/download/0.52.0/eksctl_Windows_amd64.zip' 

Progress: 100% - Completed download of 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\eksctl\0.52.0\eksctl_Windows_amd64.zip (17.72 MB). 

Download of eksctl_Windows_amd64.zip (17.72 MB) completed. 

Hashes match. 

Extracting C:\Users\oleksii\AppData\Local\Temp\chocolatey\eksctl\0.52.0\eksctl_Windows_amd64.zip to 

C:\ProgramData\chocolatey\lib\eksctl\tools... 

C:\ProgramData\chocolatey\lib\eksctl\tools 

 ShimGen has successfully created a shim for eksctl.exe 

 The install of eksctl was successful. 

  Software installed to 'C:\ProgramData\chocolatey\lib\eksctl\tools' 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

Chocolatey v0.10.15 

Installing the following packages: 

gcloudsdk 

By installing you accept licenses for the packages. 

Progress: Downloading gcloudsdk 0.0.0.20210318... 100% 

 

gcloudsdk v0.0.0.20210318 [Approved] 

gcloudsdk package files install completed. Performing other installation steps. 

Downloading gcloudsdk 

  from 'https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudSDKInstaller.exe' 

Progress: 100% - Completed download of 

C:\Users\oleksii\AppData\Local\Temp\chocolatey\gcloudsdk\0.0.0.20210318\GoogleCloudSDKInstaller.exe 

(147.4 KB). 

Download of GoogleCloudSDKInstaller.exe (147.4 KB) completed. 

Hashes match. 

Installing gcloudsdk... 

gcloudsdk has been installed. 

gcloudsdk can be automatically uninstalled. 



Environment Vars (like PATH) have changed. Close/reopen your shell to 

 see the changes (or in powershell/cmd.exe just type `refreshenv`). 

 The install of gcloudsdk was successful. 

  Software installed to '"C:\Program Files (x86)\Google\Cloud SDK"' 

 

Chocolatey installed 1/1 packages. 

 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log). 

PS D:\msdp-main> 

 

  



Appendix B  

“Requirements_instalation_Windows.ps1” 

(Informative) 

 

 
#section will contain installation for prewired software helm cli for clouds, etc.  
#Install the package manager for Windows chocolatey 
Set-ExecutionPolicy Bypass -Scope Process -Force; 
[System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object 
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1')) 
 
#Install puthon3 
choco install python3 -y 
 
#install kubectl for cluster communication  
choco install kubernetes-cli -y 
#Install helm for chart operating 
choco install kubernetes-helm -y 
 
#install az for communication with Azure  
choco install azure-cli -y 
 
#Install aws cli and eksctl  
choco install awscli -y 
choco install eksctl -y 
 
#Install gcp sdk 
choco install gcloudsdk -y 
 
  

  



Appendix C  

“Requirements_instalation_Linux.sh” 

(Informative) 

#section will contain installation for prewired software helm cli for clouds, etc.  
#Install the package manager for Linux snap 
sudo apt update 
sudo apt install snapd -y 
sudo apt-get install python3 -y 
sudo snap install helm --classic 
sudo snap install kubectl --classic 
 

#Azure cli instalation 
curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash 
az --version 
 
#Install AWS cli and eksctl 
 
curl --silent --
location "https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(uname
 -s)_amd64.tar.gz" | tar xz -C /tmp 
sudo mv /tmp/eksctl /usr/local/bin 
eksctl version 
sudo apt  install awscli -y 
 
#installing gcloud  
sudo snap install google-cloud-sdk --classic 
  



Appendix D  

“Instalation_into_AWS.ps1” 

(Informative) 
#before use this script you should perfom aws configure 
 
eksctl create cluster --version=1.19 --name=jenkins-cluster --node-private-networking --
alb-ingress-access --region=us-west-2 --asg-access --without-nodegroup 
 
eksctl create nodegroup --cluster=jenkins-cluster --region=us-west-2 --name=jenkins-server-
ng --managed --nodes=2 --node-labels="lifecycle=OnDemand,intent=jenkins-server" 
 
$AWSKubernetesNameSpace='jenkins-ci-test' 
 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $AWSKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $AWSKubernetesNameSpace --set 
controller.ingress.enabled=true 
 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer --
namespace $AWSKubernetesNameSpace  

 

  



Appendix E  

“Instalation_into_AWS.sh” 

(Informative) 

#before use this script you should perfom aws configure 
 
eksctl create cluster --version=1.19 --name=jenkins-cluster --node-private-
networking --alb-ingress-access --region=us-west-2 --asg-access --without-nodegroup 
 
eksctl create nodegroup --cluster=jenkins-cluster --region=us-west-2 --name=jenkins-
server-ng --managed --nodes=2 --node-labels="lifecycle=OnDemand,intent=jenkins-server" 
 
AWSKubernetesNameSpace='jenkins-ci-test' 
 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $AWSKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $AWSKubernetesNameSpace --
set controller.ingress.enabled=true 
 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer -
-namespace $AWSKubernetesNameSpace 
  



Appendix F  

“Instalation_into_Azure.ps1” 

(Informative) 
#Function for PATH modification 
#Before use this script please provide necessary values to variables below. 
 
function Set-PathVariable { 
    param ( 
        [string]$AddPath, 
        [string]$RemovePath 
    ) 
    $regexPaths = @() 
    if ($PSBoundParameters.Keys -contains 'AddPath'){ 
        $regexPaths += [regex]::Escape($AddPath) 
    } 
 
    if ($PSBoundParameters.Keys -contains 'RemovePath'){ 
        $regexPaths += [regex]::Escape($RemovePath) 
    } 
     
    $arrPath = $env:Path -split ';' 
    foreach ($path in $regexPaths) { 
        $arrPath = $arrPath | Where-Object {$_ -notMatch "^$path\\?"} 
    } 
    $env:Path = ($arrPath + $addPath) -join ';' 
} 
#Section will contain necessary patch updates.  
#Adding patches 
$addPathKubectl=$env:HOMEDRIVE+$env:HOMEPATH+'\.azure-kubectl' 
$addPathKubelogin=$env:HOMEDRIVE+$env:HOMEPATH+'\.azure-kubelogin' 
Set-PathVariable -AddPath $addPathKubectl; 
Set-PathVariable -AddPath $addPathKubelogin; 
$AzureResourceGroupName='jenkins-ci-test-1' 
$AzureClusterName='jenkins-ci-test-1' 
$AzureKubernetesNameSpace='jenkins-ci-test-1' 
 
#Infrastructure creation 
#Azure login will prompt user for login into cloud env; 
az logout 
az login 
#creating infrastructure I'll use the cheapest region  
az group create --name $AzureResourceGroupName --location eastus 
 
#enabling monitoring recording to Azure recomendation  https://docs.microsoft.com/en-
us/azure/aks/kubernetes-walkthrough 
az provider register --namespace Microsoft.OperationsManagement 
az provider register --namespace Microsoft.OperationalInsights 
 
#creating AKS cluster  
az aks create --resource-group $AzureResourceGroupName --name $AzureClusterName --node-
count 1 --enable-addons monitoring --generate-ssh-keys 
 
#Inastalation of kubectl 
az aks install-cli 
 
#Configure kubectl to work with newly created cluster 
az aks get-credentials --resource-group $AzureResourceGroupName --name $AzureClusterName --
overwrite-existing 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $AzureKubernetesNameSpace 
#adding latest repository: 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $AzureKubernetesNameSpace --set 
controller.ingress.enabled=true 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer --
namespace $AzureKubernetesNameSpace  

  



Appendix J  

“Instalation_into_Azure.sh” 

(Informative) 

#Before use this script please provide necessary values to variables below. 
 
AzureResourceGroupName='jenkins-ci-test-1' 
AzureClusterName='jenkins-ci-test-1' 
AzureKubernetesNameSpace='jenkins-ci-test-1' 
 

#Infrastructure creation 
#Azure login will prompt user for login into cloud env; 
az logout 
az login 
#creating infrastructure I'll use the cheapest region  
az group create --name $AzureResourceGroupName --location eastus 
#enabling monitoring recording to Azure recomendation  https://docs.microsoft.com/en-
us/azure/aks/kubernetes-walkthrough 
az provider register --namespace Microsoft.OperationsManagement 
az provider register --namespace Microsoft.OperationalInsights 
#creating AKS cluster  
az aks create --resource-group $AzureResourceGroupName --name $AzureClusterName --
node-count 1 --enable-addons monitoring --generate-ssh-keys 
#Inastalation of kubectl 
az aks install-cli 
#Configure kubectl to work with newly created cluster 
az aks get-credentials --resource-group $AzureResourceGroupName --
name $AzureClusterName --overwrite-existing 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $AzureKubernetesNameSpace 
#adding latest repository: 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $AzureKubernetesNameSpace --
set controller.ingress.enabled=true 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer -
-namespace $AzureKubernetesNameSpace 
  



Appendix H  

“Instalation_into_GCP.ps1” 

(Informative) 
# before use this package you should register in GCP platfrom 
# create project  
# enable billing  
# open Kubernetes Engine API for that project and provide information into variable below 
 
$GCPProjectID='jenkins-into-gke2' 
$GCPProjectName='Jenkins-ci' 
$GCPclusterName='regional-cluster-1' 
$GCPKubernetesNameSpace='jenkins-ci-test' 
 
#Asumption all nececary software installed.  
 
#GCP clean login information  
gcloud auth revoke --all 
#Login into GCP 
gcloud auth login 
#Set project by ID 
gcloud config set project $GCPProjectID 
 
 
#Create zonal cluster in us zones 
gcloud container clusters create  $GCPclusterName --project $GCPProjectID --region "us-
central1" --num-nodes 1 
 
#Get connection info for cluster 
gcloud container clusters get-credentials $GCPclusterName --region us-central1 --project 
$GCPProjectID 
 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $GCPKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $GCPKubernetesNameSpace 
 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer --
namespace $GCPKubernetesNameSpace  

  



Appendix I  

“Instalation_into_GCP.sh” 

(Informative) 

# before use this package you should register in GCP platfrom 
# create project  
# enable billing  
# open Kubernetes Engine API for that project and provide information into variable be
low 
GCPProjectID='jenkins-into-gke2' 
GCPProjectName='Jenkins-ci' 
GCPclusterName='regional-cluster-1' 
GCPKubernetesNameSpace='jenkins-ci-test' 
#Asumption all nececary software installed.  
#GCP clean login information  
gcloud auth revoke --all 
#Login into GCP 
gcloud auth login 
#Set project by ID 
gcloud config set project $GCPProjectID 
#Create autopilot cluster in us zones  
#UPDATE unfortunalety auto is not the good choice. 
#gcloud container clusters create-auto $GCPclusterName --project $GCPProjectID --
region "us-central1" 
#Create zonal cluster in us zones 
gcloud container clusters create  $GCPclusterName --project $GCPProjectID --
region "us-central1" --num-nodes 1 
 
#Get connection info for cluster 
gcloud container clusters get-credentials $GCPclusterName --region us-central1 --
project $GCPProjectID 
 
#installing jenkins into cluster  
#create new namespace for Jenkins 
kubectl create namespace $GCPKubernetesNameSpace 
 
#adding latest repository: 
 
helm repo add jenkins https://charts.jenkins.io 
helm repo update 
#run installation command 
helm install jenkins-test jenkins/jenkins --namespace $GCPKubernetesNameSpace --
set controller.ingress.enabled=true 
#opens our pod to the internet 
kubectl expose pod jenkins-test-0 --port=8080 --name=jenkins-out --type=LoadBalancer -
-namespace $GCPKubernetesNameSpace 

 

 


