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List of Abbreviations

GNN – Gordon-Newell Network;

FCFS – First Come First Serve;

CTC – Copenhagen Telephone Company;

MIT – Massachusetts Institute of Technology;

UCLA – University of California, Los Angeles;

LDM – Local Decision-Maker;
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1. Introduction
1.1. Problem statement

Queues are frequently used in human-made systems. Some prominent

examples are: going shopping, ordering food, or simply waiting for a request to

proceed on a server. A queueing process is a model of waiting lines. It is constructed

to predict queue length and waiting times. Connected queues make queueing

networks in which these queues are linked by what is known as customer routing.

The field of mathematical study known as queueing theory constructs models that

help predict the waiting time, resolve issues and improve the efficiency of queueing

processes. In 1967 W. J. Gordon and G. F. Newell published a paper that studied a

particular case of queueing networks called closed queueing networks of exponential

servers. The application of that study is used to this day.

1.2. Goals
As more and more companies are restructuring their business models to be

more automized, the question of efficient usage of available capabilities arises. With

the help of queuing networks, the only thing the customer has to do to get helpful

information regarding the improvement of queueing processes in their company is to

input the data that describes the system. As a result, they can be provided numbers,

charts, and other data that will drastically improve the working process.

By implying strategy improvement procedure on local decision-makers,

optimal local strategy can be derived, improving the working process flow in the

network.

1.3. Real-life applications
Let us consider the following system that can be described as queueing

network. There is a manufacturer factory that uses six robots when manufacturing

products. The breakdown times for these robots are exponentially distributed with a

mean of twenty-five hours. Two repairmen can fix the robots, and the times it takes to

repair them are exponentially distributed with a mean of four hours.

Many valuable metrics can be obtained from such a factory's working process

using the Gordon-Newell network. With two states of the system described as
3



"working" and "broken," some valuable estimates can be calculated. For example, the

average number of operational robots at any given time or percentage of time that all

machines were working. Also, the Gordon-Newell theorem can help to find

bottlenecks in the system and potentially improve its productivity.
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2. Related work
2.1. Queueing models classification

In 1951, David George Kendall created the standard system that is being used

to classify and describe a queueing model. It is called Kendall's notation. At first, this

notation had three main factors:

● The arrival process (A) - denotes the time between arrivals to the queue, uses

codes specified in Table 1.

● The service time distribution (S) - gives the distribution of time of the service

of a customer, uses codes specified in Table 1.

● The number of servers (c) - specifies the number of service channels open at

the node.

Later this notation was extended, and the following factors were added:

● The capacity of the queue (K) - the maximum number of customers allowed in

the queue. Default is ∞;

● The calling population (N) - the size of the population of jobs to be served.

Default is ∞;

● The queueing discipline (D) - the Service Discipline or Priority order that jobs

in the queue, or waiting line, are served. Codes specified in Table 2. Default is

FCFS.
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Symbol Name Description
(arrival process)

Description
(service time distribution)

M Markovian Poisson process
or random arrival process

Exponential service time

D Degenerate
distribution

A deterministic or fixed
inter-arrival time

A deterministic or fixed
service time

MMPP Markov
modulated
poisson process

Poisson process where
arrivals are in "clusters"

Exponential service time
distributions, where the rate
parameter is controlled by a
Markov chain

G General
distribution

General distribution General distribution

𝐸
𝑘

Erlang
distribution

An Erlang distribution with
k as the shape parameter

An Erlang distribution with
k as the shape parameter

PH Phase-type
distribution

Some of the above
distributions are special
cases of the phase-type

Some of the above
distributions are special
cases of the phase-type

Table 1: Basic codes for queueing models

Symbol Name Description

FCFS First Come First Served The customers are served in the order
they arrived in

LCFS Last Come First Served The customers are served in the reverse
order to the order they arrived in

SIRO Service In Random Order The customers are served in a random
order with no regard to arrival order

PQ Priority Queuing There are several options: Preemptive
Priority Queuing, Non Preemptive
Queuing, Class Based Weighted Fair
Queuing, Weighted Fair Queuing
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PS Processor Sharing The customers are served in the
determine order with no regard of
arrival order

Table 2: The queue's disciplines

These notations are used to describe queueing models. The main focus of this

paper will be M/M/c/k queue. It represents the queue where a Poisson process

determines arrivals, job service times have an exponential distribution, and the

system has c servers. Such a model is one of the most elementary queueing models

and has many real-life applications, making it very attractive to study in the field of

queueing theory.

Figure 1: M/M/1 queueing model

In M/M/c/k/0/FCFS, queue arrivals occur according to a Poisson process at

rate λ and move the process from node i to node i + 1 based on the number of

services c. Rate parameter μ is used to determine service times using exponential

distribution, which will have an expected service time equal to 1/μ. The number of

customers is equal to k. The pool of arriving customers is equal to zero. FCFS

discipline, also known as "First in - first out," states that the customers that arrived at

the node first will leave the node sooner than those who arrived later.

2.2. Development of queueing theory
Agner Krarup Erlang is considered to be the father of queueing theory. Despite

his early death at the age of 51 in 1929, this danish mathematician published

numerous significant papers, some of which include:
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● 1909 – "The Theory of Probabilities and Telephone Conversations," which

proves that the Poisson distribution applies to random telephone traffic;

● 1917 – "Solution of some Problems in the Theory of Probabilities of

Significance in Automatic Telephone Exchanges," which contains his classic

formulae for call loss and waiting time;

● 1920 - "Telephone waiting times," which is Erlang's principal work on waiting

times, assuming constant holding times.

The main goal of his studies was to improve the working process at telephone

traffic since, for a significant part of his life, he was working for the CTC (from 1908

to 1929).

Some other well-known names in queueing theory are Felix Pollaczek, who

solved M/G/1 queue. Later with Aleksandr Khinchin, he created

Pollaczek–Khinchine formula. It states a relationship between the queue length and

service time distribution Laplace transforms for an M/G/1 queue. Later, Pollaczek

also studied the GI/G/1 queue using an integral equation.

David George Kendall, known for introducing queueing notations, solved the

GI/M/k queue in 1957. From 1962 till his retirement in 1985, he was the Professor of

Mathematical Statistics in the Statistical Laboratory, University of Cambridge.

Kingman's formula, published in 1961 by John Kingman, gave a formula for

the mean waiting time in a G/G/1 queue.

An Institute Professor at MIT (the Massachusetts Institute of Technology),

John Little, developed in 1961 Little's law:

 𝐿 =  λ 𝑊

It states: "The average number of customers in a system over some interval(L) is

equal to their average arrival rate(λ), multiplied by their average time in the

system(W)." Little's law is one of the fundamental laws in queueing theory.

Leonard Kleinrock is often called the modern father figure of queueing theory.

He is a professor at UCLA's Henry Samueli School of Engineering and Applied

Science. His initial contribution to the field of queueing theory was his doctoral thesis

proposal in 1961 and led to a doctoral thesis at MIT in 1962, which was later
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published in book form in 1964. In this work, he analyzed queueing delays in Plan

55-A, a message switching system operated by Western Union for processing

telegrams. His theoretical work, which was published in the early 1970s, underpinned

packet switching in the ARPANET, a forerunner to the Internet. Kleinrock later

published several more of the standard works on the subject.
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3. Queueing networks
3.1. Categories of queueing networks

There are several categories of queueing networks. These include open, closed,

and mixed queueing networks.

● Open networks are where new customers can enter the system, and under

certain conditions, it is possible to leave the network. These types of systems

are the most useful due to their real-life applications.

● Closed networks have a static number of customers, which can not change.

Customers constantly are moving from one node to another over time.

● The network is mixed if it is open for some classes of customers and closed for

others.

3.2. Jacksonian Networks
While at UCLA, James R. Jackson developed a paper about so-called Jackson's

(or Jacksonian) networks. These are queueing networks where it is particularly simple

to compute the equilibrium distribution as the network has a product-form solution.

For a queueing network to be considered Jacksonian, it has to be:

1. open, meaning any external arrivals of customers from a Poisson process;

2. service discipline is FCFS;

3. all service times are exponentially distributed;

4. after completing the process in a node, each customer will either move to

another one or leave the system altogether;

5. the utilization of all of the queues must be less than one.
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Figure 2: A three-node open Jackson network

3.3. Gordon-Newell Networks
Gordon-Newell theorem was published in 1967 by W. J. Gordon and G. F.

Newell in their paper called "Closed queueing networks with exponential

servers." Since Jackson's theorem could be applied only to open networks, Gordon

and Newell extended it to closed queueing networks of exponential servers, meaning

that after the open network solution has been calculated, the infeasible states are

eliminated by renormalizing the probabilities.

Gordon-Newell network is a closed queued interconnected network with J

nodes and a total population of K circulating individuals. It also uses the FCFS

discipline. The state of such a network can be described by a state space

, where each is the number of customers in a queue in𝑆(𝐾,  𝐽) =  (𝑛
1
,  𝑛

2
,  ....,  𝑛

𝐽
) 𝑛

𝑗

server j. This means that the sum of individuals in queues over all nodes at a given

time t is equal to the number of customers in the system:

𝑗=1

𝐽

∑ 𝑛
𝑗

= 𝐾

Time which customers spend at nodes is random and based on exponential

distribution with a mean . Let be a discrete time Markov1
ƛ ξ = {ξ𝑡,  𝑡 = 0, 1,...}

process. Also, the probability that the customer that completed the process in given
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node i will proceed to node j is equal to . This forms a transition Markov matrix,𝑟
𝑖𝑗

which will have the following form:

.𝑃 =  (𝑝
𝑖𝑗

:  𝑖, 𝑗 =  1,...,  𝐽)

In the case of using the M/M/J/K/0/FCFS model, the customer will only be able

to move from node j to node j + 1. The probability of this is equal to , which𝑝
𝑗 𝑗+1

means that with probability the customer will not move to the next node1 −  𝑝
𝑗 𝑗+1

and instead will stay at the current node for at least one more time slot. If the

individual reached the last node and successfully left it, it moves to the first one.

Now, following the Gordon-Newell theorem, the equilibrium distribution of

customers in the network is given by:

(1)π(𝑛
1
,...,  𝑛

𝐽
) =  𝐺( 𝐾 )−1

𝑗=1

𝐽

∏ (
𝑒

𝑗

µ
𝑗
)

𝑛
𝑗

Here is the visit ratio. is a real positive solution to the𝑒
𝑖

(𝑒
1
,  𝑒

2
,  ...,  𝑒

𝐽
)

eigenvector-like equations:

, for (2)𝑒
𝑖

=
𝑗=1

𝐽

∑ 𝑒
𝑗
𝑝

𝑗𝑖
1 ≤ 𝑖 ≤ 𝐽

Furthermore, ) is the normalizing constant, which is defined so that all the𝐺( 𝐾

sum to one.π(𝑛
1
,...,  𝑛

𝑗
)

(3)𝐺 (𝐾) =  
𝑛 ϵ 𝑆(𝐾, 𝐽) 

∑
𝑗=1

𝐽

∏ (
𝑒

𝑗

µ
𝑗
)

𝑛
𝑗

It is important to note that the summation in the above formula (3) is taken over

all possible system states ).𝐶
𝐽+𝐾−1
𝐾  (𝑛

1
,  𝑛

2
,  ....,  𝑛

𝐽

The solution presented in equation (1) is actually a particular case of the results

obtained by Newell and Gordon since it is assumed in (1) that a node’s mean service

time is independent of the number of customers present. Networks containing

facilities with load-dependent service times have somewhat different computational

aspects and are treated differently.
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3.4. Derived distributions of GNN

Now, if it is necessary to calculate the probability that at the facility i there are

precisely k customers, the following formula is used:

(4)π(𝑛
𝑖

= 𝑘) =
𝑛 ϵ 𝑆(𝐾, 𝐽) && 𝑛

𝑖
=𝑘 

∑ π(𝑛
1
,...,  𝑛

𝐽
)

According to Jeffrey P. Buzen, a famous contributor to queueing theory, rather

than calculating (4) directly, it is better to calculate the following (5) first:

π(𝑛
𝑖

≥ 𝑘) =
𝑛 ϵ 𝑆(𝐾, 𝐽) && 𝑛

𝑖
≥𝑘 

∑ π(𝑛
1
,...,  𝑛

𝐽
) =

𝑛 ϵ 𝑆(𝐾, 𝐽) && 𝑛
𝑖
≥𝑘 

∑ 𝐺( 𝐾 )−1

𝑗=1

𝐽

∏ (
𝑒

𝑗

µ
𝑗
)

𝑛
𝑗 =

(5) , then:= 𝐺( 𝐾 )−1

𝑗=1

𝐽

∏ (
𝑒

𝑖

µ
𝑖
)𝑘

𝑛 ϵ 𝑆(𝐾−𝑘, 𝐽) 
∑

𝑗=1

𝐽

∏ (
𝑒

𝑗

µ
𝑗
)

𝑛
𝑗 = (

𝑒
𝑖

µ
𝑖
)𝑘 𝐺(𝐾−𝑘)

𝐺(𝐾)

(6)π(𝑛
𝑖

= 𝑘) = 𝐺( 𝐾 )−1(
𝑒

𝑖

µ
𝑖
)

𝑛
𝑘[𝐺(𝐾 − 𝑘) −

𝑒
𝑖

µ
𝑖

 𝐺(𝐾 − 𝑘 − 1)]

𝐺(𝑛) =  0 𝑖𝑓 𝑛 <  0

From equation (6):

(7)𝐸(𝑛
𝑖
) =  

𝑘=1

𝐽

∑ (
𝑒

𝑖

µ
𝑖
)𝑘 𝐺(𝐾−𝑘)

𝐺(𝐾)

As soon as are calculated, it is possible to efficiently 𝐺(𝑗) 𝑓𝑜𝑟 1 < 𝑗 < 𝐽 

compute a number of potentially helpful network characteristics. This can be done

using equations (1), (5), (6), and (7).

3.5. Controlled processes in GNN

If local decision-makers present at the nodes, they can adapt service

probabilities according to the loading of their node and the adjacent ones. By using
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deterministic policies, it is possible to obtain the optimal behavior of the LDMs. U

denotes local decision spaces as:

𝑈 = {𝑢1, 𝑢2,  ...,  𝑢𝑛}

These spaces are independent of time and finite.

Optimal local strategy can be found in the class of admissible deterministicδ*

stationary local Markov strategies with time-invariant restriction sets. Local Markov

strategy, denoted by where are local decision strategies ofδ = (δ
1
, δ

2
,... δ

𝐽
) δ

𝑗

history-dependent decisions. They consist of , which are the general unrestricted∆
𝑗

history dependent decisions.

One-step cost is incurred in the network if the decision is𝑟(𝑥𝑡, 𝑢𝑡) ≥ 0 𝑢𝑡

made. is asymptotic average expected costs. The problem is to find strategy that𝑅
𝑦

δ

minimizes it.

The controlled process is ergotic on state space with distribution(ξ,  δ) 𝑆(𝐾, 𝐽) π

for any strategy which results in probabilities , where is the number ofδ 𝑝
𝑗
(ℎ, 𝑢) ℎ

customers at the node. Derman’s strategy improvement procedure should be used to

determine the optimal strategy .δ*

At first select some strategy and consider the next equations:δ

,   where (8)𝑅δ
𝑦

+ υ(𝑦) = 𝑟(𝑦, δ(𝑦)) +
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ 𝑄(𝑥/𝑦, δ(𝑦)) υ(𝑥) 𝑦 є 𝑆(𝐾, 𝐽)

(9)
𝑛 ϵ 𝑆(𝐾, 𝐽)

∑ πδ(𝑥)υ(𝑥) = 0

(10)𝑅δ =
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ πδ(𝑥)𝑟(𝑥)
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By solving unknown function for and gettingυ {(υ(𝑥),  𝑅
𝑦

δ): 𝑥, 𝑦 є 𝑆(𝐾, 𝐽)} 𝑅
𝑦

δ

asymptotic average expected costs, the policy improvement algorithm would be the

following:

Define which is set of actions for each for which𝑈𝑦 𝑦 є 𝑆(𝐾, 𝐽)

or, if no actions satisfy that inequality, the set
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ 𝑄(𝑥/𝑦,  𝑢)𝑅δ
𝑥

< 𝑅δ
𝑦
,

that would satisfy both and
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ 𝑄(𝑥/𝑦,  𝑢)𝑅δ
𝑥

= 𝑅δ
𝑦

𝑟(𝑦, 𝑢) +
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ 𝑄(𝑥/𝑦,  𝑢)υδ(𝑥) < 𝑟(𝑦, δ(𝑦)) +
𝑥 ϵ 𝑆(𝐾, 𝐽)

∑ 𝑄(𝑥/𝑦,  δ(𝑦))υδ(𝑥) = 𝑅δ
𝑦

+ υδ(𝑦)

After starting with some strategy we define some local strategy . It takesδ δ'

some action in at least one state y for which is not empty, otherwise the𝑢 є 𝑈𝑦 𝑈𝑦

action that has been taken is the one dedicated by .δ

Derman theorem:

The strategy improvement procedure leads to an optimal strategy within a finite

number of iterations. The optimal strategy is obtained if U y is empty for all

y and then the actual policy fulfills: =: is optimal.δ' δ*

To sum everything up, we have some starting strategy and useδ

Gordon-Newell theory(5) for finding distribution , then find average costs (10).πδ 𝑅δ

By using equations (8), (9) we get functions. Then we determine the sets of actionsυδ

and define a new strategy . This goes on until we get the optimal one.𝑈𝑦 δ'
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4. Conclusion

With the help of Gordon-Newell Networks, it is possible to obtain crucial data

about the given system (Figure 3). These metrics can show the problems with specific

nodes and predict future data about the queues.

Figure 3: Example of queue properties in Gordon-Newell network

Visualizations can provide a new look at the system and help prevent future

bottlenecks in the system. In Figure 4, there are seven customers in the GNN and four

nodes (blue - 1, orange - 2, green - 3, red - 4). Based on the image, it is evident that

node 1 is the stepping stone in the system and should be further improved to increase

the whole system's efficiency.
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Figure 4: Gordon-Newell network’s queues capacities over time

In Figure 5, the GNN with nine workers and two nodes is displaying the

system's load over some period of time.

Figure 5: The load of 2 nodes GNN

Using Gordon-Newell theory for closed interconnected queues and applying it to

the policy improvement algorithm benefits GNN. By obtaining optimal local strategy

with local decision-makers, the efficiency of Gordon-Newell network increases and

can solve the problems that the system had.

The algorithm and formulas presented in this paper are constantly being worked

on. There are numerous publications that extend the Gordon-Newell theorem for
17



more specific cases but were not touched upon in this paper. This means that there is

still more work that can be done in the field of queueing theory that can provide a

considerable benefit to the world.
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