Bodnarchuk Yu. V., Bratyk O. V.

UNITARY REPRESENTATIONS OF THE THREE DIMENSIONAL UNITRIANGULAR POLINOMIAL TRANSFORMATION GROUP

A series of representations of a group of unitriangular polynomial transformations of affine space is constructed '.

Let U_n be a subgroup of triangular polynomial transformations of the affine Cremona group GA_n — the group of biregular transformations of affine space $A_n = A_n(\mathbb{F})$ over a field \mathbb{F} of the zero characteristic. The elements of U_3 can be represented in the form of tuples

$$\langle x_1 + a_1, x_2 + a_2(x_1), x_3 + a_3(x_1, x_2) \rangle$$
, (1)

where $a_1 \in \mathbb{F}$ and $a_2(x_1)$, $a_3(x_1, x_2)$ are polynomials.

As shown in [1, 2], GA_n has the structure of an ∞ -dimensional algebraic group and U_n is a closed subgroup of GA_n (in the ∞ -Zarissky topology). Remark that U_3 can be considered as iterated wreath algebraic product $\mathbb{F}^+wr_a(\mathbb{F}^+wr_a\mathbb{F}^+)$, where algebraic means that we use only polynomial functions as elements of the base of such kind of wreath product. As for finite dimensional algebraic groups Lie algebra $\mathrm{Lie}(GA_3)$ can be defined as algebra of derivations of the polynomial algebra which have the form

$$a_1(x_1, x_2, x_3) \frac{\partial}{\partial x_1} + a_2(x_1, x_2, x_3) \frac{\partial}{\partial x_2} + a_3(x_1, x_2, x_3) \frac{\partial}{\partial x_2};$$

 $Lie(U_n)$ consists of derivations of the form

$$c_1 \frac{\partial}{\partial x_1} + c_2(x_1) \frac{\partial}{\partial x_2} + c_3(x_1, x_2) \frac{\partial}{\partial x_3}.$$
 (2)

Remark that U_3 has the infinite analog of an upper central series. To describe this series one should consider an inverse lexicographical ordering on the polynomial algebra $\mathbb{F}[x_2, x_3]$, i.e. $x_2 \prec x_3$. Let $\mathbf{m} = x_2^{\alpha} x_3^{\beta}$ be a monomial then we have the series of subgroups

$$F_{\mathbf{m}} = \{ \langle x_1, x_2, x_3 + a(x_2, x_3) \rangle \mid a(x_2, x_3) \prec \mathbf{m} \},$$

in particular $F_{x_1} = \langle x_1, x_2, x_3 + c \rangle$, $c \in \mathbb{F}$ is a center of U_3 ,

$$\{h \in U_n \mid \forall g \in U_n, [g, h] \in F_{\mathbf{m}}\} = F_{\mathbf{m}^+},$$

where [g, h] is a commutator in the group U_n , and \mathbf{m}^+ is the next monomial $(\mathbf{m} \prec \mathbf{m}^+)$. Moreover, for the subgroup

$$F(x_2, x_3) =$$
= $\{\langle x_1, x_2, x_3 + a_3(x_1, x_2) \rangle \mid a_3 \in \mathbb{F}[x_2, x_3] \}$

we get $F(x_2, x_3) = \bigcup_{\mathbf{m}} F_{\mathbf{m}}$. The series can be prolonged in such manner:

$$H_k = \{ \langle x_1, x_2 + a_2(x_1), x_3 + a_3(x_2, x_3) \rangle |$$

$$\deg a_2(x_1) < k \} \supseteq F(x_2, x_3),$$

$${h \in U_n \mid \forall g \in U_n, [g, h] \in H_k} = H_{k+1}.$$

Thus U_3 is a locally nilpotent ∞ -dimensional algebraic group. To take it into account it is naturally to generalize the Kirillov's method of describing unitary representations of nilpotent Lie groups (see [3]) on the class of these locally nilpotent groups.

Remember that in accordance of the Kirillov's method we should to construct a representation of the Lie algebra $\mathrm{Lie}(U_3)$ by skew-Hermitian operators on a space of functions. For a correspondent Lie algebra $\mathrm{Lie}(U_n)$ we have the structure of a locally nilpotent Lie algebra. Let

$$Z = \{c\frac{\partial}{\partial x_3} \, | \, c \in \mathbb{F}\}, \ \ Y = \{cx_1\frac{\partial}{\partial x_3} \, | \, c \in \mathbb{F}\}$$

¹ Робота частково підтримана Державним фондом фундаментальних досліджень Φ 25./157-2008 № ДР 0107U010499 та Міжнародним благодійним фондом відродження Києво-Могилянської академії.

© Bodnarchuk Yu. V.. Bratyk O. V., 2008

be a one-dimensional center of $Lie(U_n)$, and $Y: Z+Y=\mathrm{Lie}(F_{x_1^2})$ is the second twodimensional hyper center. Let us put

$$X = \{c \frac{\partial}{\partial x_1} | c \in \mathbb{F}\},$$

$$W = \left\{a_2(x_1) \frac{\partial}{\partial x_2} + a_3(x_1, x_2) \frac{\partial}{\partial x_3}\right\} \setminus (Z + Y)$$

then we have a decomposition $Lie(U_n) = X + Y +$ +Z+W as a vector space with a natural counting basis:

$$\epsilon = rac{\partial}{\partial x_1}, \quad \varepsilon(k) = x_1^k rac{\partial}{\partial x_2}, \ \xi(k,l) = x_1^k x_2^l rac{\partial}{\partial x_3}, k,l = 0,1,2 \ldots$$

In accordance with [3], we should describe representations of the Lie subalgebra $L_0 = Y +$ +Z+W and obtain ones for all Lie (U_n) by the induction procedure.

Basis elements of the subalgebra L_0 satisfies next conditions:

$$[\varepsilon(k), \varepsilon(k')] = 0, \tag{3}$$

$$[\xi(r_1, r_2), \xi(r_1', r_2')] = 0, \tag{4}$$

$$[\varepsilon(k), \xi(r_1, r_2)] = r_2 \xi(r_1 + k, r_2 - 1), \quad (5)$$

In particular, $[T_{\epsilon}, T_{\xi(1,0)}] = T_{\xi(0,0)} = i\lambda E$. For $\lambda \neq 0$ let us put $iT_{\epsilon} = P$, $\frac{1}{i\lambda}T_{\xi(1,0)} = Q$, then we get a well known operator's equality

$$PQ - QP = iE$$
.

In accordance to the Stoune-Von Neuman theorem (see [3]) all irreducible representations of such pairs can be describing as linear operators

$$P=irac{\partial}{\partial t}, \qquad Q=t,$$

i.e. operators of derivation and multiplication by t which act on the appropriate space of functions f(t). It follows that $T_{\epsilon} = \frac{\partial}{\partial t}$, $T_{\xi(1,0)} = i\lambda t$.

Let us introduce series of representations of L_0 , which act on the next basis elements in such a manner:

$$T_{\varepsilon(k)} = Ab^k \frac{\partial}{\partial t},\tag{6}$$

$$T_{\xi(\tau_1,0)} = b^{r_1} c_0,$$
 (7)
 $T_{\xi(0,1)} = c_1 t,$ (8)

$$T_{\xi(0,1)} = c_1 t,$$
 (8)

where A, b, c_1 are parameters.

Let us choose the space of polynomials $\mathbb{C}[t]$ as a representation infinite dimensional one. Then an action of linear operators on this space, in particular $T_{\xi(r_1,r_2)}$ can be described in such a 1. 2 No. 18 BB BB BB 12 1 1 1 1 1 1 1 1

$$T_{\xi(r_1,r_2)} = \sum_{i=0}^{\infty} c_{r_1,r_2}^i(t) \frac{\partial^i}{\partial t^i}, \ c_{r_1,r_2}^i(t) \in K[t].$$
(9)

In accordance with (4) we get

$$[T_{\xi(r_1,r_2)}, T_{\xi(0,1)}] = 0, \tag{10}$$

$$[T_{\xi(r_1, r_2)}, t] = 0, \tag{11}$$

C3.469/

$$[T_{\xi(r_1,r_2)},t] = \sum_{i=0}^{\infty} c_{r_1,r_2}^{i+1}(t)(i+1)\frac{\partial^i}{\partial t^i} = 0.$$
(12)

Thus, for all i

$$c_{r_1,r_2}^{i+1}(t) = 0;$$

so we obtain

$$T_{\xi(r_1,r_2)} = c_{r_1,r_2}^0(t), \forall r_1, r_2 \ge 0.$$
 (13)

In accordance to (5) the condition should be satisfied:

$$[T_{\varepsilon(k)}, T_{\xi(r_1, r_2)}] = r_2 T_{\xi(r_1 + k, r_2 - 1)},$$

therefore

$$[Ab^k\frac{\partial}{\partial t},c^0_{r_1,r_2}(t)]=r_2c^0_{r_1+k,r_2-1}(t),$$

Marchaell, L. H. March

$$Ab^{k} \frac{\partial c_{r_{1},r_{2}}^{0}(t)}{\partial t} = r_{2}c_{r_{1}+k,r_{2}-1}^{0}(t).$$

If one puts $f(k) = Ab^k$,

$$g(r_1) = \frac{\partial c_{r_1,r_2}^0(t)}{\partial t}, \ h(r_1) = r_2 c_{r_1+k,r_2-1}^0(t),$$

one gets the equalities

$$c_{r_1,r_2}^0(t) = b^{r_1} c_{0,r_2}^0(t),$$

$$f(0)g(0) = h(0)$$

and a differential equation

$$A\frac{\partial c_{0,r_2}^0(t)}{\partial t} = r_2 c_{0,r_2-1}^0(t),$$

which solutions can be easily obtained:

$$c_{0,r_2}^0(t) = \sum_{j=0}^{r_2} d_j \binom{r_2}{j} \left(\frac{t}{A}\right)^{r_2-j}, \ d_j \in K, \ (14)$$

here $\binom{r_2}{j}$ is a binomial coefficient.

So, for abelian subalgebra $\xi(r_1, r_2)$ we get:

$$T_{\xi(r_1,r_2)} = b^{r_1} \sum_{j=0}^{r_2} d_j \binom{r_2}{j} \left(\frac{t}{A}\right)^{r_2-j}.$$
 (15)

To get the representations of the all algebra $\operatorname{Lie}(U_3)$ one should consider the representations which are induced by ones of L_0 constructed bellow.

Theorem 1. 1. There is a series of the representations of the subalgebra L_0 which are defined in such manner:

$$T_{\varepsilon(k)} = Ab^k \frac{\partial}{\partial t},$$

- Shafarevich I. On some infinite dimensional groups // Rendiconti di Matematica e delle sue applicazioni.— 1966.— V. 25.— S. 5.— P. 208–212.
- [2]. Шафаревич И. Р. О некоторых бесконечномерных группах II // Изв. Акад. наук. Сер. матем.— 1981.—

$$T_{\xi(r_1,r_2)} = b^{r_1} \sum_{j=0}^{r_2} d_j {r_2 \choose j} (\frac{t}{A})^{r_2-j}.$$

2. Via exponent map there is a series of representations of the normal subgroup

$$N_{0} = \{ \langle x_{1}, x_{2} + a_{2}(x_{1}), x_{3} + a_{3}(x_{1}, x_{2}) \rangle \},$$

$$g = \langle x_{1}, x_{2} + x_{1}^{k}, x_{3} \rangle \rightarrow U_{g} : f(t) \rightarrow b^{k} f(t),$$

$$g = \langle x_{1}, x_{2}, x_{3} + x_{1}^{r_{1}} x_{2}^{r_{2}} \rangle \rightarrow U_{g} : f(t) \rightarrow$$

$$\sum_{m} \frac{b^{mr_{1}}}{m!} \left(\sum_{j=0}^{r_{2}} d_{j} {r_{2} \choose j} (\frac{t}{A})^{r_{2}-j} \right)^{m} f(t).$$

There is an induced representation of U_3 on the space of functions in two variables: if

$$g = g_1 \cdot g_0, \ g_1 = \langle x_1 + a_1, x_2, x_3 \rangle, \ g_0 \in N_0$$

then

$$U_g: f(u,t) \to U_{g_0} f(u+a_1,t).$$

T. 1.- № 2.- C. 214-226.

[3]. Кириллов А. А. Унитарные представления нильпотентных групп Ли // Успехи математических наук,— 1962.— Т. 27.— Вып. 4.— С. 59–100.

Ю. В. Боднарчук, О. В. Братик

УНІТАРНІ ЗОБРАЖЕННЯ ТРИВИМІРНОЇ ГРУПИ УНІТРИКУТНИХ ПОЛІНОМІАЛЬНИХ ПЕРЕТВОРЕНЬ

Побудовано серію зображень тривимірної групи унітрикутних поліноміальних перетворень афінного простору.