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Abstract— Distributed system for sampling and analysis 

of electroencephalograms is proposed and implemented in 
alpha state. The system is based on the previously developed 
database for archiving of the electroencephalograms in 
Ukrainian National Grid infrastructure. The new 
components of the system include EEG sensors for 
laboratory animals, simulations software and data 
procession algorithms. The first application of the system 
for data sampling, analysis and simulations of epileptic 
seizures is performed. 
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I. INTRODUCTION 
Epilepsy is a serious neurological disorder 

characterized by unprovoked seizure attacks. Although 
epileptic seizures rarely cause death of a patient [1], 
during generalized seizure attack patients lose control of 
their behavior and body position, which often results in 
traumatic injury [2]. While some patients have perceptual 
disturbance which allow them to predict oncoming 
seizures (epileptic aura), the majority of people who 
suffer from epilepsy appear to have unexpected 
seizures [3]. For decades neurologists considered 
epileptic seizures as events which occur within few 
seconds, however quantitative studies of long digital 
intracranial electroencephalographic recordings from 
patients being evaluated for epilepsy surgery, have 
demonstrated that electrographic seizures develop 
minutes to hours before actual clinical onset [4]. 
Prediction of epileptic seizures is an important issue in 
modern neurology not only for injury prevention but also 
for advancing the patient quality of life. Developing the 
methods for seizure prediction promises to give a rise to 
implantable devices which would be able to trigger 
therapy to manage clinical epileptic attacks [4, 5]. 

The electroencephalography (EEG) is an important 
tool for the monitoring brain activity in various clinical 
applications including monitoring the depth of anesthesia, 
diagnosis of coma and encephalopathies, etc. The typical 

EEG data contain a set of signals measured with 
electrodes placed on the human scalp. An ordinary EEG 
recording typically lasts for about 30 minutes and usually 
involves recording from tens scalp electrodes. These 
signals contain integral information about the activity of 
the whole brain. The EEG provides unique information 
about background brain activity and epileptiform 
discharges. It is strongly required for the correct 
diagnosis of specific electroclinical syndromes [6]. 

One of the critical steps in real-time diagnostics based 
on EEG signals is the measurement of efficient 
neurophysiologic signal statistics that allows identifying 
the normal and abnormal physiologic patients’ state. Such 
EEG signals are noisy, non-stationary, complex and 
multichannel [7]. The EEG signal analysis and 
classification are essential for medical and health practice 
and research. It gives significantly better information 
about whether a spell is an epileptic seizure or not [8]. 
Therefore brain state recognition from EEG signals 
requires specific signal processing, preprocessing, 
features extraction and classification tools [9]. The 
processing and analysis of EEG signal are the key 
concepts of normal and abnormal patient’s physiologic 
state classification and is the base of the computer-aided 
diagnostic systems design. 

Computing grids [10] are useful platforms for 
distributed medical and biological applications [11] that 
require large number of data to be stored and processed. 
At the moment Ukrainian National Grid (UNG) 
infrastructure [12] is extensively used in a number of 
projects. These projects include distributed sampling, 
archiving and procession of electrocardiograms [13], 
computer tomography images [14], molecular biology [15, 
16], etc. Here we show the sizable extension of our 
recently developed GRID-based system for archiving and 
analysis of EEG data [9]. From now it supports distributed 
data sensors, new procession algorithms and simulations. 
The system is applied for study of epileptic seizures in 
laboratory animals and for archiving and procession of 
human electroencephalographic data. 



II. EXTENSION OF EEG DATABASE 

A. Grid services 
The database for archiving of EEG data in UNG [9] 

contains AMGA (ARDA Metadata Grid Applications) 
service for database queries, storage resources 
managements system (SRM) to control GRID storage 
elements (SE) and LCG file catalogue (LFC) service for 
data replication. The system is accessed via the web 
interface with X509 authentication. Special importers for 
data in different formats are used for data insertions. Data 
storage and outputs are performed in text formats. 

B. Four channels EEG sensor for laboratory animals 
EEG recordings of laboratory animals are important 

for study experimental epilepsy models. All EEG data 
collected in the GRID database were obtained using a 
conventional animal EEG tethered recorder. Now we are 
focused on development of wireless laboratory animals’ 
EEG sensor. Wireless EEG sensor for laboratory animals 
should meet the following requirements: small size and 
weight; extremely low power consumption; water 
resistance; coverage radius up to 10 meters; wireless 
charging (as an optional feature); real time and small 
delay monitoring. 

The main part of EEG sensor is a CC2640 [17] 
microcontroller unit (MCU) from Texas Instruments. The 
MCU includes low power processor, random access 

memory (RAM) and some peripheral devices including 
analog to digital converter (ADC) and radio-
frequency (RF) transceiver compatible with Bluetooth 
(BT) Low Energy Specification. Having all these units on 
the same chip makes it very attractive for such 
applications. Also it should be noted this MCU’s package 
size not exceeds 4-mm × 4-mm. 

A temporal separation approach is used in order to 
utilize the single data receiver for many sensors. Since 
constant monitoring requires high power consumption a 
delayed monitoring is applied: the sensor continuously 
collects data and transmits them once per 4 s. 

The structure of wireless EEG system is described in 
Fig. 1. Four micro-power instrumentation operational 
amplifiers (OA) INA333 [18] amplify the signal obtained 
from the electrodes implanted into the animal's brain. 
After amplification the signal passes to the 12-bit ADC 
with 2 kHz sampling rate (500 Hz per channel). The signal 
record of 4 seconds duration has 11.7 Kbytes size that 
allows storing it in the MCU’s RAM. Two 12-bit 
measurements are stored as one 3-byte value to reduce 
data size. The CPU0 enters sleep mode between 
measurements to reduce the power consumption. Every 4 
seconds CPU0 activates RF core (CPU1 and BT 
transceiver) and transmits the collected data. Besides 
measured EEG data the frame contains check sum, battery 
voltage, temperature of MCU chip. On successful 
reception the confirmation is sent. 
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Figure 1.  EEG sensors system 

Reception of the data is performed by BT module 
connected to personal computer (PC). Custom PC 
software controls BT module, receives frames, decodes 
and saves data for further transfer to GRID, draws plots on 
the screen. It also supports transmission of commands to 
certain sensor, such as: switching hibernation/active 
mode, toggling on/off state, changing transmission period 
of packets, sampling rate, transmitter power and 
transmission queue size. The decoder separates one 3-byte 

value into two 12-bit values and saves them as the 
separate 16-bit values. 

The transmission of the single packet takes about 0.1 s 
with 1Mbps rate. Estimated operating time of the system 
is about 65 hours with 20 mA·h Li-ion battery. One BT 
transceiver on PC can support up to 5 EEG sensors. 

Modification of the sensor that can be implanted into 
the abdomen of the animal requires wireless charging that 
can be implemented with Qi standard or other methods 
based on resonant inductive coupling. 



C. Human Cognitive Functional EEG sampling 
automation 
Cognitive Functional EEG is used to discern the 

activities of specific areas of the brain and the 
relationships between these brain areas. It also facilitates 
analysis of brain function while participants are involved 
in cognitive tasks such as playing a videogame or solving 
a mathematical equation. Investigation of cognitive 
functions needs not only EEG data but also precise 
information about the actions performed by subjects. It is 
also necessary to provide good synchronization between 
EEG recordings and visual/auditory stimuli as well as 
cognitive task milestones. All these data should be marked 
on EEG signal [19]. Some tests like virtual Morris water 
maze [20] requires synchronization of unique states of the 
test with EEG signal. In present work we developed the 
hardware and software that grab the state of the audio and 
video subsystems of the virtual test (Fig. 2) and transfer 
them to EEG NEUROCOM [21] recorder for time 
stamping of EEG records. Synchronization with audio 
subsystem is performed by detection of certain signal’s 
frequencies with Prony’s method [22]. 
 

 
Figure 2.  Print screen picture drawing of the virtual Morris water 

navigation test for subjects. 

 

D. Seizures detection algorithm 
In this work the seizures detection algorithm [23] is 

applied to intracranial EEG data from freely-moving 
chronic epileptic rats. Electrocorticography (ECoG) or 
intracranial EEG is a type of electrophysiological brain 
monitoring that uses recording electrodes placed directly 
into the brain’s cerebral cortex. This recording technique 
has higher spatial resolution and better signal to noise 
ratios compared to on-scalp EEG. Furthermore, ECoG is 
less prone to biological and technical artifacts. So these 
signals are the best candidates for EEG signal features that 
can predict the epileptic seizures. 

The data processing consists of three main steps: data 
preprocessing, stationary wavelet transform and post-
processing methods [23]. The main steps are wavelet 
transform applied to the pre-processed data and 
classification of the detected seizures as epileptic or non-
epileptic cases. 

The discrete wavelet transform (DWT) is a 
decomposition of the time series which can be understood 

as a successive band-pass filtering. The DWT is 
computationally fast and can be implemented by 
successive filter banks [24]. Unfortunately, the DWT is 
not shift-invariant when applied to discrete time series. If 
the input time series is shifted, the resulting coefficients 
may become significantly different. The stationary 
wavelet transform [25] has no such issues. Two wavelets 
are commonly used for EEG analysis: the Daubechies 4 
wavelet and the Symlet 5 wavelet. In this work, the 
Daubechies 4 (db4) wavelet is used. After detection of 
rhythmic discharges of specific frequencies the 
classification procedure is applied for identification of 
epilepsy seizures. A minimum ictal phase of 5 s and the 
minimum interictal phase of 10 s are assumed. 

E. Seizures prediction algorithm 
We focus on developing model predicting the seizure 

onset based on information about single channel sampled 
from laboratory animals. According to additional 
information about seizure onset, for each section we add 
y  value, corresponding to 1 if there is seizure in this 

section, and 0 otherwise. To be able to predict onset of 
seizure in advance, we gradually increase risk function 
y  for previous time interval. For each sequence of data 

points we estimate its risk. As our approach does not 
describe probability of seizure onset, whereas we want to 
compare risk of one sequence to another one, we consider 
regularized ranking algorithm for this task [26], where x  
is vector of time interval data points, and y  is relative 
risk. To reduce the dimensionality of vector x  we apply 
Principal Component Analysis (PCA) to x  append main 
characteristics of the vector, such as mean, min, max and 
top coefficients of Fourier transform. Then we apply 
regularized ranking algorithm in reproducing kernel 
Hilbert spaces corresponding to different values of 
regularization parameter and parameter of Gaussian 
kernel. Finally, we consider ensemble of those outputs 
with Linear Functional Strategy [27]. Linear Functional 
Strategy with incremental Nyström subsampling [28, 29] 
allows effective parallelization of the solver. Finally, 
performance of aggregated risk ranker is evaluated. 

F. Simulations subsystems 
Subsystem for simulations of brain functions is based 

on grid software for simulations in neuroscience [30, 31]. 
Models and software for simulation of epileptic seizures 
[32] are also used. This subsystem contains database of 
jobs. Job agents on computing cluster cluster.univ.kiev.ua 
periodically checks status, starts and finishes of jobs. Jobs 
are started on UNG clusters and can access and create 
data on grid SEs including EEG data records. 

III. FIRST APPLICATION RESULTS 
The proposed system is implemented in alpha state. 

All described components are implemented, tested and 
provides some preliminary results. The dataset of 14 
electrophysiology recordings were sampled. The 



recordings contain from 258 to 1324 sections, with 4096 
data points each, where points are obtained with sampling 
interval 2.4 ms. 

A. Detection of seizures in laboratory animals’ signals 
The described above algorithm for epileptic seizures 

detection was applied to the data mentioned above. The 
obtained results are described in Fig. 3. All epileptic 
seizures are marked in red rectangles; also non-epileptic 
signal is detected in time period from 780 s to 1587s. 
Thus the SWT methods provide the sufficient accuracy 
for epileptic seizure detection from ECoG datasets. 
Proposed algorithm may be applied for further 
development of seizure prediction techniques. 

B. Seizures predictions in laboratory animals’ signals 
The described above algorithm is tested on the dataset 

with onset of seizure is known. To be able to predict 
onset of seizure in 1 minute in advance, we gradually 
increase risk function y  for previous 60 seconds (i.e. 
25000 data points). Now for each sequence of 4096 data 
points we want to be able to estimate its risk. PCA with 
64 components gives explained variance ratio over 83%. 
Finally, performance of aggregated risk ranker is 
evaluated in terms of mean squared error 0.1, and area 
under of the receiver operation characteristic curve (ROC 
AUC) 0.8, and accuracy 84% (values are calculated for 
the ranker comparing to characteristic function for seizure 
onset in the current section or following 30 seconds). 

As we use ranking algorithm it allows estimating the 
risk of seizure as well as its time-horizon. Therefore it is 
interesting to consider accuracy of prediction in terms of 
time-horizon of seizure onset. Corresponding result is 
presented in Fig. 4. The prediction accuracy exceeds 84% 
for time moments preceding seizures up to 50 seconds. 
For longer term prediction accuracy decreases that may 
be referred to 60 seconds signals’ time window.  

C. Simulation of epileptic seizures in neuronal networks 
In addition to previously obtained results [30, 31] 

realistic simulations of cortical neuronal network was 
performed using described system. The effect of Mg2+ 
concentration and Na+ ion channel potential on 
pathological synchronization of neurons was studied, as 
shown in Fig. 5. Order parameter of the network was 
computed for 350 dynamics trajectories of 2000 neurons. 
Order parameter characterizes the relative number of 
synchronized neurons. It is interesting to note that 
pathological synchronization is absent in certain range on 
Mg2+ ions concentration. 

IV. CONCLUSIONS AND PLANS 
The described distributed system for sampling and 

analysis of electroencephalograms extends features of the 
grid database for electroencephalograms in Ukrainian 
National Grid [9]. This system provides the possibility to 
extend interdisciplinary research in the field of 
neuroscience and to obtain novel scientific results. 

Additionally, system provides the possibility to integrate 
new sampling, data analysis and simulation techniques. 
Preliminary scientific results in epileptic seizure 
investigation and predications were obtained. 
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Figure 3.  Epileptic seizures detection (detected seizures 

marked in red rectangles)  

 
 

 
Figure 4.  Accuracy of seizure prediction depending on prediction of 

time-horizon 

 
Figure 5.  Dependence of network order parameter on Magnesium 

concentration (SC_MG) and ion channel activation potential 
(NMDA_MG)  

 
Future plans include the extension of the proposed 

algorithms and models as well as the usage of the 
experimentally sampled data for models identification. 
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