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We study ordered states and topological excitations in a quasi-
two-dimensional magnet modeled by a square lattice with spins
s =1 at all sites, and a Hamiltonian with the biquadratic exchange
interaction between the nearest neighbor sites. We propose two
effective Hamiltonians for the description of large-scale excitations
in the strictly two-dimensional case. They describe excitations of
the mean field in the nematic phase and the mixed ferromagnetic-
nematic phase. It is shown that the effective Hamiltonians are
minimized on configurations with fixed topological charge. These
topological excitations can arise at low temperatures and cause the
destruction of a long-range order in the strictly two-dimensional
system.

1. Introduction

Quasi-two-dimensional magnets have various
technological applications. They serve as magnetic films
used for the recording of information, thin ferromagnetic
layers in Josephson semiconductor junctions, layered
resistive systems, etc.

Here, we will not deal with applied aspects of
the theory of magnetism. However, we note that the
study of two-dimensional systems has also a significant
value. Studying the ordered states, their stability, and
excitation spectra, we obtain model scenarios of the
self-organization of a substance with decrease in a
temperature or under the action of external fields.
To support the above-presented assertion, it is worth
to recall an important role played by the Onsager’s
results [1] on the two-dimensional Ising model, or
the Kosterlitz–Thouless theory of topological phase
transitions [2, 3]. This is also related to the study
of the two-dimensional O(3)-sigma model or a planar
Heisenberg magnet [4]. As a natural continuation of
this trend, we mention numerous papers devoted to
investigations of two-dimensional continuous or lattice
systems with high spins at sites.

In the present paper, we consider a generalized
Heisenberg magnet taking the bilinear and biquadratic

interactions at the nearest-neighbor sites of a square
or cubic lattice into account. The Hamiltonian for
magnets of spin s= 1 was proposed and studied long ago
[5, 6] without any restriction on dimensionality. At the
beginning of the 1970s, the existence of ordered phases
different from the ferromagnetic or antiferromagnetic
one was established by the mean-field methods. In
particular, if the constant of biquadratic interaction is
larger than that of bilinear interaction, then a pure
quadrupole ordering or a spin nematic state can be
realized in the system [7,8].

It is known that a two-dimensional system with
a continuous group of symmetry has no long-range
order at T > 0 (the Mermin–Wagner theorem). In
many cases, the instability of ordered phases in two-
dimensional systems implies the existence of nonlinear
topological excitations caused by small fluctuations of
the temperature. The role of such excitations in the
destruction of a long-range order is proved within the
model of plane rotators [2,3] and for the two-dimensional
Heisenberg ferromagnet [4].

The main result of our work is the proof of the
existence of topological excitations in the model with
biquadratic interaction between the nearest spins s= 1
at sites of a square lattice. We will consider the boundary
case of the nematic phase, where the constants of
the bilinear and biquadratic interactions are identical.
It is known that, in this case, the energies of both
possible phases (nematic and ferromagnetic-quadrupole
ones) are equal. In order to study excitations of the
nematic phase, we assume that K − J = ε, and ε is
a small positive value. It is obvious that topological
excitations exist at these parameters and differ slightly
from those in the case of ε = 0. If ε> 0, the manifold
of degeneration of the ground state of the system
is deformed, but the topology is not sensitive to
smooth deformations. Therefore, our conclusion about
the existence of topological excitations at J = K remains
valid also in the case of K >J > 0.
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The present paper contains two parts. The first
part is a survey. In the mean-field approximation, we
reveal the existence conditions for ordered phases and
solve the self-consistent relations for order parameters.
Comparing with results of other researchers on this
topic, we obtain the conditions of occurrence of the
nematic state. In the second part, by averaging the
equations of motion over coherent states and by passing
from a plane square lattice to a continuous plane,
we obtain formulas for the free energy in the case
of an inhomogeneous distribution of the mean field.
Topological excitations are described in terms of the
inhomogeneous distribution. Depending on a choice
of the equilibrium state and a way of the averaging,
we get two formulas for the free energy: the first
corresponds to excitations of the pure nematic state,
and the second is related to excitations of a state with
nonzero magnetization and quadrupole moment. In the
case of SU(3)-symmetry, we obtain self-dual solutions of
the problem of minimization. The obtained topological
excitations give the absolute minimum for the free
energy, and its value is proportional to a topological
charge.

2. The Quantum Model of a Planar Magnet

Let us consider a plane square lattice containing atoms
of spin s at each site. Each atom is assigned by
three spin operators {Ŝ1

n, Ŝ2
n, Ŝ3

n} obeying the standard
commutation relations

[Ŝα
n , Ŝβ

n ] = iεαβγ Ŝγ
nδnm,

where the indices α, β, and γ run the values {1, 2, 3}
for each site n, and δnm is the Kronecker symbol.

As usual, such a system is described by the
Heisenberg Hamiltonian. As s� 1, we can include higher
orders of the exchange interaction in the Hamiltonian.
In particular, magnets with the biquadratic interaction
were studied in the 1970s [9, 10]. The relevant
Hamiltonian will be considered in what follows. Let

Ĥ = −
∑
n,δ

{J(Ŝn, Ŝn+δ) + K(Ŝn, Ŝn+δ)2}, (1)

where Ŝn denotes the vector (Ŝ1
n, Ŝ2

n, Ŝ3
n) of the spin

operators at site n, and δ runs over the nearest-neighbor
sites. We assume that the exchange integrals J and K
are positive, i.e. we consider mainly the ferromagnetic
interaction.

The operators {Ŝα} are defined over the (2s+ 1)-
dimensional space of an irreducible representation of the

group SU(2). The spin operators generate the complete
matrix algebra over this space (the Burnside theorem).
With respect to the adjoint action adŜα , the complete
matrix algebra is divided into a direct sum of irreducible
collections of tensor operators. For example, let us
consider the case of s= 1. Then, for the complete
matrix algebra over the representation space, we have
dim Mat3×3 � [9]= [1]+ [3]+ [5]. Obviously, the bases in
three- and five-dimensional irreducible collections are
formed, respectively, by the operators Ŝα and by the
tensor operators of weight 2. The latter are the operators
of quadrupole moment chosen in the form

Q̂αβ
n = Ŝα

n Ŝβ
n + Ŝβ

n Ŝα
n , α �= β,

Q̂[2,2]
n = (Ŝ1

n)2 − (Ŝ2
n)2,

Q̂[2,0]
n =

√
3
(
(Ŝ3

n)2 − 2
3

)
.

A normalization of the operators Ŝα is defined by the
relation

(Ŝ1)2 + (Ŝ2)2 + (Ŝ3)2 = s(s + 1)I3,

which yields Tr(Ŝα)2 = 1
3 s (s+ 1)(2s+ 1). For s= 1, we

have Tr(Ŝα)2 = 2. We extend such a normalization for
all other operators.

Now we fix the canonical basis {|+1〉, |−1〉, |0〉} in
the representation space. Then a matrix representation
of the operators of spin and quadrupole moment is as
follows:

Ŝ1
n =

1√
2

⎛
⎝0 0 1

0 0 1
1 1 0

⎞
⎠ , Ŝ2

n =
1√
2

⎛
⎝0 0 −i

0 0 i
i −i 0

⎞
⎠ ,

Ŝ3
n =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ , Q̂[2,0]

n =
1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ ,

Q̂12
n =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ , Q̂13

n =
1√
2

⎛
⎝0 0 1

0 0 −1
1 −1 0

⎞
⎠ ,

Q̂23
n =

1√
3

⎛
⎝0 0 −i

0 0 −i
i i 0

⎞
⎠ , Q̂[2,2]

n =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ .

It is easy to see that the proposed matrices are connected
with the Gell-Mann matrices Λ̂a, a= 1, 2, . . . , 8, which
also form a basis in isu(3). The connection is given by
the linear transformations

Ŝ1
n = 1√

2
(Λ̂4 + Λ̂6), Ŝ2

n = 1√
2
(Λ̂5 − Λ̂7), Ŝ3

n = Λ̂3,
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Q̂12
n = Λ̂2, Q̂[2,0]

n = Λ̂8, Q̂[2,2]
n = Λ̂1,

Q̂13
n = 1√

2
(Λ̂5 + Λ̂7), Q̂23

n = 1√
2
(Λ̂4 − Λ̂6).

By {P̂ a}, we denote the collection of operators {Ŝ1
n,

Ŝ2
n, Ŝ3

n, Q̂12
n , Q̂13

n , Q̂23
n , Q̂

[2,2]
n , Q̂

[2,0]
n }. It is easy to prove

that the commutation relations

[P̂ a
n , P̂ b

m] = iCabcP̂
c
nδnm

hold true. Here, the tensor of structure constants Cabc

is antisymmetric under a permutation of any pair of
indices, and its nonzero components are

C123 = C145 = C167 = C264 = C257 = C356 = 1,

C168 = C528 =
√

3, C437 = 2.

In terms of the operators of spin and quadrupole
moment, Hamiltonian (1) takes the form

Ĥ = − (
J − 1

2K
) ∑

n,δ

∑
α

Ŝα
n , Ŝα

n+δ−

− 1
2K

∑
n,δ

∑
a

Q̂a
nQ̂a

n+δ − 4
3KN, (2)

where N denotes the total number of sites of the lattice.
Obviously, the Hamiltonian remains SU(2)-invariant;
hence, the operators Ŝα

n and Q̂a
n are transformed by

formulas of the adjoint representation

Û Ŝα
n Û−1 =

∑
β

D̂αβ(Û)Ŝβ
n ,

Û Q̂a
nÛ−1 =

∑
b

D̂ab(Û)Q̂b
n, ∀Û ∈ SU(2),

where D̂αβ(Û) and D̂ab(Û) are matrices of the real
irreducible representations of SU(2) with dimensions 3
and 5, respectively. If K =J , then the SU(2)-symmetry
can be extended to the group SU(3). In this case,
Hamiltonian (2) looks as

Ĥ = − 1
2J

∑
n,δ

∑
a

P̂ a
n P̂ a

n+δ − 4
3JN. (3)

To study the possible ordered phases of such a spin
system, we use the mean-field approximation.

3. Mean-Field Approximation. Ordered States

Now we replace the interaction between spin and
quadrupole operators that is described by Hamiltonian
(2) by an effective interaction between the operators
P̂ a

n and the classical mean field. Components of the
mean field are considered proportional to averages
(quasiaverages) of the quantum operators {P̂ a

n}. The
Hamiltonian in the mean-field approximation has the
form

ĤMF = −(J − 1
2K)

∑
n,δ

∑
α

Ŝα
n 〈Ŝα

n+δ〉−

− 1
2K

∑
n,δ

∑
a

Q̂a
n〈Q̂a

n+δ〉 − 4
3KN. (4)

It is worth to give a warning that a direct calculation
of the averages {〈Ŝα

n 〉} and {〈Q̂a
n〉}, for example by

means of the density matrix ρ̂(T )= exp{− H
kT }, results

in the zero values. This follows from the SU(2)-
symmetry of Hamiltonian (2). Nonzero values of the
averages appear if the symmetry is broken. Symmetry
breaking can be stimulated by an external field which
vanishes after specifying an order in the magnetic
system. The quantities calculated in this way are called
“quasiaverages” [11].

Hence, we assume that the nonzero quasiaverages
{〈Ŝα

n 〉} and {〈Q̂a
n〉} exist in our system and form a

classical 8-component vector field μa(xn), a= 1, 2, . . . , 8.
In order to obtain nonzero values of {〈Q̂a

n〉}, the external
field must have nonzero gradient. If the mean field is
homogeneous, the action of the group SU(2) transforms
Hamiltonian (4) to

ĤMF = −(J − 1
2K)

∑
n

Ŝ3
n〈Ŝ3〉−

− 1
2K

∑
n

Q̂[2,0]
n 〈Q̂[2,0]〉 − 4

3KN = − 4
3KN−

−
∑

n

{
(J − 1

2K)Ŝ3
nμ3 + 1

2KQ̂[2,0]
n μ8

}
.

In the case of thermodynamic equilibrium and an
infinite lattice, the fields μ3 = 〈Ŝ3〉 and μ8 = 〈Q̂[2,0]〉
are constant, i.e. they have the same values at all
points xn (a homogeneous mean field). These quantities
serve as order parameters. Obviously, μ3 describes a
normalized magnetization (the ratio of the z-projection
of a magnetic moment to the saturation magnetization),
and μ8 is analogously related to a quadrupole moment.

In the mean-field approximation, it is easy to
calculate the partition function for the homogeneous
case,

NZ(μ3, μ8, T ) = Tr e−
HMF

kT = Tr e−
NhMF

kT ,
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where hMF denotes a one-site Hamiltonian

hMF = −(J − 1
2K)μ3Ŝ

3 − 1
2Kμ8Q̂

[2,0] − 4
3K. (5)

The introduced mean field makes sense if the
following self-consistent relations are held:

μ3 = 〈Ŝ3〉MF =
Tr Ŝ3e−

NhMF
kT

Tr e−
NhMF

kT

,

μ8 = 〈Q̂[2,0]〉MF =
Tr Q̂[2,0]e−

NhMF
kT

Tr e−
NhMF

kT

.

These relations serve as an analog of the Weiss equation
from the theory of ferromagnetism. The averages of
operators can be presented via the partition function:

μ3 =
kT

(J − K
2 )

∂

∂μ3
ln Z(μ3, μ8, T ),

μ8 =
2kT

K

∂

∂μ8
ln Z(μ3, μ8, T ).

For the system described by the one-site Hamiltonian
(5), the self-consistent relations get the form

μ3 =
2 sh (J−K

2 )μ3

kT

exp
{
−

√
3 Kμ8
2kT

}
+ 2 ch (J−K

2 )μ3

kT

,

μ8 =
2√
3

ch (J−K
2 )μ3

kT − exp
{
−

√
3 Kμ8
2kT

}
exp

{
−

√
3 Kμ8
2kT

}
+ 2 ch (J−K

2 )μ3

kT

. (6)

We note that the true averages are always less
than their expectation values calculated from the self-
consistent relations. Therefore, solutions of (6) have a
qualitative sense only.

Here, we will analyze Eqs. (6) and make comparison
with results described in the literature. The obvious
solution corresponds to the paramagnetic state with
μ3 = 0 and μ8 = 0; this state is realized at temperatures
kT > J −K/2. At the same time, this inequality shows
that the model oriented to ferromagnetic materials gives
a meaningful result only in the region J −K/2< 0
which contains areas with the ferromagnetic and
quadrupole orderings, according to the well-known phase
diagram (Fig. 1) for the bilinear-biquadratic s= 1 one-
dimensional spin model [12].

In the case of K < 0, the self-consistent relations
have a unique nontrivial solution corresponding to
the ferromagnetic ordering, because this solution tends
to the limiting values μ3 = 1 and μ8 = 1√

3
as the

temperature decreases to zero. The critical temperature

Fig. 1. Phase diagram of a one-dimensional system of spins s = 1

of the transition from a ferromagnetic state into a
paramagnetic one is determined in terms of the constants
J and K as Tc = 2

3k (J −K/2).
In the case of K > 0 (the light-grey region in Fig. 1),

Eqs. (6) have more than one nontrivial solution: two
solutions corresponding to ferromagnetic states with
the boundary values μ

(1)
3 = 1 and μ

(2)
3 = 2/3 (and the

corresponding values of μ8) and two solutions describing
nematic states (μ3 = 0) with the boundary values
μ

(1)
8 = −2√

3
and μ

(2)
8 = 1√

3
. The existence of four ordered

states in ferromagnets is also reported in [7]: they
are a ferromagnetic state with μ

(1)
3 = s, a quadrupole

(or nematic) state with μ3 = 0, μ
(1)
8 =−s(s + 1)/

√
3, a

partially ordered quadrupole state with μ3 = 0, μ
(1)
8 > 0,

and a partially ordered ferromagnetic state with μ
(1)
3 < s.

Partially ordered states are unstable [7].
Analyzing the temperature evolution of solutions

of (6) as K > 0, J > 0, we revealed two critical
temperatures which are solutions of the equation

2
(J − K/2

kT
− 1

)
= exp

{ K

kT

(
1 − 3kT

2(J − K/2)

)}
.

The obvious solution is Tc1 = 2
3k (J − K/2). The other

solution Tc2 is calculated numerically. In the region
J >K, i.e. for ferromagnetic materials, the temperature
Tc2 is less than Tc1, whereas the reversed situation takes
place for nematics in the region J <K. At a smaller
critical temperature, the solution μ

(2)
3 disappears. Then

only the solution μ
(1)
3 exists in a certain interval of

temperatures. The comparison with results of work [8]
shows that, at a higher critical temperature, we have a
second-order phase transition from a ferromagnetic state
into a paramagnetic one.
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A somewhat different behavior is observed
in materials with J ≈K or, more precisely,
0.67< J/K < 1.22, i.e. on the boundary between the
ferromagnetic and nematic regions (the dark-grey
region in Fig. 1). Disappearing at a lower critical
temperature, the solution μ

(2)
3 arises again at a higher

critical temperature and grows continuously from zero
toward μ

(1)
3 . When two solutions coincide at a certain

temperature T0, they disappear by jump. We may
conclude that the phase transition from a ferromagnetic
state to a paramagnetic one is a transition of the first
order. This well agrees with results of work [8], where the
change of a second-order phase transition into a first-
order one in the region 2J/3< K < J was considered
(for ferromagnetic materials).

Further, we consider the case J = K corresponding
to the boundary between the ferromagnetic and
quadrupole regions. Moreover, as J =K, the quantum
Hamiltonian (2) and the Hamiltonian in the mean-field
approximation are SU(3)-invariant. The latter has the
form

ĤMF = − 1
2J

∑
n

∑
a

P̂ a
n 〈P̂ a〉 − 4

3JN =

= − 1
2J

∑
n

∑
a

P̂ a
nμa − 4

3JN. (7)

4. Equations of Motion for Large-Scale
Fluctuations of the Mean Field

We now return to the quantum SU(3)-invariant spin
model with Hamiltonian (3). The Heisenberg evolution
equations for the operators P̂ a

n have the form

i�
dP̂ a

n

dt
= [P̂ a

n , Ĥ]. (8)

We assume that the system is in an ordered state
and take the average of the both sides of Eq. (8) over
the Heisenberg (time independent) coherent states

|ψ(n)〉 =
1√
N

(
c1(n)|1〉 + c−1(n)|−1〉 + c0(n)|0〉),

|c1|2 + |c−1|2 + |c0|2 = 1.

On the other hand, the averaging can be performed
by means of the density matrix (thermodynamical
averaging) as T > 0 [13]. In both cases, we suppose

〈P̂ a
n P̂ b

m〉 ≈ 〈P̂ a
n 〉〈P̂ b

m〉 = μa(n)μb(m), (9)

i.e. we neglect correlations between fluctuations of the
quantum fields P̂ a

n . Then we obtain the following system
of Hamiltonian equations for the averages μa(n):

�
dμa(n)

dt
= Cabcμb(n)

∂〈H〉
∂μc(n)

= {μa(n), 〈H〉}. (10)

Taking (9) into account, we have 〈H〉= 〈HMF〉.
In order to investigate large-scale fluctuations of

the field μa(n), we take a two-dimensional continuum
instead of the discrete lattice. Such a transition is
well known for an SU(2)-magnet [14] and underlies the
macroscopic phenomenological theory of magnetism [15].
In the continuous theory, the dynamical variables are the
densities of averaged spin and quadrupole moments:

Ma(x) = lim
S→0

1
S

∑
n∈S

μa(n)δx,xn
=

∑
n∈S

μa(n)δ(x − xn).

Here, S is a “physically” infinitesimal region of the
lattice, and δ(x−xn) is the Dirac delta-function which
has the dimension of reciprocal area. A Poisson bracket
on the space of {Ma(x)} is calculated by the formula

{Ma(x),Mb(y)} = CabcMc(x)δ(x − y).

In what follows, we deal with the dimensionless field
μa(x)= l2Ma(x), where l is a distance between the
nearest neighbors of the square lattice.

Considering (j ± 1, k), (j, k± 1) as the nearest
neighbors of the site n= (j, k), we perform the transition
in Eqs. (10) from the discrete variable xn to a continuous
one x. Then the field {μa(x)} satisfies the equations

�
∂μa(x)

∂t
= {μa(x), Heff} = −Cabcμb

δHeff

δμc
, (11)

where

Heff = J

∫ ∑
a

(∂μa

∂x

)2

d2x.

A suitable representation of the system of
Hamiltonian equations (11) is the matrix equation

∂μ̂

∂t
=

2Jl2

�
[μ̂,Δμ̂], (12)

where

μ̂ = − i

2

∑
a

μa(x)P̂ a.

Obviously, μ̂ is a Hermitian 3× 3 matrix, the bracket
[·, ·] denotes a matrix commutator, and Δ = ∂

∂x2 + ∂
∂y2 is

the Laplace operator over a two-dimensional space.
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Equation (11) generalizes the Landau–Lifshits equation
[16] for isotropic ferromagnets to the case of the
8-component mean field μa(x). The Landau–Lifshits
equation is well-known in the macroscopic theory
of magnetism and suitable to describe large-scale
excitations in planar magnets and to explore the
ferromagnetic resonance.

5. Free Energy and Topological Charge

As mentioned above, the Hamiltonian coincides with
the free energy at constant temperature and volume.
Therefore, we use the notion of free energy in what
follows. As shown in Appendix (Section 6) by means
of an algebraic approach, Eq. (12) coincides with
the two-dimensional generalization of Eq. (25) on a
degenerate orbit. This equation is Hamiltonian, though
it is nonintegrable in the two-dimensional case; and its
Hamiltonian can be used as an effective free energy for
the spin system in question, namely:

Feff
1 =

2
3h0

∫∫ (
μ2

a,x + μ2
a,y

)
dxdy.

Obviously, Feff
1 is a part of the total free energy of a

magnet and arises from an inhomogeneous distribution
of the average values {μa(x)}.

The algebraic approach yields one more equation of
motion, associated with a generic orbit. Evidently, this
equation can be obtained from the quantum-mechanical
approach, by performing a relevant averaging that takes
correlations into account. Therefore, we consider another
effective free energy

Feff
2 =

1
2(3f2

0 − h3
0)

∫∫ (
h2

0(μ
2
a,x + μ2

a,y)−

−6f0(μa,xTa,x + μa,yTa,y) + 3h0(T 2
a,x + T 2

a,y)
)
dxdy.

The equations of extremals for the functionals of free
energy are a two-dimensional generalization of Eqs. (25)
and (26).

If the equations for constraints determining orbits
are solved or, in other words, orbits are parametrized,
then the formulas for the free energy can be
simplified. The orbits of a co-adjoint representation of
semisimple compact Lie groups are compact Kählerian
manifolds. Therefore, it is suitable to use a complex
parametrization. In order to parametrize a generic orbit,
one requires three complex variables w1, w2, and w3.
Explicit formulas for the parametrization of a generic
orbit are the following:

μ1 =
m −√

3 q

2
√

2
· w2 + w3 + w̄2 + w̄3

1 + |w2|2 + |w3|2 − m√
2

(1 − w1)(w̄3 − w̄1w̄2) + (1 − w̄1)(w3 − w1w2)
1 + |w1|2 + |w3 − w1w2|2 ,

μ2 =
m −√

3 q

2i
√

2
· w3 − w2 − w̄3 + w̄2

1 + |w2|2 + |w3|2 − im√
2

(1 + w1)(w̄3 − w̄1w̄2) − (1 + w̄1)(w3 − w1w2)
1 + |w1|2 + |w3 − w1w2|2 ,

μ3 = −m −√
3 q

2
· |w2|2 − |w3|2
1 + |w2|2 + |w3|2 +

m(1 − |w1|2)
1 + |w1|2 + |w3 − w1w2|2 ,

μ4 =
m −√

3 q

2i
· w̄2w3 − w2w̄3

1 + |w2|2 + |w3|2 +
im(w1 − w̄1)

1 + |w1|2 + |w3 − w1w2|2 ,

μ5 =
m −√

3 q

2
√

2
· w3 − w2 + w̄3 − w̄2

1 + |w2|2 + |w3|2 − m√
2

(1 + w1)(w̄3 − w̄1w̄2) + (1 + w̄1)(w3 − w1w2)
1 + |w1|2 + |w3 − w1w2|2 ,

μ6 =
m −√

3 q

2i
√

2
· w2 + w3 − w̄2 − w̄3

1 + |w2|2 + |w3|2 +
im√

2
(1 − w̄1)(w3 − w1w2) − (1 − w1)(w̄3 − w̄1w̄2)

1 + |w1|2 + |w3 − w1w2|2 ,

μ7 =
m −√

3 q

2
· w̄2w3 + w2w̄3

1 + |w2|2 + |w3|2 − m(w1 + w̄1)
1 + |w1|2 + |w3 − w1w2|2 ,

μ8 = −m −√
3 q

2
√

3
· 2 − |w2|2 − |w3|2
1 + |w2|2 + |w3|2 +

m√
3
· 1 + |w1|2 − 2|w3 − w1w2|2

1 + |w1|2 + |w3 − w1w2|2 . (13)

ISSN 2071-0194. Ukr. J. Phys. 2008. V. 53, N 12 1213



J.M. BERNATSKA, P.I. HOLOD

Here, m and q denote boundary values of the quantities
μ3 and μ8, respectively. For a degenerate orbit, it is
sufficient to have two complex variables, for instance
w2 and w3; in this case, we assign w1 = 0.

After the restriction onto an orbit by formulas (13),
the expressions for free energy become

Feff =
∫ ∑

α,β

gαβ̄

(
∂wα

∂z

∂w̄β

∂z̄
+

∂wα

∂z̄

∂w̄β

∂z

)
dzdz̄, (14)

where gαβ̄ denote components of a metrics on the orbit,
and the real coordinates x and y on a plane are changed
into complex-valued ones z and z̄.

While co-adjoint orbits are Kählerian manifolds,
they possess Kähler potentials which generate a related
metric tensor g and a 2-form h; their components are
calculated by the formulas

gαβ̄ =
∂2Φ

∂wα∂w̄β
, hαβ̄ = i

∂2Φ
∂wα∂w̄β

.

A 2-form gives rise to a topological charge

Q =
1
4π

∫ ∑
αβ

hαβ̄

(
∂wα

∂z

∂w̄β

∂z̄
− ∂wα

∂z̄

∂w̄β

∂z

)
dz ∧ dz̄,

which means a degree of the mapping of a plane into an
orbit, which is realized by a function of w1, w2, and w3.

On a degenerate orbit of SU(3), the function
Φ2 = ln(1+ |w2|2 + |w3|2) serves as a Kählerian
potential, and the metric tensor from (14) is a Kählerian
one. Then the formulas for the topological charge and
the free energy differ only in a sign (‘+’ for the free
energy, and ‘−’ for the topological charge), hence,

F [ξ] � 4π|Q|.
The equality holds if the second term in the brackets
vanishes, which happens if the functions {wα} are
holomorphic or antiholomorphic.

Consequently, the holomorphic functions form a
class of solutions with quadrupole ordering (m = 0) that
correspond to the minimum of the free energy. The same
takes place for antiholomorphic functions.

We now consider the case of a generic orbit.
The cohomology class of rank 2 for the orbit
is two-dimensional, then there exist two basis 2-
forms generated by the Kählerian potentials Φ2

and Φ1 = ln(1+ |w1|2 + |w3 −w1w2|2). As a unique
Kählerian potential, we take the one corresponding to
the Kirillov–Kostant–Souriau form

Φ = mΦ1 − m −√
3 q

2
Φ2. (15)

Generally speaking, the metric tensor of the free energy
(14) is not Kählerian. However, we can construct a
Kählerian metrics of the form

Feff
2 =

1
2(3f2

0 − h3
0)

∫∫ (
C1(μ2

a,x + μ2
a,y)−

+C2(μa,xTa,x + μa,yTa,y) + C3(T 2
a,x + T 2

a,y)
)

dxdy,

by choosing the appropriate coefficients C1, C2, and C3.
Then all conclusions relative to a degenerate orbit

can be extended to a generic one. That is, the class of
solutions with ferromagnetic ordering that correspond
to a minimum of the free energy are realized by
holomorphic (or antiholomorphic) functions.

5.1. Large-scale topological excitations

Excitations of a state with quadrupole ordering are
described by spatially inhomogeneous distributions
of the 8-component vector field μa(x) living on a
degenerate orbit

O(μ3 = 0, μ8) � SU(3)
SU(2) × U(1)

.

Mappings of topological charge 2 can be modeled by the
holomorphic functions

w2(z) =
a1

z − z1
, w3(z) =

a2

z − z2
,

where a1, a2, z1, and z2 are fixed complex numbers.
The components μ3 and μ8 of the mean field,

whose boundary values are called order parameters, are
presented in Figs. 2 and 3 (we show a cut along the
straight line joining poles of the functions w2(z) and
w3(z), the origin of coordinates being at a middle of
the interval z1z2). In Figs. 2 and 3, q is a value of the
component μ8 at the initial point of a degenerate orbit
(μ3 = 0).

These excitations are analogous to Belavin–Polyakov
solitons well-known for planar Heisenberg ferromagnets
(the quantities a1 and a2 define the widths of solitons,
and the quantities z1, z2 give their positions). It is
easy to see that the energy of a configuration does not
depend on the width of a soliton, which proves the scale
invariance of the energy in the two-dimensional case.
Hence, topological perturbations can have arbitrary
large size. Such an instability (an unrestricted increase of
the soliton width without energy pumping) can cause the
destruction of a nematic order in the considered model.
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6. Appendix. Integrability of SU(3)-Symmetric
Equations of the Landau–Lifshits Type in a
One-Dimensional Space

It is known that the system of equations (12) in the one-
dimensional case is an integrable Hamiltonian system on
a degenerate orbit of the group SU(3) [17]. We generalize
Eq. (12) to the case of a generic orbit. The algebraic-
geometric nature of equations like (12) is revealed in
the frame of the so-called orbit approach to nonlinear
Hamiltonian systems. Below, we construct integrable
Hamiltonian equations on orbits of the group SU(3).

Consider polynomials in a complex variable λ,
whose coefficients are anti-Hermitian matrices of the
algebra su(3). We denote the set of polynomials by
g̃+ � su(3)⊗P(λ), where P(λ) is a ring of polynomials
with the standard multiplication operation. If A, B ∈ g̃+

have the form A(λ)=
∑

n Ânλn, B(λ)=
∑

k B̂kλk, then

[A, B] =
∑
n,k

[Ân, B̂k]λn+k ∈ g̃+. (16)

Operation (16) shows the structure of a graded Lie
algebra in g̃+. Let Xn

a =λnX̂a be a basis in g̃+, where
X̂a =− i

2 Λ̂a, a= 1, 2, . . . , 8, {Λ̂a}8
a=1 denote the Gell-

Mann matrices.
In g̃+, we introduce a bilinear ad-invariant form

〈A,B〉 = −2 res λ−N−2 Tr A(λ)B(λ), (17)

where N + 1 is the maximum degree of the matrix
polynomials A and B. Let M= (g̃+)∗ be a space dual
to g̃+ with respect to form (17). The collection of linear
forms

ξ(λ) =
N∑

n=0

8∑
a=1

ξn
a λnX̂a +

(
ξ3X̂3 + ξ8X̂8

)
λN+1

creates a closed ad-invariant subspace MN in M. The
coordinates ξn

a of ξ(λ)∈MN are calculated by the
formula

ξn
a = 〈ξ(λ),X−n+N+1

a 〉.
In the linear space MN with coordinates ξn

a ,
n= 0, 1, . . . , N , we define the Lie–Poisson bracket

{f1, f2} =
∑
m,n

8∑
a,b

Wmn
ab

∂f1

∂ξm
a

∂f2

∂ξn
b

(18)

with the Poisson tensor field

Wmn
ab = 〈ξ(λ), [X−m+N+1

a ,X−n+N+1
b ]〉.

q 3

2

�

�

z
1

z
2 z

�
3

3

2

�q

Fig. 2. Contour of µ3(z, z̄), µ3(∞) → 0

2
�

z
1 z

2 z

8�

q

q

Fig. 3. Contour of µ8(z, z̄), µ8(∞) → q

We also define two ad-invariant functions I2(λ) and
I3(λ) by the formulas

I2(λ) = −2Tr ξ2(λ) =
∑

a

ξ2
a(λ),

I3(λ) = −4iTr ξ3(λ) = dabcξa(λ)ξb(λ)ξc(λ).

Here, dabc =−2iTr(XaXbXc + XbXaXc), and ξa(λ) is a
polynomial

ξa(λ) = ξ0
a + ξ1

aλ + ξ2
aλ2 + · · · + ξN+1

a λN+1.

The invariant functions are also polynomials in the
complex parameter λ:

I2(λ) = h0 + h1λ + · · · + h2N+2λ
2N+2,

I3(λ) = f0 + f1λ + · · · + f3N+3λ
3N+3.

It is easy to prove that the coefficients h0, . . . , hN+1,
f0, . . . fN+1 are annihilators of bracket (18). Fixing
them, we obtain the system of algebraic equations

hn = const, fn = const, n = 0, . . . , N + 1, (19)

which gives an embedding of the orbit ON+1 of
dimension 6(N + 1) into the linear space MN+1. The
remaining coefficients {hN+2, . . . , h2N+2, fN+2, . . . ,
f3N+3} form a pairwise commutative collection of
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Fig. 4. Root diagram of the group SU(3)

integrals of motion, which is necessary to integrate the
Hamiltonian system. We are interested in the functions
hN+2 and hN+3 and the corresponding Hamiltonian
equations. In particular, the Hamiltonian hN+2 gives
rise to the so-called stationary equations. In terms of
the coordinates ξn

a , they are

∂ξn
a

∂x
= 2fabcξ

0
c ξn+1

b , (20)

where {fabc} are the antisymmetric structure constants
of the algebra su(3) in the basis of Gell-Mann matrices:

[Xa,Xb] = fabcXc,

f123 = 1, f458 = f786 =
√

3
2 ,

f147 = f165 = f246 = f257 = f345 = f376 = 1
2 .

By x, we denote a “time” with respect to the Hamiltonian
hN+2, which corresponds to the evolution equations

∂ξn
a

∂t
= 2fabc(ξ0

c ξn+2
b + ξ1

c ξn+1
b ). (21)

Equations (20) and (21) are consistent,
because the corresponding Hamiltonians commute:
{hN+2, hN+3}= 0. Hence, we can determine evolution
(21) on trajectories of system (20), i.e. we suppose the
dynamical variables ξn

a in Eq. (21) to be dependent on
x. Combining (20) and (21), we have

∂ξ0
a

∂t
= 2fabcξ

0
c ξ2

b =
∂ξ1

a

∂x
. (22)

The variables {ξ1
a} can be expressed in terms of {ξ0

a} and
{ ∂

∂xξ0
a}. Then (22) becomes a closed system of partial

differential equations for {ξ0
a}. For {ξ1

a}, it is necessary
to solve the degenerate system of equations

∂ξ0
a

∂x
= 2fabcξ

0
c ξ1

b , (23)

which becomes possible after the restriction to the orbit
ON+1 ⊂ MN+1.

6.1. Classification of orbits

It follows from Eqs. (19) that the orbit ON+1 in MN+1

has the structure of a vector bundle over a co-adjoint
orbit of the group SU(3). Hence, a classification of the
orbits ON+1 is reduced to that of orbits of SU(3).

Since the group SU(3) is simple, we have g∗ = g.
Therefore, we consider {ξ0

a} also as coordinates in the
algebra g � su(3). Then a generic element ξ̂ ∈ su(3) is
represented by the matrix

ξ̂ = − i

2

⎛
⎜⎝

ξ0
3 + 1√

3
ξ0
8 ξ0

1 − iξ0
2 ξ0

4 − iξ0
5

ξ0
1 + iξ0

2 −ξ3 + 1√
3
ξ8 ξ0

6 − iξ0
7

ξ0
4 + iξ0

5 ξ0
6 + iξ0

7 − 2√
3
ξ8

⎞
⎟⎠ . (24)

Let ξ̂(0) be a fixed element of su(3). By definition,
the set Oξ̂(0) = {gξ̂(0)g−1, ∀g ∈SU(3)} is an orbit of
SU(3) through the point ξ̂(0). Elements g′ of the group
SU(3) such that g′ξ̂(0)g′−1 = ξ̂(0) form the stationary
subgroup at the point ξ̂(0). The orbit Oξ̂(0), being a
homogeneous space, is a coset space SU(3)/G′ �Oξ̂(0),
where G′ denotes the stationary subgroup.

The maximal commutative subalgebra of the
semisimple algebra g, which is called Cartan, can be
diagonalized. The Cartan subalgebra of su(3) is formed
from diagonal matrices depending on two parameters ξ0

3

and ξ0
8 . It is well known that a proper transformation

puts any element ξ̂ ∈ g into the Cartan subalgebra of
g. This implies that each orbit intersects the Cartan
subalgebra at least once. In fact, there is more than one
intersection point number, more precisely as many as
the order of the Weyl group W(G). We discuss this in
what follows.

The nontrivial similarity transformations ξ̂ → gξ̂g−1

that preserve the subalgebra h form a discrete subgroup
W(G)⊂G, which is called a Weyl group [18]. The
action of the group W(G) on the subalgebra h = h∗

is generated by reflections in planes orthogonal to
simple roots. The Weyl group of SU(3) is generated
by two reflections σ1 and σ2 in the planes shown in
Fig. 4 by dotted lines. The full Weyl group consists of
six elements {e, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1 � σ2σ1σ2},
and is isomorphic to the group of permutations S3,
ord S3 = 3!.

Since a Weyl group acts over a Cartan subalgebra,
every point σξ̂(0)σ−1, σ ∈W(G), belongs to an orbit
through ξ̂(0)∈ h. The group W(G) acts efficiently (it
changes an element ξ̂ into another one, if the element
does not belong to reflection planes). An open domain
in a Cartan subalgebra, where a Weyl group acts
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efficiently, is called a Weyl chamber (see Fig. 4).
Elements of different Weyl chambers are adjoint by
elements σ ∈W(G). This implies that each orbit through
a point ξ̂(0) of a Weyl chamber intersects the Cartan
subalgebra as many times as the order of W(G). If ξ̂(0)
is an interior point of a Weyl chamber, we call the orbit
a generic one and call the points σξ̂(0)σ−1, ∀σ ∈W(G)
poles of an orbit.

For a generic orbit, a stationary subgroup G′

coincides with a maximum torus Tr for a group G
of rank r. In the case of the group SU(3), we have
T2 = U(1) × U(1). Hence, the generic orbits are coset
spaces Ogen � SU(3)/U(1)×U(1).

If an initial point ξ̂(0) belongs to the wall of a Weyl
chamber (in the case of SU(3), it belongs to one of
the reflection lines), then we deal with a degenerate
orbit. In this case, a stationary subgroup G′ contains
a semisimple subgroup generated by roots orthogonal
to the initial point ξ̂(0). Consider the group SU(3). If
ξ̂(0) lies on the vertical reflection line, α1 and −α1

are orthogonal to this element. The corresponding
sl(2)-triple {Xα1 , X−α1 , Hα1 = [Xα1 , X−α1 ]} generates
a subgroup SU(2)⊂ SU(3). Obviously, the element
ξ̂(0)= −i

2
√

3
ξ0
8 diag(1, 1,−2) is invariant under a

transformation g′ξ̂(0)g′−1, where g′ is the unitary matrix

g′ =

⎛
⎝ α β 0
−β∗ α∗ 0

0 0 1

⎞
⎠

⎛
⎝eiϕ/2 0 0

0 eiϕ/2 0
0 0 e−iϕ

⎞
⎠ .

Hence, g′ ∈ SU(2) × U(1), and a degenerate orbit is a
coset space Odeg � SU(3)/SU(2)×U(1).

6.2. Equations on orbits and their Hamiltonians

Let us return to the construction of integrable systems
on the orbits of loop groups and consider Eq. (22). In
order to solve this equation, we have to restrict the
degenerate system (23) to an orbit.

If ξ0
a ∈Odeg, then the matrix 2fabcξ

0
c has rank 4, and

its inversion gives a solution

ξ1
a = 2

3h0
fabcξ

0
b ξ0

c,x + h1
2h0

ξ0
a,

where the constants h0 and h1 define an orbit by Eqs.
(19).

If ξ0
a ∈Ogen, then the matrix 2fabcξ

0
c has rank 6 and

is invertible on a generic orbit. Then we have

ξ1
a = 1

2(h3
0−3f2

0 )

(
h2

0fabcξ
0
b ξ0

c,x+

+3h0fabcη
0
bη0

c,x − 6f0fabcξ
0
b η0

c,x

)
+

+ 2f0f1−3h2
0h1

6(f2
0−h3

0)
ξ0
a + 3f0h1−2h0f1

6(f2
0−h3

0)
η0

a,

where η0
a = dabcξ

0
b ξ0

c , and the constants h0, h1, f0, and
f1 come from Eqs. (19).

Substituting the obtained expressions in the right-
hand side of (22), we get two equations for the functions
ξa(x, t) ≡ ξ0

a:

∂ξa

∂t
= 2

3h0
fabcξbξc,xx + h1

h0
ξa,x, ξa ∈ Odeg, (25)

∂ξa

∂t
= 1

2(h3
0−3f2

0 )

(
h2

0fabcξbξc,xx − 3f0fabcξbηc,xx+

+3h0fabcηbηc,xx − 3f0fabcηbξc,xx

)
+

+ 2f0f1−3h2
0h1

6(f2
0−h3

0)
ξa,x + 3f0h1−2h0f1

6(f2
0−h3

0)
ηa,x, ξa ∈ Ogen. (26)

We set h1 = 0 in Eq. (25) and replace the variables
ξa by μa. Then its generalization to the two-dimensional
case gets the form

∂μa

∂t
= 1

6h0
CabcμbΔμc,

where Δ = ∂2

∂x2 + ∂2

∂y2 . Obviously, this equation has the
Hamiltonian

Heff = 1
12h0

∫∫ (
μ2

a,x + μ2
a,y

)
dxdy.

It is easy to see that (25) coincides with a one-
dimensional analog of (12). In other words, Eq. (12) can
be considered as a two-dimensional generalization of the
integrable equation (25).

In the same way, we treat Eq. (26), namely, we
replace ξa by μa and assign f1 =h1 = 0. Generalized to
two dimensions, the obtained equations get the form

∂μa

∂t
= 1

8(h3
0−3f2

0 )

(
h2

0CabcμbΔμc − 3f0Cabcη̃bΔμc+

+3h0Cabcη̃bΔη̃c − 3f0CabcμbΔη̃c

)
. (27)

Here, η̃a are quadratic forms in μa: η̃a = d̃abcμbμc, where
d̃abc = 1

4 Tr(PaPbPc + PbPaPc). Obviously, Eq. (27) is
Hamiltonian with the following effective Hamiltonian:

Heff = 1
16(h3

0−3f2
0 )

∫∫ (
h2

0μ
2
a,x + h2

0μ
2
a,y−

−6f0μa,xη̃a,x − 6f0μa,y η̃a,y + 3h0η̃
2
a,x + 3h0η̃

2
a,y

)
dxdy.
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7. Conclusions

In the present paper, we have constructed nonlinear
stationary excitations appearing in the nematic phase of
a planar magnet of spin s= 1 modeled by a square lattice
with the biquadratic interaction between the nearest-
neighbor sites. These excitations are characterized by
an integer topological charge and reveal themselves
as regions with nonzero magnetization and mean
quadrupole moment. The topological excitations in a
two-dimensional system (without taking an anisotropy
and a demagnetizing field into account) can increase
unrestrictedly without a pumping of energy. This
destroys the nematic state in the system, according to
the Mermin–Wagner theorem on the absence of a long-
range order in one- and two-dimensional systems.
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ВПОРЯДКОВАНI СТАНИ ТА НЕЛIНIЙНI
КРУПНОМАСШТАБНI ЗБУДЖЕННЯ
У ПЛОСКОМУ МАГНЕТИКУ
ЗI СПIНОМ s =1

Ю.М. Бернацька, П.I. Голод

Р е з ю м е

Дослiджено впорядкованi стани та топологiчнi збудження
у квазiдвовимiрному магнетику, змодельованому квадратною
ґраткою зi спiнами s = 1 у вузлах та гамiльтонiаном з бiквад-
ратною обмiнною взаємодiєю найближчих сусiдiв. Запропоно-
вано два ефективних гамiльтонiани для опису крупномасштаб-
них збуджень у строго двовимiрному випадку. Один з них опи-
сує збудження середнього поля в нематичнiй фазi, iнший — у
змiшанiй феромагнiтно-нематичнiй фазi. Показано, що ефек-
тивнi гамiльтонiани мiнiмiзуються на конфiгурацiях, якi ма-
ють фiксований топологiчний заряд. Цi топологiчнi збудження
можуть виникати при низьких температурах i бути причиною
руйнування далекого порядку у строго двовимiрнiй системi.
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