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DETERMINATION OF GROUPS ALL OF WHOSE PROPER
SUBGROUPS HAVE A COMMUTATOR SUBGROUP OF ORDER
EQUAL OR LESS THEN p (p> 3)

The authors are grateful to Prof. Z. Janko for proposition to regard the p-groups all of whose proper
subgroups are either abelian or have a commutator subgroup of order equal or less then p It is easy to see that
abelian p-groups and p-groups with a commutator subgroup of order p satisfy this condition. L. Szekeres and
V. Sergejchuk have studied the p-groups with a commutator subgroup of order p. The aim of this paper is to
investigate of the p-groups G (p>3) with a commutator subgroup of order > p, in which every proper
subgroup is abelian or has a commutator subgroup of order p. We prove that G' is an abelian group and it is
either an elementary abelian group or a cyclic group of order p%. We give a description all such group by the
relations. The isoclinism families containing these groups are pointed. Our determination will follow in five
propositions covering all cases: is G' a cyclic or an elementary abelian, is G' in Z(G) or not, has G an

abelian maximal subgroup or not.

Introduction
It is well known that the properties of a group are
connected to its subgroup structure. Sometimes to
obtain the answer to the question whether the group
has a subgroup of a given kind is more difficult than

to obtain the list of all groups without subgroups of

this kind. For example, Miller and Moreno described
nonabelian groups all of whose proper subgroups are
abelian ([1]). Due to this result one can practically
answer the question whether a finite nonabelian
group has a proper nonabelian subgroup or not?

In the same way, to find out if a finite nonabelian p-
group contains a proper subgroups whose commutator
subgroups have order greater than p we should describe
all groups whose proper subgroups are abelian or have
the commutator subgroup of order p.

It is clear that all abelian p-groups and all
p-groups with the commutator subgroup of order p
satisfy this condition.

lhe groups with the commutator subgroup
of order p were studied by L. Szekeres ([2]) and
V. Sergejchuk ([3]). They have shown that the group
G withacommutator subgroup of order p is the central
product of 2-generated subgroups B =g, h ~. It has

-

following relations for p > 3:
G=(g . h.z|g’ =2,

:/‘ =1. L,l/’

=1, i =1, [g;,h]=2
lg,g,1=1g;.h;1=1h,h;]=]
(i,j=1..n, i #j))

where m, n — integers: m >0; n > 0, max n > 0;

m2n fori>1,m >1ifn >0;g=1ifn >0 and
g=1ifn=>0.

: it X(m; + n;)

It is easy to see that (Gj=p ! '°. The

method to obtain all p-groups of given order with
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a commutator subgroup of order p up to isomorfism
was described by V. Sergejchuk in [3].

Our aim is to describe all groups with the
commutator subgroup of order greater than p all of
whose proper subgroups are either abelian or have
a commutator subgroup of order p.

Further we shell denote such group by G.

We show that the commutator subgroup G' is an
elementary abelian or a cyclic group of the order p°.
We describe all such groups.

Our determination will follow in five theorems
covering all such groups. We consider the following
cases:

G'is a cyclic group:

G' is an elementary abelian, G' belongs to a
center Z(G) and G has a maximal subgroup. which
is abelian;

G' is an elementary abelian, G' in Z(G), but G
has not any abelian maximal subgroup,

G'is an elementary abelian, G' & Z(G) and G has
a maximal subgroup, which is abelian,

G'is an elementary abelian, G' Z(G) and G has
not any abelian maximal subgroup.

Here we determine these groups in terms of
generators and relationship up to isoclinism. We can
determine such groups up to isomorphism, but the
full list of such groups is too large to be published
in a journal article.

I'wo groups G, H with centers Z(G), Z(H) and
commutator groups G, H, are said to be isoclinic
(written G=H), if there exist isomorphisms

and ¢:G,—> H, such

-G/ - H/
072G /z(H)

that o(la,b))=[d',b'] for all a,beG, where

d'Z(H)=0(aZ(G)) and b'Z(H)=0(bZ((G)).
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It is easy to show that this relation is well
defined and is. in fact, equivalence relations. The
equivalence classes are called (isoclinism) families.
The isoclinism relation is weaker than isomorphism
relation. P. Hall ([4]) has showed that every family
® has the groups of minimal order, called stem
groups of @. We show all investigated groups
belong to families with stem groups of order less
or equal to p°, so we can use the list of isoclinism
families obtained by P. Hall ([4]) (for families of
rank 5), T. Easterfield ([5]) and R. James ([6]) (for
rank < 6).

1. The main properties

We denote by G the group all of whose proper
subgroups have a commutator subgroup of order
equal or less then p, but the group itself has a
commutator group of order greater than p.

We need the following technical lemmas.

Lemma 1. Let M be a proper normal subgroup
of G and M' is its commutator subgroup. Then
M < Z(G) if IM'|=p.

It is clear that M' is characteristic subgroup of
M, so M’ is normal subgroup of G. Every normal
subgroup of p-group G has a nontrivial intersection
with Z(G). so M' < Z(G). #

Lemma 2. For each a,d € G we have

[@",b] = [a,b’] = [a,b]". (1

Proof. Let be g = [a,b]. If [a,g] =1 then [a*,b] =
= [a,b} is clear.

Suppose  now [ag]=z#1.  Consider
H = (a,@(G)). It is a proper normal subgroup of
G. We have g € G'c O(G) < H. From Lemma 1
we have H'c Z(G). So z € Z(G), exp(z) = p. From
g =a'ga = glg a] = gz the next follows:

[a”, bl =[a, )" [a,b)" " ..[a,b]"[a,b) =

=g g g =(g)" (&) ..(g)g =
2p-h)
wimgly & = gb

Analogously [a.b”] =[a,b) =g’. Lemma has
been proved. #

Lemma 3. exp(G') < p~.

Proof. Let exp(G") 2 p*. Then there is an element
g € G' such that |g|=p°, and there are a.be G
such that [a,b] =g. The subgroup 4 =(a,b”) is a
proper subgroup of G. From Lemma 2 we have
g'=[ab’] € A', but g’ has the order p* This
contradicts the assumption that every proper
subgroup of G has a commutator subgroup of
order < p. Lemma has been proved. #

Theorem 1. Let G be a group, all of whose
proper subgroup have a commutator subgroup of

order < p and G itself has the commutator subgroup
of order bigger then p. The following conditions are
equivalent:

(a) exp(G")=p%

(b) all maximal subgroups of G have the same
commutator subgroup;

(¢) G'is acyclic group.

Proof. (a)=> (b). Assume that the element
g € G' is such that |g| = p? and elements a,b € G
are such that [a,b] = g. Consider the subgroup
A={(ab) of G. Since exp(4d)=p* thus 4=0G.
So, we have g=(ab) and ®(G) = {(a’, b, G").
Since the subgroups (ab®, ®((G)), a = 0,..., p—1,
and (b, ®(G)) exhaust all maximal subgroups
of G={ab). From Lemma 2 we have [a’,h]=
=[a,b’)=g"# 1. Thus every maximal subgroup
M of G = {a,b) is nonabelian and contains g” # 1 in
their commutator subgroup. From the definition of
G we have |[M'| = p and M" = (g7) for every maximal
subgroup M.

(b) = (¢). Now suppose that for every maximal
subgroup 4, Bof Gwe have A'"B'=4"'=B'=D,
where |D| = p. If G/D is abelian then G' = D. This
contradicts the condition |G'| > p.

If G/D is nonabelian, then it is a minimal
nonabelian group because its every proper
subgroup is abelian. Every maximal subgroup of
G/D is abelian thus intersection of two maximal
subgroups coincides with center of G/D. Therefore
the center of G/D has index p?, G/D = (a,b.Z(G/D)),
and it follows that (G/D) is the cyclic group
generated by the [a, b]. The commutator subgroup
G' of G is the extension of the cyclic group of
order p by another cyclic group of order p. So the
order of G’ is equal to p°.

We will prove that G has exactly 2 generators in
this case too. Let a, b are the preimages of @, b and
[a. b] =g. We have g ¢ D, so the subgroup H = (a,b)
has a commutator subgroup, which is unequal to D.
According to the condition (b) of the theorem H
may not be the proper subgroup of G, so G = (a,b).

Suppose that G’ is noncyclic; then there is
ce G, c g (g). Since G =(a,b), we get G'=(g,G,)
and ¢ € G,. So, there are elements d,, d, such that
deG,deG\G' [d,d)=c LetM={d, dG))
is a maximal subgroup of G = {(a.b). M contains
d, d, thus ¢ = [d, d,] € M. Since M"= (g")p then
¢ € (g"), The contradiction with assumption ¢ ¢ (g)
proves that G can not be a noncyclic group. We get
G is the cyclic group of order p”.

(¢) = (a). It follows from the determinations of
G and Lemma 3.

That completes the proof.

Corollaries. 1) If G'is the cyclic group of order
P’ then G has two generators, G = (a,b). \

2) If G' is the cyclic group of order p*, then all
maximal subgroups of G are nonabelian.
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3) G' is noncyclic group if and only if there are
(at least) two maximal subgroups A,-B of G such
that A"\ B' = 1.

Theorem 2. G'is abelian.

Proof. At first let us suppose that G possesses
(at least) two maximal subgroups 4, B such that
A"~ B'—= 1. Thus A ~ Bis abelian, so G' = (G <=
< A N B is abelian too.

Now suppose that for every maximal subgroups
A,BofGholds4'n B'=4'= B'= D, where |0\ = p.
IfG/D is abelian then G'= D. We get Gis the cyclic
group of order p, so G’ is abelian.

In case G/D is nonabelian, we have proved that
G"is cyclic of order p? and thus it is abelian too.
Theorem has been proved.

Corollary. If the commutator subgroup G' is a
noncyclic group, then it is an elementary abelian
group.

This proposition follows immediately from
Theorem I and Theorem 2.

Now we will investigate the lower central series
of G.Set G,=G'=[G, G, G, =[G, G]. G, =[G, G]
and so on.

Lemma 4. G, c Z(G), G, = 1.

Proof. We will fix a system of generators of G,
G=(g,&, -.-» g, such that G/G, = (g ) x (g,) x...
x (g yandg = g G,arethegeneratorsofabelian group
G/G,. Thus G,=[G,G]=(g,G,l.--.. [g,.G.D-
Consider the normal subgroups M = (g, G,), where
i=1, .., nSince M'=([g, G,])and from Lemma I
M'c Z(G)weget[g, G,] € Z(G)foreachi = 1,..., n,
and finally we obtain G, ¢ Z(G) and G, = 1. That
completes the proof.

Theorem 3. If G, # | then G has exactly two
generators, G = (a, b).

Proof. Letg € G,—G, and g, b € G are such that
g=la b). Ifa e Z(g) or b ¢ Z(g), then subgroup
{a, b) has commutator subgroup with order larger
than p, so (a, b) coincide with G.

We will regard the case [a, g] =[b, g] = 1.

Suppose that G has more then 2 generators. If
G, # 1, then there are elements ¢ € G, g € G'such
that [g, c] =z, z# 1, z € G. From Lemma 4 we
have G,c Z(G), so z € Z(G). The assumption
[a, c] = [b, ¢] = 1 contradictswith[a, b]=g,[g, ¢] =z.
Thus we may assume that [g, ¢] =d # 1. Regard the
proper subgroup {(a, ¢, G,). The assumption d ¢ (z),
where z = [g, c], contradicts with the condition
that every proper subgroup of G has a commutator
subgroup of order < p. Thus d=z* € Z(G). In a
similar way we have [b, ¢] € Z(G). From Witt’s
identity [[a.b'], c]’[[b,c']. a)[[c.a'], B} =1 we
have that z' = 1. The contradiction with condition

z # limplies that our supposition is wrong.

Theorem has been proved.

2. The groups with the cyclic commutator
subgroup of order p’

Theorem 4. Let G be a group all of whose
proper subgroups have a commutator subgroup of
order <p. Suppose that the commutator subgroup
G' of G is the cyclic group of order p*. We have one
of the two following possibilities.

(a) Let be G' < Z(G). Then G is 2-generated
group from the family ® G has the following

relations:

G=(a, b, g|[a. b]=gla.gl=[b,g]=1,g"=1,

ar” = ge, b" =g, (m=n22)
where o, B are equal to 1, 0 or p.
(b) Let be G'z Z(G). Then G is 2-generated group
Jfrom the family ®, G has following relations:

G=(a.b g|[a,b]=g. [a g]=g".
(b,gl=1, g"=1,
a’" = gl"", b= gﬁ>’
(m=22, n21)

where in case n = |1 we have that B=1and .= 0
form =2, a=0o0rpform>2;

and in case n > 1 we have 3 =0 mod p, o =0
or p.

Warning: This is not the determination up to
isomorfism.

Proof. We have proved that G ={(a.b). So
GIG'=(@),n x (B)p,,. Let g be a generator of the cyclic
group G'of order p?, g = [a, b].

Then G has following relations:

G={(a,b g|la b]l=g,

la.g1=g" [b. g] = g" )
gr=1,a" =g, b"=gh),
where 0 <A, p, a, B <p’

(a) Suppose that G' < Z(G). Thus a*", b”" € Z(G).
According (1) we have 1%=[a”",b] = [a, b)""=g"",
thus m=>2. Analogously n>2. So G/Z(G)=
= <£z),r, x (b) p*. We have obtained the set of all two-
generated groups of family @ .

Every above mentioned group is determined by
the relations:

G={a,b g|la bl=g [agl=[bgl=1g"=1,
a"=ge, b’'=gh, (m=2nz=2).

We may choose the generators a, b such that a,
P are equal to 1, 0 or p.

(b) Suppose that G'  Z(G). We may assume that
[a, gl #1,[a,g] € (g”),- We may choose a, b such
that[b, g] = 1,[a. g] = g". Thusa”"e Z(G) and b”'= gP
may be an element of G’ — Z(G). b""e G - Z(G) if
and only if § # 0 mod p.
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According to (1) we have 1 = [a, b] =
= [a, b} =g thusm>2;g" =[a, by =[a "] =
=[a, g"] =g"thus n2 1. Itis easy to see that n = |
if and only if B # 0 mod p. So the case » = 1 must be
considered separately. In this case we have
2 =la, b)Y =[a, b"] = [a, g] = g" thus B = 1. From
the relations b” = g, g = [a, b], [a, g] = g” we have
that b’g"' € Z(G) and b” = gz, where z € Z(G).

So, we have G/ZG)=(a b g | [4 b = &
[adgl=[hg =1 a"=1br=g gr=1)forevery
such group. All groups with given factor-group
G/Z(G) and cyclic commutator subgroup G'= (g) .
form the family ®,. Thus we have obtained all
2-generated metacyclic groups of family @,.

We have seen that @ = g*”. If m =2 then
replacing a with @' = ab™ we obtain @™ = 1. 1§
m > 2 then we may choose the generators a, b such

that q, is equal to | or 0, so a is equal to p or 1. The
following relations determine every such group:

G=(a,bg|labl=glagl=g\[bgl=1g"=1,
a"=g" b'=g),(m22,n=1),

where a, = 0 in the case m = 2, and a, may be
equal to 0 or | for m > 2.

Let be # > 1. Thus we have »”" = g"/. We may
choose the generators g, b such that a,, B, are equal
1 or 0. From the relations g = [a, b], [a, g] = &
we obtain that b7g’ € Z(G) and b = gz, where
z € Z2(G).

Thus for n > 1 we have the same factor-group:

G/ZG) =@ b gllab=glagd=bg=
=1,a4" =1, b" =g g’ = 1) and the same cyclic
commutator subgroup G'=(g) .. Therefore the
groups obtained for n > 1 are from family @, too.

The following relations determine every such

group:
G=(a,b,g|la,b]=g.[a.g]=g"[b.g]=1.g" =1,
a"= g™ b= "\ (m22,n22).

Thus we have obtained the all 2-generated groups
of the family ®,.

From the other hand, if G is a 2-generated
group of @, then ®(G) = (a’, b”, g). Subgroups
(ab*, a", b’, g),a=0, ...,p— 1, and (b, @’, g) exhaust
all maximal subgroups of G. It is easy to see that
every maximal subgroup has acommutator subgroup
(g”) of order p. Thus every proper subgroup of G is
abelian or has the commutator subgroup of order p.

Theorem has been proved.#

3. The groups with all of whose proper
subgroup have a commutator subgroup
of order < p, but the group itself has noncyclic
commutator subgroup of order > p?
and G'c Z(G)

Suppose G’ is a noncyclic group. We have
proved that G " is an elementary abelian in this case.

Assume in addition that G" < Z(G). The next two
theorems give all possibilities for such groups.
Theorem 5. Let G* be a group all of whose

proper subgroups have a commutator subgroup of

order < p, but G* has a commutator subgroup of
order > p*. Then G has a maximal subgroup A which
is abelian, the commutator subgroup G’ is noncyclic
group and G' < Z(G) if and only if G is 3-generated
group from the family ®,.

G has following relations:

G=(8,8,8»2:%|[8-8172;
(8,8]=2[g-8]=1,
[g,z)=11z,2]=1.2=1,
g}‘""—zl“*zz‘“.\i= L3 5= L),

Proof. Fix a system of generators of G: G =
= (g, &» - &, such that abelian group G/D(G)
is generated by the g = gG* G/®(G) = (g,) *
X (g)) X... X ).

We have shown that if G is noncyclic then it is
an elementary abelian group. Assume G~ = {z) *
x (z,) x H, where H is an elementary abelian or
trivial group. Suppose that the maximal subgroup
A= (g g ... g is abelian, thus [g, g] =
= 1 for all i, j = 2,...,n. Let us set [g, g] = z,
[g, g] = 2z, [g, g) € Hfori = 3,...,n. Consider
the maximal subgroup M = (g, g/, g,...., g,)- We
have M~ = (z,) x H. The condition |M| = p implies
that H = 1.

If G has more than 3 generators g, &, ..., &,
then subgroup B = (g, g, g, is a proper subgroup
of G. It has a commutator subgroup of order p°.
This is a contradiction since every proper subgroup
of G has a commutator subgroup of order < p.
Thus G has exactly 3 generators g, g, g, and has
the relations (2). It is easy to verify that G/Z(G) =

@), * @, * ®), ¢ = &) * &) w
g, 8] =2, (g, 8] =2z, [g, g] = 1. All groups with
such relations belong to the family ®,.

From the othier side, the conditions G/Z(G) =
~@), x @), * @)y G =), x (), GSZG)
hold for each group G with 3 generators from @, so
we can choose the generators thus that [g, g ] =z,
(8, 8] =2, [g, &] =1, where g Z(G) =g fori =1,
2, 3. Thus every group from ®, with 3 generators
may be determined by the relations (2). It is easy
verify that every such group satisfies the conditions
of theorem. #

Theorem 6. Let G be a group all of whose proper
subgroup have a commutator subgroup of order < p,
but the group itself has commutator subgroup of
order > p*. Then G is noncyclic group, G* < Z(G),
and all maximal subgroups of G are nonabelian if
and only if one of the following conditions holds:

() G is 4-generated group from the family @,
and G has following relations: -

(2)
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G= <g|! gz’ gy g.; ’ z|’ Z: | [gzi g|] = zp [g.v gt] = 23'
8, 8)=Ig:8l=1g:81=Ig,81=1;
g, zj] = LE.g]=1, zP= L, gr=zey,
(i=1,2,3,4j=1,2;0,B,=0.p-1))

(b) G is 3-generated group from the family @,

and G has following relations:
G > (gl‘ gZ' g]’ zl’ 22’ 23 | [gl’ gZ] = 23’
[g|‘ g;] - 22* [gg’ g;] - zp
[g8,2)=1,[z,2) =1,2 = 1, gF"=zpzz2,
(@, By, =0.p= =123 =1,2,3))

Proof. Suppose that G is a group in which every
proper subgroup has acommutator subgroup of order
< p. but the group itself has a noncyclic commutator
subgroup of order > p. Suppose that G < Z(G) and
all maximal subgroups of G are nonabelian. We
have shown that there are maximal subgroups M,
and M, such that M"# M,".

Let G/D(G) = (g) x &, *...x(g,). We fix the
generators G = (g, g,..., &) such that g, = g®(G)
(i = 1,..., n) are the generators of G/D(G). We
may assume that M, = (g?, g, ..., &) M, = (g,

P, 8y &) Since (M, N M) ' c M, NnM,” =1
then M, " M,=(g/, g/, g,, ..., &, is abelian. Thus
(g, gl =1foralljj=3,.., n From Lemma 2 we
have g7 € Z(G). Therefore the relations between
g, & and between g, g, and other generators exhaust
all nontrivial commutator relations in G.

a) Suppose that [g, g,] = 1. Set M|" = (zz)p,
M," = (z,),. Wemay choosethegeneratorsg,, g, .... &,
such that [g, g,] =z and [g, g]=1fori =4,.., n.
If additionally [g, g] =1 for all i = 4,..., n, then
the maximal subgroup 4 = (g, g,, &/, &,---» &) IS
abelian. This contradicts that all maximal subgroups
of G are nonabelian.

So there exists an element 4 € (g, ..., g, P(G)),
which does not commute with g,.

Taking g, for i (if necessary) we may assume
[g. g]= z,. We may redefine the generators g,. ..., g,
such way that [g, g] = 1 fori = 4,..., n. Thus the
subgroup 4 = (g, g, g/, g,..... g, has acommutator
subgroup (z,) . If [g,, g] # 1 for i =5, ..., n then
[g. g] € (z,), and we may redefine the generators
go-» &, Such way that [g, g] =1 fori > 4. If
[g, g]# 1 then regarding subgroup M, = (g7, g,
. &, We obtain [g, g] = zi, since g, g, € M,
and M=(z,). Thus g'= gg/' commutes with
g,, and the set of the elements (g, g, &, &,-.-.
g, is a set of the generators of G too. Writing g,
instead of g, " we obtain the set of generators of G
satisfying the following relations: [g,, g,] =2z, [g,
gl=1fori=4,.,n[g gl=2,[8 8l=1for
i > 4 and [g, g] = 1. The subgroup (g, g, &,
g) has a commutator subgroup of order p?
thus it is not a proper subgroup of G. Therefore
G = (g, g &, g, Regarding G as an extension of
the elementary abelian group G'=(z)), * (z,), by the

abelian group G/G " generated by g, 8,. g, 8,, Where
g,=gG ', we obtain a group with relations (a).

All these groups are 4-generated groups of the
family ®@,,.

From the other hand, each group H from @,
has an elementary abelian commutator subgroup of
order p? and an elementary abelian group H/Z(H)
of order p*. If H is contained in the family @, then
H’' < Z(H). For every 4-generated group H of this
family we may choose the generators g, 2., 2., g,
of H/Z(H) and the generators z, z, of H” such that
[gv gz] == l’ [gl' g;] =Z|, [gzv g4] = zz’ [gr g4] == ]’
g, &l=1,[g, g]l=1, where gZ(H) =g fori=1,
2,3, 4. Itis easy to see that all maximal subgroups of
4-generated group H have a commutator subgroup
of order p so all proper subgroups of 4-generated
group / have a commutator subgroup of order equal
or less then p.

b) Now suppose that [g,g]#1. We may
assume that [g, g] =2z, [g, gl =1 for i=
=4, ... n. If additionally (g, g] = 1, [g, &] = z,,
[g, g] =1 (i > 4), then either subgroup (g,
g, &) or subgroup (g, g, g,) has a commutator
subgroup of order p°. Assume [g, g] = z.
[g, g]=1 for i=4,...n In this case if [g, g)] €
€(z) % (z), [g, &] = z'z? then the maximal
subgroup 4 = (g g%, g.¢7. g,.... g) is abelian. This
contradicts to the condition of theorem that all
maximal subgroups of G are nonabelian, and hence
[g,8]¢e(z) x (z).Set[g, g] = z, The subgroup
(g, &, g, has a commutator subgroup of order p’,
so it coincides with G. Thus G has 3 generators.
Regarding G as an extension of the elementary
abelian group G " = (zl),, X (zz>p x (z,) by the abelian
G/G’, we obtain the groups with relations (b). All
groups of this kind belong the family @ .

From the other hand, each group H from @
has an elementary abelian commutator subgroup
of order p* and an elementary abelian group H/
Z(H) of order p*. Each group H from @ satisfies
condition H" < Z(H). For every 3-generated group
H of this family we can choose the generators g, ..
g, of G/Z(G) and the generators z, z,, z, of G'such
that [g. g )=z, Ig, 81=2. [8, 8]=2, Where
g ZG) =g, fori=1,2,3 Itis easy to see that all
maximal subgroups have commutator subgroups of
order p for every 3-generated group H of @ .

We have proved that all 3-generated groups of
@, are the groups all of whose proper subgroups
have a commutator subgroup of order equal or less
then p, but the group itself has a commutator group
of order greater than p.

Theorem has been proved. #

The groups determined here exhaust all groups
G with noncyclic commutator subgroup, which is
contained in Z(G).
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4. The groups all of whose proper subgroup
have a commutator subgroup of order < p,
but the group itself has noncyclic commutator
subgroup of order > p* and G' & Z(G)

We have proved that all such groups with
G' ¢ Z(G) are 2-generated.

Theorem 7. Let G be a group all of whose proper
subgroup have a commutator subgroup of order
< p, but the group itself has noncyclic commutator
subgroup of order 2 p* and G' @ Z(G).

G possesses an abelian maximal subgroup A if
and only if

G={ab gz|[ba=glga]l=z
[g.b]=1[g2z]=[az]=[bz]=1,2"=gf =1,
a"=zb"=#(a,p=0,1,...p-1)

so G is the 2-generated group of the family @,.

Proof. Let be G' ¢ Z(G). From the theorem
3 we get that G has exactly 2 generators,
G={a, b). Set g=[b, a]. Thus we may assume
that G'= (g)px(z) x H, where [g a]=z. Assume
the subgroup A4 ={(a’, b, G') is abelian. Then we
have b € C(G"). Consider the maximal subgroup
M= (a, b’, G". The commutator subgroup M’ is
generated by all comutators, which generate G’
except for g=[b,a]. Therefore M'=(z) x H.
The condition [M] = p implies that H=1. Thus
G'=(g) x(z), where (z)cG,c ZG). Consider
G as the extension G' by the G/G'. We have
G/G'—(E) ><<b) , where a=aG', b= bG'". From
a" eZ(G)wegeta" =z*, wherea=0,1,...,p—1.
Suppose »" € Z(G). Then for each h € G we have
[, h) = [b, h}" =1 according to (1) and since
G' has exponent p. This contradiction implies that
b" € Z(G). So we may assume b”" =zP, Thus G
may be determined by the relations

y=(a, b, gz|[bal=glg al=z
g 8)=1,[82z)=la:2] =[b,z] = L,2¢=g'=];
@ =2 =2 (a, p=0,1, ....p—1)).

All groups with these relations are the 2-generated
groups of the family ®.

From the other side, every group H from @,
has the nonabelian group H/Z(H) of order p* and
exponent p, a commutator subgroup ' of order p°,
which is an elementary abelian and is not contained
in the center. For every 2-generated group H of this
family we can choose the generators a, b of H/Z(H)
such that [b, @) =g and the generators g zof H',
where z € Z(H) N H'and g € G'— Z(H) n H', such
that [b, a] = g, [g, a] =z, [b, g] = 1, where aZ(H) = a,
bZ(H)= b, gZ(H) = g. So we may determine every
such group with 2 generators by the relations given
above. Every such group has an abelian maximal
subgroup A4 = (a”, b, H"). The subgroup 4 and the
subgroups {ab®, ®(H)), where a=1,...p—1,

exhaust all maximal subgroups of 2-generated
group H={(a. b). It is easy to see that every
maximal subgroup of / has a commutator subgroup
of order < p. Thus every proper subgroup of H has
a commutator subgroup of order < p.

Theorem has been proved.

Theorem 8. Let G be a group all of whose proper
subgroup have a commutator subgroup of order
< p, but the group itself has noncyclic commutator
subgroup of order 2 p*.

Then G' & Z(G) and all maximal subgroup of G
are nonabelian if and only if G is the 2-generated
group of the family ®_and it may be determined by
the relations

G={(abcz,z|[abl=clac]=2z,
[b, c] [b,z]=
=[z,2,]=1,0" =20z%,
W =2bzh, cP=2r=1(i=1,2)
wherea, B,=0,1,...,p—1,i=1,2.

Proof. According to the Theorem 3 we have that
G is 2-generated group, G = (a, b). The commutator
¢ = [a, b] does not belong to center: ¢ ¢ Z(G), but
G'- Z(G) is abelian since G'= (¢, G,), G, < Z(G).
So G'- Z(G) = Z(G) - (¢ ).

According to the Corollary 3 to the Theorem 1|
we have maximal subgroups 4, B of G, which have
different commutator subgroups. We may choose
the generators a, b such that 4 =(a”, b, G") and
B=(a,b’,G". Letusset A' =(z)), B' = (2,), z, # 2,.

From Lemma 2 we have A’ e Z(G) for every
he G, thus A=Z(G) G'-(b)=2ZG)" (b) (c)
and B=Z(G) - G'-{a)=ZG) - {a) - {c). Therefore
A'={[b. c]) and B'=([a, c]). Thus we may assume
that [a, c] =z, [b, ] =z, where z , z, € Z(G).

Considering G as an extension of G, = (z ) x (z,)
by the group

G/G,=(a,b|[a b]=c,
@2 =[b,e=1,a"b"=er=1)
we obtain the relations of G:
G=(@becz,z |[a,bl=c[ac]l=z2,[bc]=2,
[zl =bz]=[e.2]=z.,2]= 1,

@’ =gz b =zhob cP=2P = (i=1,2)),
wherea,B,=0,1...,p-1,i=1,2.

Every such group is a 2-generated group of the
family @,.

From the other side, every group H from ®, has
a nonabelian factor-group H/Z(H) of order p* and
exponent p and an elementary abelian commutator
subgroup of order p’, which is not contained in
the center. For every 2-generated group of this
family we can choose the generators @ & of
H/Z(H) and the generators c, z,, z, of H', where
z,z,€ Z(Hy N H'andc € H'— Z(H) N H', such that

=z, [a,2]= [e.z]=
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la.b]=c,[a,c] =z, [b.c]=z, where aZ(H)=a, every maximal subgroup of H is nonabelian and
bZ(H) = b, ¢Z(H) = [a, b]. So, we may determine
every such group by the relations given above. The
subgroups 4 ={a’, b, H') and (ab®, b, H"), where

has a commutator subgroup of order p. Thus every

proper subgroup of / has the commutator subgroup

o= 1,...,p— 1 exhaust all maximal subgroups of ©forder <p.
2-generated group H = (a, b). It is easy to see that Theorem has been proved. #
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. Yenynuu, O. Ilunascoka

I'PYIIN, B AKNX KOKHA BJIACHA HIAI'PYIIA
MA€ KOMYTAHT IIOPAJAKY HE BUJIBLIE p

Aemopu sucrogirooms noosaxKy npogecopy 3eonumupy Auky, axuil 3anpononysas oocaioumu p-epynu G (p
> 3), 6 saxux KodicHa eracka nioepyna abo abeneea, abo mae komymanm nopsaoxy p. Ouesuono, wjo maxumu
epynamu 06yoymuv abenesi epynu i epynu, KOMYMAHM AKUX € YUKTIYHOW 2pynoio nopsaokyp. Ipynu 3
KOMYymanmom nopsaoky p oocrioxceno JI. Cexepewem i B. Cepeetivykom. Mema yiei npayi - 00cuioicents
epyn G, y akux Koxcna énacha niozpyna abo abenesa, abo mMac KOMymanm nopsoxky p, aie cama zpyna mae
nopsook Komymanma oinewuii 3a p. Ilokazano, wo 6 yvomy eunaoky komymaum G' epynu G e abenesoro
epynoio i abo € yuKniunoI 2pynolo nopaoky p°, abo enemenmapnoio abeneoio epynoto. s pyn 3
KOMYMAHMOM, NOPSAOOK AK020 Oinbwull 3a p, 6KA3AHO GU3HAYAIOYI CNMIBGIOHOWIEHHS, A MAKONIC BU3HAYEHO
POOUHU [30KTIHHOCI, AKUM HALeHCaAmbs Yi PYNu.

YK 517.954:536.21

bynasayvruii B. M., Jlagpux B. L.

YUCEJBHUM PO3B'SI30K KPAHOBOI 3AJIAYI TEOPII
PLIbTPAIIHNHOI KOHCOJILJIAIIL 3 YPAXYBAHHSIM
HACHUYEHOCTI MACHUBY COJIbOBUM PO3UNHOM TA
MOB3YYOCTI IPYHTOBOI'O CKEJIETA

3anpononosano uucenvhull memoo po3e'sa3yearHs 0O0HOBUMIPHOI HecmayioHapHoi Kpaiiosoi 3adaui
Qinompayiiinoco YWinbHeHHs [PYHMOB020 MACUBY, POIMIWEHO20 HA HENPOHUKHIU OCHOBLI Ma HACUYEHO20
CONIbOBUM PO3UUHOM, 3A YMOGU NOG3YHOCMI IPYHMOBO20 CKeNlema.

1. Betyn TOBYBAaTH JUISl PO3PaxyHKiB IPOIIECIB YIIITBHEHHS B IIIX
IHKEHEPHHX CIOPYAaX KIaCHYHY TEOPito QilbTpariifHol
AKTyaJbHICTh JOCHI/KEHb MpoleciB (iIbTpariii- koHcomiganii [1], ska 0a3yeTbcs Ha MPUIYIIEHHI, 110
HOTO YIIUIBHEHHS TPYHTIB, HACHYEHUX COJLOBUMHU GbinbTpar y MacuBi € YHCTOI BOJAOKO. SIK MOKa3aHO B
pO3YMHAMH, 3yMOBJIEHAa BAXKJIMBICTIO BUBUCHHS YMOB poborax [3-5], HacHYeHICTP MacuUBY COJIbOBHM
€KOJIOTiYHO ~ Oe3redHoro  (yHKIiOHYBaHHA HaKOIH- PO3YHMHOM CYTTEBO BIUIMBA€E Ha PO3MOMIT HA/UIUIIKOBUX
4yBayiB MPOMHCIOBHX CTOKIB (30KpeMa MLIIaMO- Ta HanopiB y HbOMY, 1 BpaxyBaHHA LbOro (akTy €
xBoctocxoBu] [1, 2]).Yacto Bka3aHi HakomM4yBadi 00OB'SI3KOBUM ISl OZIEPXKAHHS a/IeKBATHOTO MPOTHO3Y
3aIOBHIOIOTh BIJIXOZAMH XiMIiYHOI Ta TipHHUYOI Ipo- nepebiry mporecy ymuibHeHHs. Y i poGoti
MHCIIOBOCTI, $IKi € KOHIIGHTPOBAaHHMH COJIbOBHMH 0JIEPIKAHO PO3B'sI30K OJTHOBHUMIipHOT 3amadi
po3uMHaMHU. 32 TAKUX YMOB HEKOPEKTHO BUKOPHC- (biTbTpaLiiftHOTO YIIITEHEHHS MACUBY, HACH-
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