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THE DOMINATION HEURISTIC
FOR LP-TYPE PROBLEMS

Certain geometric optimization problems, for example finding the smallest enclosing ellipse of a set of
points, can be solved in linear time by simple randomized (or complicated deterministic) combinatorial
algorithms. In practice, these algorithms are enhanced or replaced with heuristic variants that are faster
but do not come with a theoretical runtime guarantee.

In thispaper, we introduce a new speed-up heuristic that can easily be integrated into the known linear-
time algorithms, without decreasing their worst-case performance. The heuristic can actually be defined for
any problem in the well-known abstract class of LP-type problems; its effectiveness in practice depends on

whether and how fast the heuristic can be implemented for the specific problem at hand.
We provide test results showing that for two concrete problems, the new heuristic may lead to significant
speedups compared to state-of-the-art implementations that are available in the Computational Geometry

Algorithms Library CGAL.
1 Introduction

The first (expected) linear-time algorithm for the
problem of finding the smallest enclosing ellipsoid of
a set of pointsin d-dimensional space is due to Welzl
[10] and was motivated by an earlier randomized al-
gorithm for linear programming by Seidel [9].

Here is the essential idea of the algorithm (de-
scribed for dimension 2): to find the smallest enclos-
ing ellipse E(P) of a set P of n points, choose apoint
p € P at random, and recursively compute E:= E(P{p}).
If p happens to lie inside E, we are done; otherwise,
we can conclude that p must be on the boundary of
E(P), and we therefore recursively compute the
smallest enclosing ellipse E(P{p}) of P with p on
the boundary. A generic recursive call computes
E(P, R) for a set R of boundary points, where the
problem is easy for |R| =5, since an ellipse is
uniquely determined by 5 points.

Despite its simplicity and its backtracking flavor,
this algorithm achieves expected runtime O(n) for
any fixed dimension d. The key observation is that
the probability for p not being contained in E is
O(1/n), meaning that the computation of E(P\{p})
happens only with small probability. The same ago-
rithm also works for the similar problem of finding
the smallest enclosing ball of a set of points.

Concerning practical performance, it was d-
ready observed by Welzl in his original paper [10]
that the above algorithm is rather dow. Welzl sug-
gested a move-to-front variant of his algorithm that
performs much better in practice but does not come
with a theoretical runtime bound anymore, short of
atrivial bound.

Further speedups in practice can be achieved by
heuristics that take the geometry into account (in
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contrast, move-to-front is purely combinatorial).
For example, the faster algorithm for computing
smallest enclosing balls uses Welzl's move-to-front
variant for small problem instances, and afarthest-
point heuristic for large instances. Given a candi-
date ball which is not yet enclosing, the algorithm
searches for the «worst outlier» and uses it to deter-
mine a better candidate ball [3].

The disadvantage of such geometric heuristics is
that they do not generalize to more abstract settings.
One particular such setting is that of LP-type prob-
lems due to Matousek, Sharir and Welzl [6]. Es-
sentially, an LP-type problem is an optimization
problem over an abstract set of constraints H (points
in the case of smallest enclosing ellipsoids and
balls). Given the optimal solution subject to a subset
G of the constraints, the LP-type framework only
requires atest whether this solution violates agiven
constraint h € H\G (test whether a point is outside
the smallest enclosing ellipse/ball of a subset); there
is no abstract notion of «how much» a constraint is
violated.

The class of LP-type problems includes a large
number of practically relevant geometric optimizen
tion problems [6]. Given just two problem-specific
primitive operations, the randomized algorithm of
Matousek, Sharir and Welzl can be used to solve
every LP-type problem in expected linear time (lin-
ear in the number of constraints H, given that the
combinatorial dimension of the problem is fixed;
see [6] for details).

The generic LP-type algorithm is actually an in~
provement of the above algorithms of Seidel [9] and
Welzl [10]; it still works for smallest enclosing -
lipsoids and balls but aso (and this is its main
strength) for other problems with somewhat less
structure.
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Just like Welzl's algorithm, the generic LP-type
algorithm can typically be improved in practice, at
the cost of losing the theoretical guarantees. For
smallest enclosing ellipsoids and balls, this has in-
dependently been done by Lyashko, Petunin and
Rublev [7, 8, 5] and Friedman [2]; on the level of
LP-type problems, both approaches coincide. Here
is the overview of their approach (described for d-
lipses in dimension 2): maintain a set B of at most
five points along with their smallest enclosing d-
lipse E. Then iterate through the remaining points,
and whenever a point p outside E = E(B) is found,
update E to E{(Bwi{p}) and reset B to the set of

boundary points of this new ellipse. Computation of
the smallest enclosing ellipsoid E(B..{p}) can be
done for example with Welzl's algorithm as a sub-
routine. As long as at least one update took place
during the iteration, continue with another iteration
through the points. Upon termination, this method
has computed the smallest enclosing €llipse of the
whole point set.

In this paper, we show that this method can fur—
ther be improved for many inputs. Namely, before a
point p is tested for containment in E = E(B), we test
whether it is contained in the convex hull of the set
B. If so, we can be sure that p will not contribute to
the final ellipse and can therefore be removed alto-
gether. The benefit is that all subsequent iterations
won't see p anymore. We call this the convex hull
heuristic, and it is obviously valid for al convex
bounding volumes.

Whether this is effective largely depends on the
distribution of input points, and on the cost of the
test «p = E(B)». At this point, we would like to
make it clear that we are mainly interested in exact
computations that deliver the mathematically cor—
rect result and not an (more or less meaningful) go-
proximation of it. Thisis exactly therealm of CGAL,
the Computational Geometry Algorithms Library
(www.cgal.org). In case of smallest enclosing d-
lipses, the exact test «p ¢ E(B)» is fairly involved,
since E(B) may have irrational coordinates and is
therefore not explicitly computed.

Even if containment tests are relatively cheap
(like for smallest enclosing balls of points or other
balls), it may pay off to switch on the convex hull
heuristic.

From atheoretical point of view, the most inter-
esting feature of the convex hull heuristic is that it
can be generalized to arbitrary LP-type problems,
and that it can be incorporated into existing ago—
rithms without affecting the theoretical guarantees.
We will get to thisin the Section 3.3 of this paper. In
a nutshell, the generalization (which we call the
domination heuristic) is this: a constraint h € H is
called dominated by B < H if the following holds:
whenever h is violated by the optimal solution sub-
ject to some subset G of constraints, then this solu-
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tion also violates an element of B. Under this defini-
tion, apoint inside the convex hull of other points is
dominated by these points with respect to smallest
enclosing ellipses, say.

The domination heuristic (which is strictly com-
binatorial) simply throws away constraints that have
been identified as being dominated during the com~
putations. It depends on the concrete LP-type prob-
lem whether an efficient domination test is available
at all, and whether it will actually remove con-
straints. But in any case, the expected runtime will
asymptotically not increase.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the algorithms of
Welzl [10] and of Rublev [7, 8] for smallest enclos-
ing ellipsoids, and we enhance them with the con-
vex hull heuristic; we provide test results that show
the performance gain (or sometimes loss) under
various input distributions.

In Section 3, we present the generalization to
LP-type problems. We review the generic (recur-
sive) LP-type algorithms of Matousek, Sharir and
Welzl [6], and the simple iterative one resulting
from generalizing the methods of Rublev [7, 8] and
Friedman [2]. We show that even when the ago-
rithm of Matousek, Sharir and Welzl is equipped
with the domination heuristic, the expected com-
plexity of O(n) still holds.

As an example of practical usefulness and ease
of use of the general domination heuristic in Section
4 we describe its application to smallest enclosing
sphere of spheres problem.

2 Smallest Enclosing Ellipses

We start from Welzl's algorithm 1 for computing
smallest enclosing ellipses, written down formally
[10]. As a subroutine, it needs to solve the constant-
size problem of computing the smallest ellipse E,(S)
with aset S of at most 5 points on its boundary. The
algorithm returns a basis S, R — S — PR with the
property that E,(S) = E(P, R). To compute E(P), we
cal the algorithm with R = &,

Data: Disjoint sets £ and R of points, |[R| <5

Result: Basis of the smallest ellipse that contains P and has
o ) R on its boundary
SmE11(F,R) begin

00
S—R;
E — Ey(8);
foreach p € P in random order do
if p £ E then
S —SmE11(Q,RU{p});
E — Ey(S):
end
Q—QuU{ph
end
return §;
end

Algorithm 1 Welzl's algorithm
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One problem that leads to poor performance of
this algorithm in practice is that the recursive call
throws away the ellipse computed so far and starts
from scratch, only exploiting the additional infor—
mation that p has to lie on the boundary. Rublev's
algorithm [7, 8] tries to reuse the ellipse so far:
whenever a point is found to be outside, the working
basis S and the corresponding ellipse EO(S) are up—
dated to also cover this point.

The pseudocode is given in Algorithm 2. The
proof of correctness can be found in [7, 8].

Data: Point set P
Result: Smallest enclosing ellipse of set P

begin
S—0
E—g2,
done — false;
while not done do
done — true;
foreach p £ Pdo
il p € E then
§ —SmE11(S,{p})
E — Ey(S);
done — false;
end
end
end
return £

end

Algorithm 2 Rublev's Algorithm

2.1 Computational Complexity

For both algorithms, the runtime is dominated
by the number of containment tests «p ¢ E». For
Algorithm 1, the expected number of such tests is
O(n), where n = |P|. In contrast, we have no good
bound for Rublev's algorithm.

One might be tempted to think that every itera—
tion ofthe main loop in Rublev's algorithm adds one
element of the final basis to the working basis S, but
this is not true. In fact, experiments show that points
from the final basis could be added and removed
from the working basis several times. It remains an
open problem whether there exists any nontrivial
bound on the number of outer loop iterations.

2.2 The Convex Hull Heuristic

Like in many other geometric algorithms, cor—
rect results can only be guaranteed for Algorithms 1
and 2 if multiprecision arithmetic is used. In fact,
the package Min ellipse 2 in the CGAL library
implements the (faster) move-to-front variant of
Algorithm 1 [10], using exact arithmetic. It turns out
that the containment tests «<p & E» are the major bot—
tleneck. This is on the one hand due to the fact that

Sfurther
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containment tests are the most frequent operations,
but on the other hand, exact containment tests are
not easy because the involved ellipse E will in gen—
eral have irrational coordinates [4].

Therefore, reducing the necessary number of
containment tests will lead to an immediate speedup
of the algorithm. Here is the simple but crucial ob—
servation:

Observation 1 [fduring Algorithm 1 or 2, the
considered point p is contained in the convex hull of
the working basis S, then p can be removed from
consideration.

The convex hull of S is the smallest convex set
that contains all points from S. The ellipse E(P\{p},
R) (for Algorithm 2, R = &J) is some convex set that
contain S (because of S — P R), and therefore it
also contains p. It follows that E(P\{p}, R) = E(P, R),
meaning that p can be ignored without changing the
output ofthe algorithm.

The convex hull computation introduces at most
constant overhead, since it involves at most five
points; it has the potential, though, of removing
many points. We will refer to resulting variant of
Welzl's method as Algorithm 3.

Obviously, there are inputs for which Algorithm 3
will not improve over Algorithm 1, for example
points in convex position. For points randomly dis—
tributed within a square or disk, through, major sav—
ings can be expected (see the benchmark section
below).

In the same way, we can enhance Rublev's Al—
gorithm 2, which will be refered as Algorithm 4 with
the convex hull heuristic.

2.3 Benchmarks

Algorithms described above were implemented
using the Min ellipse 2 package of CGAL Ili-
brary as a base. Hence all implementations share the
same primitive operations, perform exact computa—
tions and only differ by the core algorithm itself. To
ensure thorough testing several distributions of ran—
dom points were chosen: uniform in unit square,
uniform in unit disk, uniform on unit circle, uniform
on the integer rectangular grid (lots of duplicates).
Also small and large synthetic cocircular sets were
used to check behavior of algorithms in extreme
(mostly theoretical) cases.

In Table 1 we provide the averaged runtimes for
over about 100 random sets of N = 10 000 points for
each distribution. Because absolute runtimes don't
provide a lot of useful information we organized ta—
ble as following: the actual runtime of base imple—
mentation (Min ellipse 2)only is provided, for
other implementations we specify the relative speed
up multiplier (the bigger is the multiplier, the faster
is the implementation).
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in unit square in unit disk on unit circle on grid small cocircular | large cocircular
Algorithm 1 22021ms 8155ms 7205ms 2743ms 272ms 597ms
Algorithm 3 8.3x 2.3x 0.9x 2.8x 0.7x 0.7x
Algorithm 2 2.3x 1.8x 1.7x 0.6x 0.5x 0.5x
Algorithm 4 10.7x 2.7x 1.5x 1.5x 0.4x 0.4x

Table 1: Smallest enclosing ellipseimplementations

3 An Abstract Framework

This section discusses how the convex hull heu-
ristic described in the previous section can be gener—
alized to the whole abstract class of LP-type prob—
lems. This class includes the smallest enclosing d-
lipse problem but also many other geometric opti—
mization problems [6].

3.1 LP-type Problems

Let us consider abtract optimization problems
specified by pairs (H, w), where H is afinite set, and
w: wl! W w{—x} is a function with values in a
linearly ordered set (W w{—cc}, < ). the value —x
(standing for 'undefined') preceding al valuesin W.
The elements of H are called constraints, and for
G H, w(G) is called the (optimal) value of G. The
goal is to compute the value w(H) of H, using ca—
tain primitive operations to which we get below.

(H,w) is called an LP-type problem if the follow-
ing two axioms are satisfied.

Axiom I Monotonicite) For ey F GwithFc G <,
we frave wil) < w(G),
Axiom 2 (Localitv) For anv F < (G ¢ H with —oc 2 w(F)
wilr) and arv h € I, wiCz) = wili Ofh})
implies that also w(ld) = w(ld i),

Ifw(G) < w(G w{h}), we say that constraint h is
violated by G. Monotonicity is a natural require—
ment when we are talking about minimization prob—
lems: adding more constraints cannot decrease the
optimal value. Locality essentially says that there
are no local optima: an equivalent formulation is
that whenever w(F) < w(G) for F — G, then there is
h € G such that the value of F can locally be im—
proved by switching to Fus{h}.

When we write the smallest enclosing ellipse
problem as an LP-type problem, the set of con—
straints is the set of input points, and the value of a
subset is the volume ofits smallest enclosing ellipse
(value —¢ arises if the affine hull of the subset is not
the whole plane). A constraint (point) is violated by
a subset if it lies outside its smallest enclosing el—
lipse. Uniqueness of the smallest enclosing ellipse
[10] is easily seen to imply the locality property.

The fact that makes Welzl's method efficient is
that the smallest enclosing ellipse is determined by
no more than five points. The abstract counterpart is
the combinatorial dimension of an LP-type prob-

lem. A basisis asubset B — H such that w(B\{ h})
<w(B) for al h = B. Thismeans, abasisis anin-
clusion-minimal set defining a certain value. Now,
the maximum cardinality of any basis is called the
combinatorial dimension of (H,w), and is denoted
by 8 =& ,,,. For any smallest enclosing ellipse
instance, we have 8 < 5.

Solving an LP-type means to find a basis B
such that w(B) = w(H). In general, a basis of
G < H is abasis B2 Gwithw(B)=w(G). From
such a basis, the value w(G) is usually easy to
compute. We assume that the following primitive
operations are available:

Violation test
Given a basis B and a constraint h ¢ B,
decide whether w3} < wi{BB{h})

Basis computation
Given a basis B and a violating constraint
h, compute a basis of B «{h}.

3.2 LP-type Algorithms

In the abstract setting of LP-type problems,
there is no notion of «fixing points on the bound-
ary» like it is employed in Welzl's algorithm 1.
Consequently, this algorithm does not generalize
to the LP-type setting. But Rublev's Algorithm 2
has an immediate LP-type counterpart, sce
Algorithm 5.

Data: l.PfI_\[\c }\:L\E-\cm (H.w :\‘[tgiliCJ l‘_\ primitive operations
Result: Basis B such that w(B) =w(H)
begin
B—0.
done — false;
it done do
done — Irue;
foreach h € H do
ifwiB) < w(BI ,,-.\r | then

B +— basis (BU {h});

while n

done — [alse.
end
end
end
return 5B

end

Algorithm 5 Rublev/Friedman algorithm
for LP-type problems

But there is also an algorithm in the LP-type
setting that comes with theoretical runtime guar—
antees, and this is Algorithm 6 due to Matousek,
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Sharir and Welzl [6]. The algorithm is randomized
and recursive; given a pair (G, B), where B Gisa
basis (not necessarily of G yet), the algorithm com-
putes a basis of G. To start off, it requires some ini—
tial basis (B = & will do).

Data: LP-type problem (H.w) specified by primitive operations:
G C H:BC G abasis
Result: Basis B such that w(B) = w(G)
MSWIG,R) hegin
F—0
foreach h = G\ B in random order do
F —FuUlh};
if w(B) <w(BU{h}) then
B — basis (BU {h})
return MSW(F. B),
end
end

end

Algorithm 6 MSW(G, B) algorithm
for LP-type problems

The following has been shown by Matousek,
Sharir and Welzl[6]

Theorem 1 Given an LP-type problem (H,w) with
|H]=n and fixed combinatorial dimension &,
Algorithm 6 requires an expected number of
O(n) primitive operations to solve it.

If § is fixed, each primitive operation takes con-
stant time (even if done in a brute-force fashion), so
that the algorithm takes expected linear time. For a
number of concrete LP-type problems, this was the
first known linear-time algorithm.

3.3 The Domination Heuristic

In this section, we want to generalize the convex
hull heuristic of Section 2.2 to the abstract setting of
LP-type problems. Assume that a point p is in the
convex hull of a set S. The convex hull heuristic
works for the following reason: whenever p is out—
side the smallest enclosing ellipse of some subset,
then there is also some point from S that is outside
(an immediate consequence of convexity of e—
lipses). This leads us to the abstract concept of dom—
ination.

Definition 1 Let (11, w) be an LIP-type problem, B < 11

andlr € H. I is called dominated by B if the
Jollowing holds: for everv set (G < 1T such
that wiG) = wiGihl), there exists an ele-
ment B e B such that wi(s) < wiCOfi'}).

Again, it easily follows that dominated elements
can be removed without changing the result.

Lemma 1 Ler (H wi be an LP-tvpe problem, ik = G C H.
If h is dominated by some sel 8 < (A},
then wiGl = w(G\h}).

Since B < Gy h}, we have GVh}udh'}=Gi{h}
for all k' € B, hence w{G\{h}+{h'}) = w(G\{h}).
This mcans thal no clement of B violales G\{h}, and
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since h is dominated by B, h cannot violate G\{h},
either.

This lemma implies the correctness of Algori—
thm 7 which is Algorithm 6, enhanced with the do—
mination heuristic. Here, dom (h, B) is a shorthand
for «h is dominated by B».

Data: LP-type problem (H.w) specified by primitive operations;
G CH;BCG abasis

Result: Basis A such that w(B) = w(G)
MSW._IXG,B) begin
F—
foreach 2 € G\ B in random order do
if nor dom (h, R) then
F—FuUlh}:

ifw(B) <w(BU{h}) then
B — basis (BU{h});
return MSW_D(F.BJ;
end
end
end

end

Algorithm 7 MSW_D(G,B) algorithm
for LP-type problems, with domination heuristic

In order to be able to execute Algorithm 7, we
need to stipulate a new primitive, namely dom (h, B).
Having an exact such primitive may be difficult;
even in the case of smallest enclosing ellipses, we
don't get this: the fact that p is in the convex hull of
S is a sufficient condition for p being dominated by
S, but not a necessary condition. But the following
conservative primitive can be implemented and is
enough to ensure correctness of Algorithm 7.

Domination test Given a basis B and a constraint
h ¢ B, dom (h, B) returns true only if h is do-
minated by B; ifdom (h, B) returns false,
h may or may not be dominated by B.

This primitive can of course always be imple—
mented (simply return false), but it makes sense
only if it can actually «recognize» some domina—
tions.

3.4 Complexity Analysis

We want to argue that Algorithm 7 still requires
only O(n) primitive operations for constant combi—
natorial dimension. This seems intuitively clear
(how can the removal of a dominated constraint
generate more work?), but we are not aware of any
direct argument along these lines. After all, the re—
moval of a constraint may have the effect that the
algorithm «goes along a different path» in the fi—
ture, and this path may take longer.

In order to argue formally, we have to go into the
analysis of Algorithm 6 and show that this analysis
still works for Algorithm 7. We only provide a
sketch here.

Hidden dimension. Given a pair (G, B) where
B = G is abasis, we call h € B enforced in (G, B) if
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w(B) > w(G\{h}), i.e. if B already has higher value
than G\{h}. If h is enforced in (G, B), this implies
that h will be contained in every basis encountered
during the call to MsW(G, B). The hidden dimension
of (G, B) is d (combinatorial dimension) minus the
number of enforced elements in (G, B).

Let T(n, k) denote the maximum expected
number of violation tests of a call to MSW(G, B),
where G has size at most n, and (G, B) has hidden
dimension at most k. Matousek, Sharir and Welzl
prove that T(n, k) = O(n) for fixed k, by exhibiting a
suitable recurrence relation for T(n, k). The nontriv—
ial part is the analysis of the recursive call for which
it is shown that on average, the hidden dimension
goes down substantially (ifthe call takes place at all
which happens with small probability only, just like
in Welzl's algorithm).

Adding the domination heuristic. Consider the
point in Algorithm 7 at which the last constraint h is
being added. (Note that the distribution ofh is uni—
formly random in G.) At this point, we have com-
puted a basis of some set F < G\{h} with w(F) =
w(G\{h}), because we have removed only domi—
nated elements, see Lemma 1. (In Algorithm 6, we
have F = G\{h}.)

The fact that w(F) = w(G\{h}) implies that the
probability for a second recursive call is still at most
k/n, where k is the hidden dimension of (G, B): the
recursive call only happens for elements h that vio—
late G\{h} (equivalently F, by locality), and by defi—
nition of hidden dimension, there are at most k of
them in G\B.

A similar argument shows that the decrease in
hidden dimension (when we move to (F, B) in the
recursive call) is at least what it would be in
Algorithm 6. Since also |F| < |G| at this point, it fol—
lows that the recurrence relation that bounds T(n, k)
for Algorithm 6 is also valid for Algorithm 7.

Summarizing, we obtain

Theorem 2 Given an LP-type problem (H,w) with |H|
= n and fixed combinatorial dimension 6,
Algorithm 5 requires an expected number of
O(n) primitive operations fo solve it.

4 Smallest Enclosing Sphere of Spheres

So far, we have shown (Section 2.3) that the
domination heuristic can be very effective for small—
est enclosing ellipses where it assumes the form of
the convex hull heuristic. In this final section, we
want to examine another LP-type problem, namely
finding the smallest enclosing sphere of a set of
spheres. This problem is relevant for bounding vol—
ume heuristics, and it is theoretically interesting be—
cause it can (maybe surprisingly) not be solved by
Welzl's algorithm [1]. For this problem, we need the
general LP-type techniques.

The CGAL library has code also for this prob—
lem, and we have integrated a suitable domination
heuristic into this code. Ideally, we would like to
test whether a given sphere is contained in the con—
vex hull of a set of other spheres, but this is not a
cheap operation. Since we are allowed to use a con—
servative (but possibly less effective) domination
test: assume that sphere to check is actually a small—
est box, that encloses that sphere, with sides orient—
ed along the axes; and instead of the convex hull of
the spheres we use a convex hull of the centers of
spheres. Then if box (sphere) box actually passes
containment test inside decreased convex hull, it is
also guaranteed to lie inside the bigger convex hull
of spheres. Thus we get the sufficient condition
which can be used as domination test.

4.1 Benchmarks

Testing was done for planar case only. The same
technique and parameters were used to gather run—
times of implementations for smallest enclosing
sphere of spheres problem as in Section 2.3. Because
new random variable (sphere radius) should be gen—
erated Table 2 represents running times of imple—
mentations on the tests where spheres radiuses were
exponential distributed (i. e. lots of relatively small
spheres and small number of large). On the other
hand 3 represents running times ofimplementations
on the tests where all spheres have equal very small
radius.

in unit in unit on unit .
square disk circle on grid
CGAL 9551ms | 17066ms | 18687ms | 8876ms
CGAL with
heuristics 1.9x 2.2x 2.1x 2.0x
Rublev 1.7x 1.7x 1.6x 1.7x
Rublev with
heuristics 24 2.3x 2.4x 1.7x

Table 2: Smallest enclosing sphere of spheres imple—
mentations (radiuses are exponentially distributed)

in unit in unit on unit .
square disk circle on grid
CGAL 3569ms | 6425ms | 6108ms | 823ms
CGALWith | oy 1.2x 0.8x | 0.7x
euristics
Rublev 1.8x 1.8x 1.7x 0.6x
Rublev with | 1 gx 1.6x 14x | 0.5x
euristics

Table 3: Smallest enclosing sphere of spheres imple—
mentations (radiuses are equal and very small)

We didn't use the default geometric heuristic of
the Min sphere of spheres package during
testing to show effect of domination heuristics.
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Being quite effective that heuristics performs well
on all tested algorithms, making their running times
mostly equal.

5 Conclusion

In this paper, we have developed a heuristic
that can speed up the existing linear-time algorithm
for LP-type problems in practice, while it at the
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EBPUCTUKA IIEPEBATU OJI4d 3A0AY

JIHINHOTO HPOTPAMYBAHHA
Heski 3adaui eeomempuunoi onmumizayii, HANpuKAad NOWLYK HAUMEHW 020 NOKPUBANH020 eAinca MHO-

HCUHU MOYOK, MONCYMb Oymu po38'a3ani 3a AIHIUHUL uac, GUKOPUCMOBYIOHU HEeCKAAOHi 6unadkosi (uu

cKnaoHni demepminoeani) kombinamopui anreopummu. Ha npaxmuyi yi aseopummu noainuyromecs uu 3a-
anre meopemuyHi OUiHKU uacy pobomu 0as

MIHAIOMbCA 8apiaHmamu e8puUCmMuK, Wwo npaylwms weudule,

Hux He dosedeHi. Y yiti cmammi Mu NPONOHYEMO HO8Y NPUCKODIOIOYY €8PUCMUKY, W0 Modxce Oymu aecKo

3acmocoeana 00 Gi0oMUX AIHIUHUX areopummie, 0e3 3MeHUuleHHs iX weuodxkocmi y naueipuiomy eunadxy. Mu
NOKA3YEMO, WO UYs espucmuka moxce oOymu euznavena oas 0ydv-sakoi3zadaui 3 dobpe gidomoeo kaacy 3adau
AiniliHO20 npoepamyeanns. Ii epexmusnicms na npaxmuyi 3aiedcums 8i0 mMoeo, Hu MONCAUBA, | AKULO MONC—
AU6A, MO HACKINbKU WEUOKOW 6eUAsUMbCA peanizayis npeduxkama 041 KoHkKpemHoi 3adaui. Mu Haeodumo
pe3ysbmamu eKcnepumenmia, sAKIi NOKA3YWMb, Wo 0451 080X 3a0au HO8A €8PUCMUKA MOXCe 3HAYHO NPUCKO—

pumu icHytoui peanizayii areopummie (3 6Oioriomexu eeomempuunux aseopummie CGAL).



