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Abstract

The article is devoted to analysis of investment risks and their measurement.
Three approaches for risk measurement are examined. These approaches have been
applied to risk estimation of basic cryptocurrencies. Statistical assessment of ba-
sic risk measures from each approach was accomplished. The investigation shows
that cryptocurrencies have completely distinctive characteristics of risk-return cor-
responding. It distinguishes cryptocurrencies from traditional investment assets and
from new investment opportunities. The results are important for investment and risk
management purposes.

1 Introduction

Risk takes a central place in the framework of investment decision making. The
relationship between return and risk is in the core of modern investment thinking.
As a rule, higher return should be associated with higher risk. The opposite cor-
respondence is also true: higher risk should be covered by additional return (risk
premium). Consequently, it is very logically to analyze risk-return correspondence
before investment decision.

A source anchor of construction of such correspondence is risk measurement.
Risk measurement is a procedure of assigning some numerical value to risk. This
procedure can be formalized for investment risk by following scheme:

Procedure of risk measurement
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So, risk measurement supposes to introduce some mapping ρ which each ran-
dom variable R (representing return of investment asset) assigned nonnegative
number ρ (R) ∈ [0; +∞]. Let us consider this procedure in details. The return of
investment over a period of time [t; t +1] will be expressed through the formula:

Rt, t+1 =
Pt+1−Pt

Pt
,

where Pt and Pt+1 are prices of an investment asset at times t and t + 1, respec-
tively. Rt, t+1 will be a random variable, because the future price Pt+1 is unknown.
Thereafter R, which reflects return over the time, is also a random variable.

Assigning a numerical value for risk is complicated because various approaches
for presentation of mapping ρ exist. Three conceptual approaches are the most sig-
nificant ones:

• Risk measurement is based on reflecting the variability of return and income.

• Risk measurement is focused on losses in negative situation.

• Risk measurement associates with sensitivity of return to some factors. Mea-
surement is focused on response level.

Each approach incorporates some important characteristics of multifaceted no-
tion of risk and has a number of indicators. In general, there are several dozen of
risk measures, which represent one or another aspect of risk (example is presented
in Szego (2004)). An attempt of understanding the essence of properties which
should be represented in risk measure was formulated in Artzner et al. (1999).
The authors created a notion of a coherent risk measure. Risk measure ρ is coher-
ent if satisfies the following properties (axioms):

Axiom 1 Sub-additivity. For all R1 and R2 we have

ρ (R1 +R2)≤ ρ (R1)+ρ (R2)

Axiom 2 Positive homogeneity. For all R and for all λ ≥ 0 we have

ρ (λR) = λρ (R)

Axiom 3 Monotonicity. If R1 ≥ R2 then ρ (R1)≤ ρ (R2)

Axiom 4 Translation invariance. For all R and for all α ≥ 0 we have

ρ (R+α) = ρ (R)−α
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Each of these axioms formalizes some essential investment risk property. Thus
Axiom 1 presents diversification effect. Axiom 2 describes linear increase of risk
if some investment position is linearly increased. Axiom 3 presents a natural prop-
erty: if returns for one investment are always higher than returns for other invest-
ment, then risk of the first investment is lower. Axiom 4 formalizes adding to
investment a free-risk asset.

Examples of coherent risk measures are Conditional Value-at-Risk (considered
below, see Rockafellar and Uryasev (2000)) and the Fischer measure (see Fischer
(2003)).

It is necessary to note that presented approach for coherency is not unique.
Approaches of coherency are considered in Kaminskyi (2006).

Below we consider applications of three approaches of risk measurement to
cryptocurrencies. Cryptocurrencies are one of the alternative investment assets
which demonstrated high developing since last years. The investment problems of
cryptocurrencies are discussed in Lee, Guo and Wang (2018), Chan et al. (2017),
Gangwal (2018) and Trimborn, Mingyang and Härdle (2017),

We have chosen for analysis cryptocurrencies with capitalization higher than
1 billion USD. They are:

Table 1. A list of cryptocurrencies chosen for analysis

Cryptocurrency Ticker
tape

Start day
of trading

Capitalisation
on 17.08.2018

Share of total
market

capitalization

Bitcoin BTC 18.07.2010 $111.23B 52.1%
Ethereum ETH 10.03.2016 $30.27B 14.2%
Ripple XRP 22.01.2015 $12.28B 5.8%
Bitcoin Cash BCH 03.08.2017 $9.31B 4.4%
EOS EOS 02.07.2017 $4.34B 2.0%
Stellar Lumens XLM 22.02.2017 $4.20B 2.0%
Litecoin LTC 24.08.2016 $3.31B 1.6%
Tether USDT 14.04.2017 $2.68B 1.3%
Cardano ADA 31.12.2017 $2.59B 1.2%
Monero XMR 30.01.2015 $1.55B 0.7%
Ethereum Classic ETC 28.07.2016 $1.42B 0.7%
TRON TRX 14.11.2017 $1.39B 0.7%
IOTA MIOTA 14.06.2017 $1.34B 0.6%
Dash DASH 04.03.2017 $1.29B 0.6%
NEO NEO 08.09.2017 $1.14B 0.5%

Source: Data sources used for investigation were https://investing.com and http://thecrix.de
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2 The variability approach for risk measurement

The variability approach is focused on dispersion or deviation from an expected
outcome. The most simple risk measure is a range which equals to difference
between maximum and minimum possible values:

L(R) = max[0,T ]R(t)−min[0,T ]R(t) .

This risk indicator is important for the investor from the point of view of receiv-
ing a general picture about future possibilities (it is assumed that future distribution
will be the same as historical distribution). The shortcoming of this risk indicator
is that maximum and minimum prices were on peak and crisis times. These may
be rare events and not relevant for periods of stability. Consequently, it is more
efficient to use inter-quartile range:

Q(R) = Q75% (R(t))−Q25% (R(t))

Of course, the most famous risk measure used in this approach is standard
deviation which characterizes deviation from the expected value of R:

σ (R) =

√√√√√+∞∫
−∞

(R−E (R))2 dF(R)

Expected value of R is defined as

E (R) =
+∞∫
−∞

RdF (R)

where F is the distribution function of the random variable R.
If we use statistical estimations of R, then unbiased estimate of standard devi-

ation is:

σ̂ (R) =

√
1

T −1

T

∑
t=1

(R(t)−E (R))2

Statistical estimation of E (R) can be calculated by formula:

E (R) =
1
T

T

∑
t=1

R(t) (T -number of periods).

The other indicators which can be used for risk measurement in the frameworks
of the variability approach are skewness and kurtosis. Skewness summarizes di-
vergence from symmetry of distribution:
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S (R) = E
(

R−E(R)
σ (R)

)3

=
µ3 (R)

σ (R)3

where µ3 (R) = E(R−E(R))3.
The unbiased statistical estimation of skewness is:

Ŝ (R)Unbiased =

√
(T −1)T
T −2

·

1
T

T
∑

t=1
(R(t)−E(R))3

(
1
T

T
∑

t=1
(R(t)−E (R))2

)(3/2) .

Negative skewness indicates a long left tail of distribution, or the possibility of
larger losses than profits. Positive skewness is a desirable characteristic for risk-
averse investors. The motivation of that is based on the expected utility theory.
Typically, the third derivative of the utility function of a risk-averse investor is
positive (see e.g. Scott and Horvath (1980)) and this derivative is a multiplier for
skewness in the Taylor expansion of expected utility.

The kurtosis (sometimes the term “excess kurtosis” is used) coefficient K can
be considered as assessment of the size of distribution tails:

K (R) = E
(

R−E (R)
σ (R)

)4

−3 =
µ4 (R)

σ (R)4 −3

where µ4 (R) = E(R−E(R))4.
Kurtosis can be considered as measure of risk associated with heavy tails or

outliers. Kurtosis greater than 0 indicates a fatter tail than the normal distribution
has. Hence, this distribution may generate more extreme values which lead to
potential catastrophic risks. The sample kurtosis is

K̂(R) =

1
T

T
∑

t=1
(R(t)−E(R))4

(
1
T

T
∑

t=1
(R(t)−E (R))2

)2 −3

An unbiased estimator of the sample excess kurtosis is

K̂ (R)Unbiased =
(T −1)

(T −2)(T −3)
·
(
(T +1) K̂ (R)+6

)
Results of statistical estimations for considered risk measures are presented at

the Table 2.
Risk-return correspondence at the frameworks of classical consideration ex-

pected return and standard deviation (Markowitz (1959)) is presented on Figure 1.
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Table 2. Statistical estimations of indicators from variability approach for risk measurement
(daily return, time period: 01.01.2018 – 17.08.2018)

Crypto-
currency

Expected
return

Range Inter-
quartile

Standard
deviation

Skew-
ness

Kurt-
osis

BTC -0.22% 31.00% 3.20% 4.70% -0.16 1.15
ETH -0.23% 34.80% 3.70% 5.69% -0.10 0.66
XRP -0.58% 54.50% 4.60% 6.69% 0.14 2.43
BCH -0.40% 60.60% 4.90% 7.05% 0.39 3.23
EOS 0.17% 64.10% 4.80% 8.91% 1.23 4.75
XLM 0.15% 86.80% 5.00% 8.66% 1.60 10.07
LTC -0.41% 52.60% 3.90% 6.24% 0.94 4.82

USDT -0.01% 4.70% 0.10% 0.44% 0.58 9.72
ADA -0.54% 63.70% 4.60% 8.11% 1.19 4.57
XMR -0.33% 45.80% 4.90% 6.56% -0.07 1.18
ETC -0.03% 53.20% 4.70% 7.16% -0.06 1.59
TRX 0.31% 142.60% 4.80% 12.32% 3.86 31.50

MIOTA -0.58% 52.70% 5.40% 7.36% -0.06 0.63
DASH -0.64% 37.20% 4.10% 5.79% 0.07 0.92
NEO -0.16% 92.60% 5.60% 9.93% 1.70 9.11

Figure 1. Correspondence “expected return – standard deviation”

So, Figure 1 illustrates an interesting property of risk-return correspondence
for cryptocurrencies: a transparent dependency between risk and return is absent.
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3 Risk measurement as losses in negative situation

This conceptual approach is based on considering different measures relating to the
interpretation of “negative situation” for the investor. Among others, it is possible
to mark out downside deviation risk measure. This measure focuses on the returns
that below MAR (minimum acceptable return). MAR should be considered as
a minimum threshold. Another risk measure at analysing frameworks is TUW
(time under the water). This measure calculates how long does the investor wait to
recover its money at the start of the drown down period. But, of course, the most
popular in this group is the left-tail risk measures, such as Value-at-Risk (VaR)
(Holton 2003). This risk measure presents a quantile corresponding to some level
of safety (example 95%, 99% or 99.9%). The economic logic of VaR is based on
risk covering. If, for example, VaR orients for 95%, then 5% biggest losses will
throw off. VaR will cover maximum losses at the framework of 95% possibilities.

VaR is a very efficient measure for market risk. Moreover, it is a regulative risk
measure in banking. But together with advantages this measure has shortcomings,
too. First shortcoming raises from the fact that VaR is really only one point of
probability distribution function (pdf). Behaviour of pdf left-side and right-side
from VaR is out of consideration. Second gap of VaR is absence of coherency
property. Coherency property of Value-at-Risk occurs only for elliptical class of
distributions.

Risk measure Conditional Value-at-Risk (CVaR) is based on generalization of
VaR. This is conditional mathematical expectation:

CVaR(R) = E(R|R≤ VaR(R))

The essence of VaR and CVaR is illustrated by picture at Figure 2.

Figure 2. Essence of VaR and CVaR



104 Andrii Kaminskyi, Ruslan Motoryn, Konstantyn Pysanets

Advantages of CVaR include coherency of this risk measure and more correct
considering of possible losses.

Statistical estimations of VaR and CVaR for cryptocurrencies under consider-
ation we present below in Table 3.

Table 3. Statistical estimations of VaR and CVaR (daily return, safety level – 95%; time period:
01.01.2018 – 17.08.2018)

Cryptocurrency VaR CVaR Cryptocurrency VaR CVaR
BTC -8.2% -11.0% ADA -12.2% -15.1%
ETH -9.6% -12.8% XMR -11.1% -14.3%
XRP -11.7% -14.9% ETC -12.0% -15.9%
BCH -10.5% -15.3% TRX -15.1% -19.1%
EOS -12.9% -17.4% MIOTA -13.3% -16.2%
XLM -12.8% -16.1% DASH -9.4% -13.1%
LTC -8.7% -12.7% NEO -13.1% -17.8%

USDT -0.6% -1.1%

The ratio CVaR/VaR characterizes correspondence between “catastrophic” loss-
es and maximal losses at the frameworks of 95% safety level. Our consideration
shows that ratio belongs to interval [1.22; 1.81]. Such interval is relatively wide,
so cryptocurrencies are quite different in behaviour of left pdf tails.

Figure 3. Correspondence “expected return – CVaR”
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4 Risk measurement at the frameworks of sensitivity
analysis

One of the most important approaches for investment risk measurement is based
on sensitivity analysis. The importance of this approach is based on possibility
to structure risk into systematic and nonsystematic risks. Systematic risk reflects
impact of market changes to return of an investigated asset. Sensitivity analysis
involves procedures for assessment of such impacts. Classical approach consists
in using a linear regression model for return:

RA = αA +βARI + εA

where

• RI indicates return of some market index (source of systematic risk);

• RA is return of investment asset;

• βA - coefficient of sensitivity (more precisely, this coefficient explains sen-
sitivity numerically);

• αA- coefficient of linear regression;

• εA is a random variable which indicate “own” – nonsystematic risk (not
caused by the index).

One of the crucial suppositions in this model is independence between random
variables RI and εA. So, covariance between those random variables equals 0.

Risk structuring on systematic and nonsystematic risk can be obtained after
applying operator of variance to formula for RA:

σ
2(RA) = β

2
A ·σ2(RI)+σ

2(εA).

Ratios
β 2

A ·σ2(RI)

β 2
A ·σ2(RI)+σ2(εA)

and
σ2(εA)

β 2
A ·σ2(RI)+σ2(εA)

will be indicators of significance of systematic risk and nonsystematic risk corre-
spondingly. Ratios are measured as percentages.

In our research we applied such approach to the index model which is based
on the cryptocurrencies index CRIX (Trimborn and Härdle (2017)). The results –
beta-coefficients to index CRIX are given in Table 4.
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Table 4. Statistical estimation of beta-coefficient daily return, period: 01.01.2018–17.08.2018

Cryptocurrency Beta coefficient Cryptocurrency Beta coefficient
BTC 0.1262 ADA 0.2382
ETH 0.1361 XMR 0.0544
XRP 0.1840 ETC 0.1214
BCH 0.1485 TRX 0.2518
EOS 0.1925 MIOTA 0.0495
XLM 0.1579 DASH 0.0753
LTC 0.0852 NEO -0.0353

USDT -0.0171

Structure of the risk is presented at the Figure 4.

Figure 4. Correspondence between systematic and nonsystematic risks

Results show that nonsystematic risks are dominated.
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5 Conclusions

The measurement of investment risk is multifaceted task which supposed to apply
different approaches. Each approach points out specific features of risk.

The application of different approaches for the risk measurement of basic cryp-
tocurrencies makes it possible to form some conclusions. First conclusion indi-
cates a relatively high level of risk at the frameworks of volatility and significant
outliers. Most cryptocurrencies demonstrate 5%–10% of standard deviation. The
ratio of Range/Interquartile range is also relatively high. Kurtosis demonstrates
high values. The risk measurements on the base of VaR and CVaR also indicate
their values as high as ratio CVaR/VaR. All these results can be explained by sig-
nificant outliers.

Second conclusion concerns exclusively high proportion of nonsystematic risk.
Economically this can be explained by absence of meaningful factor which affects
for all cryptocurrencies. This also revealed in low values of beta-coefficients in
CRIX index model. On the other hand, such results may be raised from imperfec-
tion of index construction.

Third conclusion, maybe the most interesting, consists in fact that “classical”
relationship between risk and return cannot be identified.
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