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ABSTRACT
The development of machine learning solutions often relies on
training using large labeled datasets. This raises challenges in terms
of data storage, data privacy protection, and longer model train-
ing time. One of the possible solutions to overcome these prob-
lems is called dataset distillation – a process of creating a smaller
dataset while maximizing the preservation of its task-related in-
formation. In this paper, a new dataset distillation algorithm is
proposed, called DEvS, which uses an evolutionary strategy ap-
proach to condense the training samples initially available for an
image classification task, while minimizing the loss of classification
accuracy. Experiments on CIFAR-10 demonstrate the competitive-
ness of the proposed approach. Also, contrary to recent trends,
DEvS is derivative-free image generation, and therefore has greater
scalability on larger input image sizes.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Supervised
learning by classification; Neural networks; •Mathematics
of computing→ Evolutionary algorithms.
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1 INTRODUCTION
The success of the recent decade of deep learning, and, in particular,
its applications to computer vision, has been subject to the availabil-
ity of large labeled datasets. This dependency consumes enormous
amount of human and computational resources for data collection,
labeling, storage, privacy protection, and neural network training
time. From the perspective of human cognition, such addiction is
excessive and must be resolvable. Multiple directions of research
have been conducted to address this problem and its derivatives.
Few-shot [18, 19, 23] and one-shot learning [7, 21] aim to train from
a limited number of examples, transfer learning [24, 30] uses knowl-
edge from one task to perform better on another but similar one,
active learning [4, 9, 26] focuses on the efficient data selection-for-
labeling strategy, coreset selection [1–3, 5, 6, 10, 13, 15, 17, 20] pro-
poses strategies for choosing a representative training set, dataset
distillation (condensation) [11, 12, 22, 28, 29] designs algorithms
for creating a small amount of synthetic training samples etc. This
research aims to address the problem using data distillation.

Recently, the data distillation technique gains enormous atten-
tion from the research community and a number of gradient-based
methods have been proposed [11, 12, 22, 28, 29]. In particular, the
idea of using synthetic images that look different visually from the
original images as well as using non-binary [11] tags are significant.
However, despite the promising performance, they face the key
challenge of requiring very large computational resources [11, 12].
This research is motivated by this limitation and proposes a new
efficient data distillation technique inspired by the principles of
evolutionary strategies, called DEvS.

The main idea of DEvS is to distill the images using a multi-
parents linear crossover from the original training dataset while
applying appropriate regularization during the training procedure.
The operation of linear crossover is implemented with the convex
combination of the image tensors and their one-hot labels. We use
mixup [27] regularization during training to ensure that the result
of the crossover is consistent with model feature extraction. DEvS
does not rely on gradient calculation for image generation and is
therefore scalable with respect to the size of the input image

In order to evaluate the proposed method, we conduct the exper-
iments on a popular computer vision benchmark dataset CIFAR-10.
The comparison with competing techniques demonstrates the fea-
sibility of DEvS and has the following advantages:
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Figure 1: Dataset of size 10 distilled from CIFAR-10 using DEvS.

• low computational cost compared to the gradient-based
methods;
• scalability to the larger input image sizes;
• higher performance compared to the coreset based methods.

Therefore, the contribution of this research is the proposal of a novel,
scalable and computationally efficient data distillation technique.

2 RELATEDWORK
Dataset distillation (condensation). The term dataset distilla-
tion was coined in the work of Wang et al. [22]. Its main idea lies
in synthesising small amount of informative training samples, as
opposed to coreset selection where the samples are selected from
the initial training dataset. They used the gradient optimization in
order to build synthetic images as “most useful for empirical risk
minimization w.r.t model parameters” on a given batch of original
training images. In order to enable generalization over different
model initializations they considered random initializations from
some distribution during the optimization process.

Nguen et al. [11] proposed a dataset meta-learning from kernel
ridge-regression algorithm, called Kernel Inducing Points (KIP).
This method used gradient descent tominimize ridge regression loss
function value w.r.t. training data while iterating through random
kernels and target data batches. Additionally, they proposed its
variant called Label Solve (LS) based on labels learning while the
training data is fixed. The latter significantly improved the results
obtained with the initial KIP method. This work was continued in
[12] where Nguen et al. applied a novel kernel-based meta-learning
framework using infinitely wide convolutional neural networks
in order to solve the data distillation problem. To the best of our
knowledge this work constitutes the current state-of-art on the
topic. However, computationally it is extensively heavy even for
“toy” benchmark problems as the authors stated that the distilled
datasets were obtained using “thousands of GPU hours”.

Zhao et al. [29] formulated dataset distillation as a gradient
matching problem between the gradients of the real and synthetic
training loss w.r.t. the model parameters. They explored the appli-
cations of the proposed method to continual learning and neural
network search. Based on this work, Zhao and Bilen proposed Dif-
ferentiable Siamese Augmentation [28] in order to efficiently use
data augmentation during the synthesis.

Coreset selection Coreset selection is a straightforward ap-
proach to decrease dataset size by selecting only a few of its points.
The notions associated with this research directions can be found
in [14]. The vast family of existing approaches include Forward
Stagewise [6], Matching Pursuit [10], Orthogonal Matching Pursuit
[13], Frank-Wolfe [3], Least-angle regression [5], Greedy Iterative
Geodesic Ascent [2], Herding [15], K-Center [17, 25], Forgetting

[20] etc. Particularly, the work from Barbiero et al. [1] is very inter-
esting and similar to our research as it solves the coreset selection
problem with evolutionary algorithms.

It is interesting to mention that a large number of coreset se-
lection algorithms were initially developed for different purposes.
For example, Forward Stagewise, Least-angle regression, Match-
ing Pursuit and Orthogonal Matching Pursuit were originally used
for dimensionality reduction, K-Center was designed for active
learning, Forgetting was purposed for continual learning.

3 METHOD
3.1 Dataset distillation
Let 𝐷𝑡𝑟 be a large dataset of tuples {(𝒙𝑖 , 𝑦𝑖 )}|𝐾𝑖=1, where 𝒙 ∈ X ⊂
R𝑑 , 𝑦 ∈ {0, . . . ,𝐶 − 1},X is a d-dimensional input space, 𝐾 is the
number of samples in dataset𝐷𝑡𝑟 and𝐶 is the number of classes.We
assume this dataset to be associated with a classification problem of
finding 𝑓 ∈ F such that 𝑓 (𝒙) = 𝑦 for 𝒙 ∈ X. Then data distillation
is a problem of constructing a new dataset �̃�𝑡𝑟 = {(𝒙𝑖 , 𝑦𝑖 )}|�̃�𝑖=1 of
smaller size �̃� ≪ 𝐾 such that the classification problem solution
𝑓 obtained with �̃�𝑡𝑟 has similar performance to the solution 𝑓

obtained with 𝐷𝑡𝑟 . In particular, we expect similar performance on
some validation dataset 𝐷𝑣𝑎𝑙 :

𝑝𝑒𝑟 𝑓 (𝑓 (𝐷𝑣𝑎𝑙 )) ≈ 𝑝𝑒𝑟 𝑓 (𝑓 (𝐷𝑣𝑎𝑙 )) .

Notable, for image classification problem, we assume input space
X to be a space of (eligible) images, and when solving this problem
with deep learning approach we assume F = F\ to be a parametric
family of functions representing some neural network architecture
𝐴 and its weights 𝜽 . The process of solving classification problem
will then be associated with neural network training, i.e. finding
the weights 𝜽 that minimize the empirical loss function

𝜽 ∗ = argmin
𝜽
L(𝐷𝑡𝑟 , 𝜽 ).

3.2 Proposed method
The proposed method is inspired from the evolutionary algorithms.
We consider the training dataset as a parent population that gets en-
larged during the training phase via the operations of data augmen-
tation (seen as a mutation) and mixup [27], i.e. convex combination
(seen as a cross-over). Our goal is to reduce the parent population
keeping the derived population diverse and representative. For the
reduction step we will use crossover over similar samples in order
to keep the average sample representation, where the similarity is
considered with respect to the information retrieval based on the
derived dataset.
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The proposed DEvS method is an iterative method that reduces
the database size at each iteration based on data distillation. Al-
gorithm 1 provides a formal presentation of the DEvS method. It
requires the initial dataset samples and the target distilled dataset
size as input. Besides, optionally a decreasing sequence of inter-
mediate distilled dataset sizes are provided as input. DEvS begins
with initializing the entire training dataset as the current distilled
dataset. Then it decreases the dataset size at each iteration from the
existing size to the next distilled dataset size, which is predefined or
provided as input. During each iteration, first the neural network
model (see Section 4.2 for details) is trained on the current distilled
dataset. Then this trained model is used to extract features with
the convolutional blocks of this neural network. Afterward, a data
clustering algorithm (see Section 4.3 for details) is applied on the
extracted features, where the number of clusters is defined as a
next-in-sequence intermediate distilled dataset size. Next, the clus-
ters are reduced to their centers to generate a single sample from a
set of samples belongs to the cluster. This sample construction is
achieved by averaging the inputs and their corresponding labels.
These synthesized samples construct the distilled dataset for the
next iteration, and the algorithm continues iteration until the target
distilled dataset size is reached.

Note that, in the distilled dataset the sample labels are soft prob-
abilities rather than hard label assignment to particular classes.
Indeed, multiple studies have shown that such labels provide addi-
tional advantages during the training procedure [11, 27]. Another
important point is the use of step-wise dataset evolution. During
our experiments we observed its advantage compared to the one-
step reduction procedure in terms of the model performance that
was trained on the distilled dataset.

Algorithm 1 Dataset Distillation Evolution Strategy (DEvS)

Require: A labeled training dataset 𝐷𝑡𝑟 and a labeled validation
dataset 𝐷𝑣𝑎𝑙 ; target dataset size 𝑁 .

1: Initialize 𝐷 = 𝐷𝑡𝑟 ; sequence of intermediate dataset sizes 𝑁0 =
|𝐷 | > 𝑁1 > . . . > 𝑁𝑀 = 𝑁, counter 𝑖 = 0.

2: while 𝑖 < 𝑀 do
3: Train neural network 𝑓 using mutation (data augmentation)

and crossover (mixup regularization). Use its truncated ver-
sion to extract features 𝐷 𝑓 𝑒𝑎𝑡 of dataset 𝐷 .

4: Cluster dataset 𝐷 𝑓 𝑒𝑎𝑡 into 𝑁𝑖+1 clusters.
5: Perform crossover by aggregating clusters with averaging

inputs 𝒙 and labels 𝑦 that correspond to that cluster.
6: Obtain new dataset 𝐷 by considering the set of aggregated

images and labels {(𝒙𝒄 , 𝑦𝑐 )} (each corresponding to the clus-
ter center in the feature space).

7: Increase counter 𝑖 ← 𝑖 + 1
8: end while

4 EXPERIMENTS, RESULTS AND DISCUSSIONS
4.1 Datasets and associated tasks
In order to evaluate the performance of the proposed method we
conduct experiments on the CIFAR-10 [8] dataset, which is a well-
known computer vision benchmark dataset for image classification.

It is composed of 60,000 32 × 32 colour images divided equally into
ten different classes as shown in Figure 2. The train set is composed
of 50,000 images and the test set of 10,000. The classes are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck.

Figure 2: CIFAR-10 images examples with their class labels.

4.2 Convolutional neural network
For the experiments we follow Zhao et al. [29] and adopt a ConvNet
architecture which is commonly-used in few-shot learning prob-
lems. It consists of 𝑁 = 3 repeated blocks, each of which has a
convolutional layer with 128 3 × 3 filters, Instance Normalization
layer, and a ReLU layer. This sequence of blocks is concluded with
a dense layer that has the softmax activation.

During training we use the Kaiming initialization to initialize
the weights of the ConvNet architecture. We apply simple image
data augmentation strategies such as shifts up to 5 pixels and hori-
zontal flip. Additionally, we use mixup data augmentation [27] with
parameter 𝛼 = 0.4 in order to assign labels in line with the samples
aggregation strategy of averaging. Dropout of 𝑝 = 0.2 is applied
before the prediction layer during the training phase.

Experiments shows that it is beneficial to add a bottleneck dense
layer before the prediction layer when training the network for
feature extraction (final results are given for the original ConvNet
architecture). Indeed, this observation supports the general intu-
ition of applying stricter regularization when training with low
number of samples.

4.3 Clustering
Clustering plays important role in the data distillation procedure
w.r.t. scalability and computational efficiency. Therefore, in order
to efficiently cluster the data while being consistent with com-
putationally and scalable issues we use the mini-batch k-means
algorithm [16]. The algorithm is initialized with the efficient k-
means++ method to ensure the best possible initial cluster centers.
The maximum number of iterations for clustering is set to 200 or
a minimum tolerance 0.0001 is reached. We use 1028 number of
samples in each mini-batch.

4.4 Results
For comparison we consider coreset selection methods as Herding,
K-Center and Forgetting, and data condensation (DC) with gradient
matching method of [29]. Additionally, we use Random coreset
selection as a baseline. We do not consider here KIP and LS [11]
due to their high computation load.
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Table 1: Test accuracies of the ConvNet model trained on the distilled (or core) datasets obtained by competitive methods.

Dataset Nb of distilled
images

% of distilled
images

Method
Random Herding K-Center Forgetting DC DEvS

CIFAR-10
10 0.02 14.4±2.0 21.5±1.2 21.5±1.3 13.5±1.2 28.3±0.5 25.77±1.1
100 0.2 26.0±1.2 31.6±0.7 24.7±0.9 23.3±1.0 44.9±0.5 38.97±1.0
500 1 43.4±1.0 40.4±0.6 27.0±1.4 23.3±1.1 53.9±0.5 52.41±1.0

The results are presented in Table 1. We observe that the pro-
posed algorithm outperfoms the coreset selection methods. In par-
ticular, it is interesting to compare it to Herding method as it also
relies on clustering: the coreset is composed out of samples closest
to the cluster centers.

The examples of distilled images are presented in Figure 1. They
are not associated with a particular class label but with a target
probability vector describing distribution over classes (for example,
0.26, 0.02, 0.04, 0.0, 0.03, 0.01, 0.0, 0.02, 0.55, 0.07) .

Although our method concedes to gradient methods such as DC,
it proposes a viable alternative in terms of computation time: for
CIFAR-10 it takes only a couple of GPU-hours while state-of-the-art
KIP requires thousands. Moreover, its complexity does not depend
on input image size, but on extracted features dimension size. Thus
it scales well to larger image input size, which is to be expected in
real-life scenario. For the future research steps we plan to study
the effect of feature space regularization and prediction layer loss
function on the proposed method performance.

5 CONCLUSIONS
In this paper, we have proposed a novel low-complexity and derivative-
free dataset distillation method based on the evolution strategy.
Unlike gradient-based competitive methods it is easily scalable
w.r.t. the input image size. Conducted experiments demonstrate
feasibility of the proposed approach. In terms of performance to
computation costs ratio DEvS lies in the middle between traditional
coreset selection methods and the gradient-based dataset distilla-
tion methods with easy implementation. In work under progress,
we are studying the effect of feature space regularization, and of
introducing a new prediction loss function to enhance the perfor-
mance of the proposed method.
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