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SIMULATING ANGULAR MOMENTUM OF GRAVITATIONAL
FIELD OF A ROTATING BLACK HOLE AND SPIN MOMENTUM
OF GRAVITATIONAL WAVES

Y. MATSUKI, P.I. BIDYUK

Abstract. In this research, we simulated the angular momentum of gravitational
field of a rotating black hole and the spin momentum of gravitational waves emitted
from the black hole. At first, we calculated energy densities of the rotating gravita-
tional field and spinning gravitational waves as the vectors, which were projected on
the spherical curved surface of the gravitational field and of the gravitational waves.
Then we calculated the angular momentum and the spin momentum as the vectors
perpendicular to the curved surface. The earlier research by Paul Dirac, published in
1964, did not select the curved surface to calculate the motion of quantum particles;
but, instead, he chose the flat surface to develop the theory of quantum mechanics.
However, we pursued the simulation of the gravitational waves in spherical polar
coordinates that form the spherical curved surface of the gravitational waves. As a
result, we found that a set of anti-symmetric vectors described the vectors that were
perpendicular to the spherical curved surface, and with these vectors we simulated
the angular momentum of the rotating black hole’s gravitational field and the spin
momentum of gravitational waves. The obtained results describe the characteristics
of the rotation of a black hole and of spinning gravitational waves.

Keywords: gravitational waves, angular momentum, curvature tensor, stress-energy
tensor, black hole.introduction

INTRODUCTION

Research question

In our previous two researches [1, 2, 3], we reported that the antigravity and anti-
gravitational waves appear when a black hole rotates, but we also reported that
further research is needed to identify the vectors, which are pependicular to the
rotating axis of the gravitational field and the gravitational waves. Then, in this
new research, in order to further investigate this problem, we assumed as if the
“sin @ component” to the rotational axis of ¢ represents the perpendicular direc-

tion of the curved surface described by spherical polar coordinates.

Theory of movement of the curved surface in the time-space coordinates

Dirac [4] explained two types of coordinate systems that describe time and space:
one is in the flat space-like surface (Fig. 1), and another is the curved space-like
surface (Fig. 2). In each figure three-dimensional surfaces (.S;,S,,S5,5] in Fig. 1
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and S in Fig. 2) are placed in four-dimensional time-space, where x,, is for time
and x;,x,,x3 are for the space. (Einstein’s special theory of relativity is explained

in Fig.1, while the general theory of relativity [5] is explained in Fig. 2) Dirac [4]
described that Fig. 2 represents a three-dimensional curved surface in a four-
dimensional space-time, which has the property of being everywhere space-like,
and the normal (perpendicular) vector to the suruface must be in the light-cone in
the Fig. 2. Dirac predicted that this perpendicular movement to the curved space
must be physically meaningful.
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Fig. I. Flat space-like surface Fig. 2. Curved space like surface

(adapted from Reference [4])

In our research, we simulated the gravitational field and gravitational waves
in the curved space-like surface using the spherical polar coordinate system so
that we could still use the orthogonal transformation for modelling the rotation of
a black hole. In our previous research [6], we simulated the energy density of the
gravitational field and of the gravitational waves, also with the spin angular mo-
mentum of the gravitational waves on the flat surface; but, not the movements of
the vectors perpendicular to the curved surface. In this article we report the result
of our next research about the simulation of perpendicular component of the
movement of the curvature tensors.

Curvature tensors

In this research, we used the same curvature tensors that we derived for our previ-
ous researches [2, 3], but we reorganized the components in the following for-
mula for the gravitational field:

R, O 0
RP«V = 0 R22 0 5
0 0 Ry
20 I
where R, = -+ VER
3p—1)° 18m(p—1)
Ry =— 28 o053 T 214077’1 . -42 +cot* 0,
W (p—-1) I (p—1)" sin"6
_ 2
and R, = 28 140m 4 Ilcot” 0

+ + +
oOu*(p-1)'""sin’0 9u’(p—1)*sin’0 sin’O  sin’O
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then we formulated the body vector of the black hole: R = [Rll Ry, Ri ]T .

And for the simulation of the gravitational waves, we used the following
formula, as three diagonal components of a 3 x3 matrix:

.. —16 2 2u u
For ¢=m=1: N2 afm N2 — 03 N3
p-1" 3(p-1)° 8lm(p—1) Im(p—1)
u 2 224m 224m
- 3 > T3 R 4 - 2"
Imp-1)"" (p—1)° W (p—1)° 9u(p—1)'sin°0
For ¢=n=2: 240289 82 , and for g=n=3:L2—32c0t26
sin"0 sin“0 9(p—-1)

and similarly we formulated the wave vector: g = [g1 2 & ]T

The curvature tensors of gravitational waves, which penetrate the boundary
of a black hole [2], are:

on
g Pe-en +g,g(151 (gpg,n _(1/2)ggn,p)+g,%1 (gcg,n _(1/2)ggn,c)+
+(1/2)8™ gpp&pcp&nepo +(1/2)8™ 8pp8pc po&nep ™ (1/ 2) &5 8pp&pe p&ne s+
+(1/ 8™ 8pp08pep&nep™ 1/ D8 & pp&oc p&enpp T(1/2)8 " Cpp&ocpp&enp+
66 oG
+(1/2)8 > 8pp8ocp8nep T (1/2)8 " €pp.p8ocp8rep -

Distortion of time and space in strong gravity

We used the same assumption of our previus research [3] for simulating the dis-
tortion of time and space, as shown in Fig. 3 and Fig. 4. In these figures,t is a
relative time in the coordinate system, which expands and shrinks depending on
the distance r, where T=¢+ f(r); and p is the relative distance, which expands

and shrinks depending on the time ¢, where p=t+ g(r); and f(r) and g(r) are
functions of r. For the simulation we assumed Case-1: f(r)=Ilogr; and

g(r)=e" (non-linear); and Case-2: f(r)=1/r,and g(r)=r (linear).

Tt p Tt Tt p
24 12E10 26 =26
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Fig. 3. Time and distance from the center Fig. 4. Time and distance from the center
of the gravitational field, Case-1 (non-linear of the gravitational field, Case-2 (linear

distortion): f(r)=lograndg(r)=e" distortion): f(r)=(1/4)and g(r)=r
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ALGORITHM

We used the same algorithm that we used for our previous research [3] to simu-
late the relative strengths (intensities) of the curvature tensors, which are reflected
by the stress-energy tensor that is placed at the end of the distance » in Fig. 3 and
Fig. 4.

Einstein’s field equation [5] that rules the motion of particles in the gravitational
field is as follows: (R" —(1/2)g""R), =0. Then R, —(1/2)g, R = kT, where
T is the stress-energy tensor and k£ is a constant [7]. By calculating, ¢ and
V(c), as shown below, we estimated the relative strength of each component of

R, to the stress-energy tensor in the system of spherical polar coordinates:
H=kT =R, =kT — (| X| + 2 X, + 3X3),

and H? ={kT — (¢, X| + ¢, X5 +¢3 X3)}2,

where ¢, ¢,, and c; are the coefficients, which make a column vector c¢. And

X=[X;, X, X;],then H =kT' —Xc. Then we set the constraint X'H =0,
then X'(kT — Xc) =0, where X'is transpose matrix of X .

Then X'Xe=X'kT, c=(X'X) ' X'kT and £=V(c)=6>(X'X)"", where
V(c)=c” is the variance of the ¢ and &> =e'e/(n—1I), where e=MkT,
M=I-X(X'X)"'X', n is the number of rows of each column of X (in this
simulation n=23), [/is the number of columns of X, /isa 23x23 unit matrix

that holds 1 on all diagonal elements and 0 for the other elements, (X'X)" is the
inverse matrix of X'X , and ¢’ is the transpose vector of e.

Rotation of the black hole (an object), which contains strong gravity that
distorts time and space

When an object rotates as shown
in Fig. 5, its coordinate system
will be transformed by the trans-
formation matrix D of the Eu-
ler’s angles [7]. For the rotation
around one axis of ¢ the ten-

sors of the object’s coordinate
system will be multiplied by the
matrix

coseo sing 0
D=|-singp cose O0].
0 0 1

And then the curvature ten-

sor R, will be transformed to:

Fig. 5. Rotation of an object
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cosp sing O |[R; O O cos@-Ry; sing-Ry,, O
DR, =|-sing cosp 0|1 0 Ry 0 [=|-sin@-Ry; cos@-Ry 0
0 0 1 0 0 Ry 0 0 R33
Here the components sin@ - R,, and —sin¢- R, are anti-symmetrical, which
are perpendicular to the rotational axis z=x; for ¢ of Fig. 5.

Given the above transformed curvature tensor after the rotation, at first we
calculated the relative strength of the principal moment of the rotation by the
diagonal components of DR ,,, which are

v
drR,;, 0 0 cosQ- Ry, 0 0
0 dR22 O = 0 COS(P . R22 0
0 0 Ry 0 0 Ry

to formulate H =kT —(c;dR; + c,dR,, + c3R33) , then the algorithm follows as
explained above.
And then we also calculated the anti-symmetrical components of DR,

which are
0 sing-R,, 0 0 Ry,dQ; 0
—sinQ- Ry, 0 0|=|—RydQ; 0 0
0 0 0 0 0 0
dRy, Ry, - dQ;
to calculate |dR,, |=|—R;;-dQ;| to formulate H =kT —(c; Ry, -dQ;—
dR; 0
—c, - Ry -d€3), then the same algorithm follows as explained above.
0 dQ; 0
Here, | —dQ; 0  0|=¢is an infinitesimal rotation operator; while in general;
0 0 0
0 dQ; —-dQ,
e=|—dQ, 0 dQ, |, according to Reference [7]; but in this our simula-

dQ, —-dQ, 0
tion dQ; =dQ, =0, and dQ; =sin¢. It calculates rotated vector as the cross-
product of R, and dQ,

dR;, Ry || 4O, Ry, dQs5 — R33dQY,

For the simulation of gravitational waves, simply R;;, R, and Rs;, are re-

placed by the diagonal components of the gravitational waves, and henceforward,
the same algorithm follows.
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SIMULATION

Input data

Time ¢ is set as shown in Fig. 3 for Case-1 and in Fig. 4 for Case-2, with which
its slope to the distance » from the center of the gravitational field is a constant.
For simulating the spatial expansion of the gravitational field we assumed, as if 0
becomes larger in far distance. On the other hand, for simulating the flow of grav-
itational waves we assumed, that 6 becomes smaller in far distance, as shown in
Fig. 6. For simulating the rotation of the object we set two cases assuming ¢, (the

rotationl) and ¢, (the rotation 2) also as shown in Fig. 6. With these settings
sinf, cosO,cotO and cos @ behave like it is shown in Fig. 7.
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Fig. 6. Angles 0 and ¢ for simulating gravitational field and gravitational waves
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Fig. 7. SinB, cos0, cotO, and cos@ of the simulated gravitational field
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In addition, for this simulation we set the stress-energy tensor k7 =1;

because, the purpose of this simulation is to measure the order of magnitude of
the relative strength of each component of R, and the gravitational waves to the

stress-energy tensor.

RESULT

Gravitational field

Fig. 8 (Table 1) shows the relative strengths of the gravitational field of the black
hole, which are the gravitational field energy, projected on the spherical curved
surface, and the angular momentum on the perpendicular vector to the surface, in
Case-1 (non-linear distortion of the time and space) and Case-2 (linear distortion
of time and space). As the rotation becomes more frequent from the rotation 1 to
the rotation 2, the angular momentum (the perpendicular vector) changes from
positive to negative. It means that the direction of the angular momentum chang-
es, depending on the frequency of the rotation of the black hole. On the other
hand, on the curved surface the gravitational field energy is negative (gravity)
before the rotation in Case-1, but it changes to positive (antigravity) in the rota-
tion 1, and then to negative (gravity) again in the rotation 2. It means that the an-
tigravity appears, depending on the frequency of the rotation of the black hole. In
Case-2, the gravitational field energy is positive (but smaller than in Case-1, and
closer to zero) when the black hole doesn’t rotate; while the gravitational field
energy (negative) becomes larger when the black hole rotates faster. The angular
momentum of Case-2 changes as it changes in Case-1.

oon curved suface (Case-1)

W On perpendicular vector (Case- 1)

-1,00E+02 -500E+01 000E+00 5 00E+01  1,00E+02

RrAIon 2 = oon curved surface (Case-2)
Rt SO — W On perpendicular vector (Case-2)
Moy rotation [0

40 20 20 A0 0 10 30

Fig. 8. Gravitational fields on curved surface and on perpendicular direction from the
surface

Fig. 9 (Table 2) and Fig. 10 (Table 3) show the strengths of gravitational
field energy, projected on the spherical curved surface in Case-1 and in Case-2, in
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3 directions (projected on the spherical curved surface in the coordinates of », 0,
and ¢, which are the generalized coordinates of x; =x, x, =y, and x; =z of

Cartesian coordinate system). In Case-1, only the 7 direction appears on the sur-
face in all cases (no rotation, the rotation 1 and the rotation 2); while in Case-2, in
addition to the direction of » , the component of 6 appears as the black hole rotates.

T
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! ! !
=1 000E=0 -S000E-0 -5 000 S0 -4 0000 -2 O00E-0 Qul0E-00 2 000 == 4 Q00=-0
a 1 1 1 1

Fig. 9. Gravitational field energy in 3 directions on the spherical curved surface, Case-1
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Fig. 10. Gravitational field energy in 3 directions on the spherical curved surface, Case-2

Fig. 11 (Table 4) and Fig. 12 (Table 5) show the strengths of the rotation’s
angular momentum in two directions (» and 0, which are perpendicular to the ro-
tating axis, @ (x3 =z of Fig. 5)). Similar to the gravitational field energy, only the
vector’s component of » appears in Case-1; while the vector’s component of
0 also appears in Case-2. In both Case-1 and Case-2, as the frequency of the rota-
tion increases from the rotation 1 to the rotation 2, the direction of the momentum
changes from plus to minus. It suggests that the rotation of a black hole reverses
its direction of the momentum when the frequency of the rotation changes.

ar

L)

Fig. 11. Rotation momentum of the gravitational field in two directions of 7 and 6, Case-1
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Fig. 12. Rotation momentum of the gravitational field in two directions of » and 6, Case-2
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Gravitational waves

Fig 13 (Table 6) shows the srength of the gravitational waves emitted from the
black hole, which are the energy (projected on the spherical curved surface of the
wave) and the spin momentum of the rotation (projected on the pependicular di-
rection to the surface), in Case-1 and Case-2. On spherical curved surface the en-
ergy of gravitational waves are not affected by the rotation; while on the perpen-
dicular direction the rotational momentum (spin) appears, and it changes its
direction from positive to negative when the frequency of the rotation changes
from the rotation 1 to the rotation 2. It suggests, that the gravitationa waves make
spin as the waves move on the direction of r as the emitter (the black hole) ro-
tates, and it changes its spinning direction when the frequency of the rotation
changes from the rotation 1 to the rotation 2.

O On curved surface (Case-1}

Rotatior T | m On perpendicular vector (Case-1}

Mo rntdiE_

2, 00E+02 -1,00E+02 0.00E+00 1,00E+02  2,00E+02

O On curved surface (Case-2 }

®m On perpendicular vectar (Case-2 |

No rdfafGa]

-2,00E+00 -1,00E+00 0,00E+00  1,00E+00  2.00E+00

Fig. 13. Gravitational waves on curved surface and on perpendicular direction from the
surface

Fig. 14 (Table 7) and Fig. 15 (Table 8) show the energy density of gravita-
tional waves, projected on the spherical curved surface in three directions in Case-
1 and Case-2. These figures suggest that the waves have negative energy density
on the direction of r in Case-1; while the negative energy density appears also on
the direction of rotation ¢ in Case-2. These figures suggest the appearance of
anti-gravitational waves on the spherical curved surface. (The anti-gravitational
waves must have negative sign [1], while gravitational waves must have positive
sign). This finding is different from our previous report [3], in which either the
gravitational waves or the anti-gravitational waves didn’t appear when the black
hole didn’t rotate. The difference came from the configuration in the algorithm to
formulate H =kT —(¢;X| +c, X, +c3X3). In this new research we reorganized

the components of the curvature tensor into three vectors, X;, X, and X;; while

in our previous report [3] we calculated the relative strength of every component
of the curvature tensor by, H =kT —(c;X; +c, X5 +---+¢,X,) .
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Fig. 15. Gravitational waves energy density on the curved surface, Case-2

Fig. 16 (Table 9) and Fig. 17 (Table 10) show the spin momentum of gravi-
tational waves, projected in the directions of » and 0 in Case-1 and Case-2. In

negatham 4

2 0E-00 130502 -1 00E-0C -3 00501 QO0E-00 S OQ0E- {1 00S-C 13050

Fig. 16. Spin momentum of gravitational waves in two directions of » and 0, Case-1
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Fig. 17. Spin momentum of gravitational waves in two directions of 7 and 0, Case-2

both cases the vector component of 6 appears in positive direction in the rotation
1, and in the negative direction in the rotation 2. These figures suggest that the
gravitational waves changes its direction of spin as the rotation’s speed of the black
hole changes. its dsrection of spin as the rotation’s speed of the black hole changes

PHYSICAL MEANING OF THE RESULTS

The components of cos¢ in this analysis, which are the projections of the gravi-

tational field and the gravitational waves on the spherical curved surface, are
comparable to the vector component on the curved surface shown in Fig. 2 (at the
beginning of this article). And the movements of these vectors are the movement
of the curved surface itself. On the other hand, the vector components of sin¢ are
perpendicular to the curved surface, which is shown in the light-cone of Fig. 2,
and the movement perpendicular to the curved surface must have real physical
meaning. However, the earlier research by Paul Dirac [4] reported that it was
problematic to quantize the movement of a quantum particle (gravitation is one of

16 ISSN 1681-6048 System Research & Information Technologies, 2021, Ne 1



Simulating angular momentum of gravitational field of a rotating black hole and spin ...

them) such as calculating its momentum in the direction of the vectors, perpen-
dicular to the curved surface. Henceforward, the theory of quantum mechanics
was not developed on the curved surface (Fig. 2), but on the flat surface (Fig. 1).
In this research we simulated the gravitational waves on the surface of
spherical polar coordinates as a surrogate of the general curved surface. And we
used the cross product of anti-symmetrical vectors for simulating the components
of sing as the mathematical model of the momentum in the light-cone of the

general curved surface (Fig. 2).

CONCLUSIONS AND RECOMMENDATIONS

In this research we investigated the angular momentum of the gravitational field
and the spin momentum of the gravitational waves by simulating the perpendicu-
lar component that is the ““sin ¢ component” to the rotational axis of ¢. We used
the system of the spherical polar coordinates so that we could simulate the rota-
tion with the orthogonal transformation of Euler’s angles.

The result of the simulation shows that the rotating black hole can produce
the antigravity and anti-gravitational waves; and the gravitational waves changes
their spinning direction as the frequency of the black hole’s rotation changes.
These findings are consistent with our previous researches: [1] in which we
reported that the negative flow of gravitational waves must have the clockwise
spin, while the positive flow has the counter-clockwise spin; and [3] in which we
reported that the antigravity and anti-gravitational waves appear when the black
hole rotates.

In this research we used the system of spherical polar coordinates as the
surrogate of the general curved surface; however, in near future, the developed
computer technologies must increase a possibility of using general curved surface
of Einstein’s gravitational field equation also for solving the equation of motion
of quantum particles.

Table 1. Strengths of gravitational field

Case-1 Case-2
Case On curved On perpendicular On curved | On perpendicular
surface vector surface vector
No rotation -78,55 — 1,770 —
Rotation 1 20,00 36,90 -8,178 14,77
Rotation 2 -41,96 -43,00 -21,31 -15,29

Table 2. Strength of gravitational field on principal axis z , Case-1

C(l))lilal;g(?:;:ts chi?d \lﬁ;g)?e C(I))l;lapg(?::lits Cand \[7(c) | Cand \JV(c)
of Ruv the PIL.VO tation of rotated R, (Rotation 1) (Rotation 2)
Ry -78,68 (26,49) cos@- Ry, 20,01 (58,22) | -42,05 (52,30)

R, 0,13»07_2 coso- Ry, 5,516-107 | 8,903-1072
(3,369-107) (8,030-1072) | (6,829-107%)

Ry, -6,803 - 10‘45 Ry, -3,290- 10‘: 2,990 - 10;4
(2,557-10) (3,869-10 ") | (5,403-10" 7" )s

The values in the blackets are m
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Table 3. Strength of gravitational field on principal axis z , Case-2

Diagonal Cand /V(c) Diagonal
Components| ., | . | Components Cand \[V(c) Cand /¥ (c)
of R ¢ of rotated R (Rotation 1) (Rotation 2)
Hv the rotation Hv
R 1,767 oSO R -8,368 -21,79108
1 (7,364) ¢ (11,85) (16,36)
2,862-1073 ) 0,1924 0,48490
R (0.1469) coso- Ry (02427) (0.3369)
R 1,110-107 R -2,854.107 -7,281-107
33 -3 33 -3 -3
(2,224-107) (3,673-107%) (5,099-107%)

Table 4. Strength of the perpendicular vector to the principal axis z of gravi-

tational field, Case-1
Rotation Cand /V(c) (Rotation1) | Cand ,/I'(c) (Rotation 2)
dx) = Ry, - dQy = 9,077-107 -4,816-1072
=sinQ- Ry (5,072-1072) (5,931-1072)
dxy =—Ryy - dQs = 36,83 -42,94
=—sing- Ry, (46,33) (45,44)

Table 5. Strength of the perpendicular vector of the rotating gravitational field,

Case-2
Rotation Cand ,/V(c) (Rotation1) | Cand ,/V(c) (Rotation 2)
dxy = Ry - dQy = 0,28213 -0,22852
=sin@- Ry, (0,2621) (0,2597)
dxy = =Ry -dQ3 = 14,48 -15,06
=—sing- Ry, (16,65) (16,69)
Table 6. Strengths of gravitational waves
Case-1 Case-2
Case On curved On perpendicular On curved | On perpendicular
surface vector surface vector
No rotation -28,13 — -0,5738 —
Rotation 1 -28,21 1,125-10° -0,5396 1,341
Rotation 2 -31,84 -1,505-102 -0,6123 -1,113
Table 7. Strength of gravitational waves, Case-1
Components of (Cand \[V'(c) of R, Cand /V(c) Cand /V(c)
gravitational tensor | pefore the rotation | (After Rotation 1) | (After Rotation 2)
Y= ¢ -28,06 -28,15 -31,84
— 4 componen (14,20) (15,52) (19,70)
B -4,594.107* 5,535-107 1,167-107
Y = X, component 4 4 3
(2,398-107") (2,987-107") (1,181-107)
-6,855-1072 -5,955.1072 -8,950-1073
Z = X5 component o o 3
(3,083-10) (2,711-107) (7,179-10)

18
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Table 8. Strength of gravitational waves. Case-2

Components of | Cand \/}(c) of R, V(c) Cand /V(c)
gravitational tensor| y.fore the rotation (After Rotation 1) | (After Rotation 2)
X = X, component -0,4164 -0,3967 -0,4850
— hieompone (0.2513) (0,2734) (0,3506)
y = X, component -1,116-107° -1,009-1073 8,918-107*
’ (4,614-10) (4,484.10) (4.123.10°)
z=x ¢ -0,1562 -0,1419 -0,1264
= X, componen
oo (6,097-107%) (5,927-1072) (5,444.1072)

Table 9. Strength of the perpendicular vector to the principal axis z of gravi-

tational waves. Case-1

Rotation Cand /V(c) (Rotation1) | Cand ///(c) (Rotation 2)
dx) = Ry - dQ3 = -9,438-107* 6,081-107°
=sing- Ry, (5,800-107) (3,813-107)
dx, = =Ry -dQy = 1,125-102 -1,505-102
=—sing- Ry, (1,426-10%) (1,027-10%)
Table 10. Strength of the perpendicular vector of the rotating gravitational waves.
Case-2
Rotation Cand /V/(c) (Rotation1) | Cand ./}/(c) (Rotation 2)
dx; = Ry -dQ; = 1,025-107 -5,437-107
=sin@- R,, (5,865-107) (4,966-107)
dxy =—Ryy - dQ; = 1,33031 -1,10749
=—sing- Ry, (1,053) (0,8583)
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MOI[E.JIIOB.AHHH ISYTOBOFO MOMEHTY I‘PABITAIIII?IHOFO MOJIsI
OBEPTOBOI YOPHOI AIPH I CIITH-MOMEHTY I'PABITAHIMHUX XBUJIb /
. Manyki, I1.1. Bigrok

AHoTamisi. 3MOJIeTbOBAaHO MOMEHT IMITyJIbCY TIpaBiTaliifHOro mosisi 00epToBoi
YOPHOI JipH 1 CIiH-MOMEHTY T'paBiTallifHUX XBHJIb, [0 BHIIPOMIHIOIOTHCS 3 YOPHOI
nipu. CrodaTKy OOYMCIICHO NMUTOMY €HEPTil0 00EpPTOBOTO TPaBiTAIIMHOTO MOJA i
CHIH-MOMEHTY TPaBITALifHUX XBHJIb SK BEKTOPIB, IO MPOEKTYIOTHCS HA chepudHy
KPHBOJIHIIHY ITOBEpXHIO IpaBiTallifHOTo MOJIS Ta TPaBITAIHHIX XBHIb.O0UHCIEHO
MOMEHT IMIYyJBCy Ta CIIH-MOMEHT SIK BEKTOpH, IEPICHIWKYJSIPHI 10 KpH-
BOJIIHIMHOT MOBEpXHi. Y CBOEMY IOCHTIDKEHHI, onmyOiikoBanoMmy B 1964 p., Ilonb
Jipak 00paB He KPUBOIIHIHHY MOBEPXHIO I OOYNCICHHS pPyXy KBAaHTOBUX YacTH-
HOK, a IUIOCKY HOBEPXHIO JUIsi po3po0IieHHs Teopii KBaHTOBOI MexaHiku. Y wmiit po-
60Ti 3pobieHO crpoly 3MOIEIIOBATH IpaBiTalliiiHi XBUI y CHEPUUHUX MOISIPHUX
KOOpIUHATAX, SKi YTBOPIOIOTH C(epUUHY KPUBOJIHIMHY IMOBEPXHIO I'paBiTaLliHHX
XBUJIb. 3’SICOBaHO, IO MHOXXHHA AHTUCHUMETPHUYHHX BEKTOPIB ONHCY€E BEKTOPH,
HEepIEeHIUKYJISIPHI 10 chepHIHOi KPHUBOJIHIHHOI IMOBEPXHI; 3 TAKMMH BEKTOPAaMHU
3MOJIETIhOBAHO MOMEHT IMITyJIbCy TIpaBiTallifHOro Mot 00epTOBOi YOpHOI HipH i
CIIH-MOMEHT TpaBiTallilHuX XBWIb. OTpHMaHi pe3yJbTaTH ONHMCYIOTb XapaKTepH-
CTHKHM 00epTaHHs YOPHOI ipu Ta 00epTaHHs IpaBiTalifHUX XBUIIb.

KonrodoBi cioBa: rpaBitamiiiii XBmii, KyTOBHIl MOMEHT, TEH30p KPHBH3HH, TEH30D
€Heprii Halpy>KeHHs, YOpHa Jipa.

MOJAEJIMPOBAHUE YI'JIOBOI'O MOMEHTA IN'PABUTALIMOHHOI'O ITOJIA
BPAIIAIOLIEVCS] YEPHO JIbIPbI M CIHUH-MOMEHTA I'PABUTALIMOHHBIX
BOJIH / 1. Manyku, [1.1. Bumtok

AnHotamus. CMOZeIMPOBaH MOMEHT HUMITyJIbca TPAaBUTAMOHHOTO IIOJIS BpaIllalo-
mmieiicss 4epHOil JBIPEI U BPANIAIOIer0o MOMEHTA TPaBUTAI[MOHHBIX BOJH, M3JTydaro-
mUXcsl U3 YepHoU apIpbl. CHavaja BEIYMCIICHA yJeIbHas SHEPrHsl BPAILAroOLIerocs
IPaBUTAI[OHHOTO IIOJIS1 U BPAIAIOLIMX TPaBUTALMOHHEIX BOJH KaK BEKTOPOB, IPO-
SLUPYIOUIMXCS Ha CHEPUUYECKYIO KPUBOJIIMHEHHYIO OBEPXHOCTb I'PABUTALHOHHOTO
HOJISL ¥ TPABUTALMOHHBIX BOJH. BBIYMCIICHBI MOMEHT MMITYJIbCA M BPAILAIOLIMH MO-
MEHT KaK BEKTOpBI, IEPIICHANKYJISPHbIC K KPUBOJIMHEHHOH MoBepXHOCTH. B cBOEM
HCCIIeIOBaHUH, OMyOIuKoBaHHOM B 1964 1., [lons [Aupak BeIOpan He KPUBOJIUHEH-
HYIO ITOBEPXHOCTB JUISl BEIYMCIICHUS ABVDKCHUS! KBAHTOBBIX YACTHII, a IUIOCKYIO I10-
BEPXHOCTB JJISI pa3pabdOTKN TEOPHH KBAaHTOBOIT MexaHUKH. B aToit paboTe mpexnpu-
HSTA IIONBITKA CMOJEINPOBATh IPAaBUTALIMOHHEIC BOJIHEI B CEPHIECKHX MOJISIPHBIX
KOOpAMHATAaX, KOTOpBIE 00pa3yloT CHEepHuecKyro KPUBOJIMHEIHYIO ITOBEPXHOCTBH
IPAaBUTALMOHHBIX BOJH. B pe3yibTare BBIICHEHO, YTO MHOXECTBO aHTHCHMMETPHY-
HBIX BEKTOPOB OIKCBIBAET BEKTOPBI, MEPIECHANKYIISIPHBIE K CHEPUIECKOH KPUBOIH-
HEHHON NOBEPXHOCTH; C TAKUMH BEKTOPAMM CMOJCIHPOBAHBI MOMEHT HMMITYJIbCa
TPaBUTALMOHHOTO T10JI BpalIAIoLIeiicss YepHOH ABIPbI H CIIMH-MOMEHT TPaBHTALU-
OHHBIX BOJH. ITosy4eHHbIE pe3yJbTaThl OIMCHIBAIOT XapaKTEPHCTUKM BPAIICHHS
YEepHOMU JIBIPHI ¥ BPAIICHUS TPAaBUTAI[OHHBIX BOJIH.

KnarodeBble c10Ba: rpaBUTAllMOHHBIE BOJIHBI, YITIOBOH MOMEHT, TEH30p KPHBU3HBI,
TEH30p SHEPTHU HATPSDKEHUS, YepHAs JbIpa.
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