

4-(*N*-Вос-амино)-1*H*-1,2,3-триазолкарботиоамиды в синтезе производных новой гетероциклической системы [1,2,3]триазоло[4,5-*e*][1,4]тиазепина

Наталия А. Сирота¹, Сергей В. Кемский²*, Андрей В. Больбут^{2,3}, Игорь И. Чернобаев², Александр С. Лявинец², Михаил В. Вовк²

¹ Национальный университет "Киево-Могилянская академия", ул. Григория Сковороды, 2, Киев 04655, Украина; e-mail: natalie.syrota@gmail.com

² Институт органической химии НАН Украины,

ул. Мурманская, 5, Киев 02660, Украина; e-mail: svkema@gmail.com

³ НПО "Енамин",

ул. Красноткацкая, 78, Киев 02094, Украина; e-mail: bolbut@ukr.net

Поступило 20.04.2021 Принято 15.05.2021

4-(*N*-Вос-амино)-1*H*-1,2,3-триазолкарботиоамиды, полученные последовательной обработкой 4-(*N*-Вос-амино)-1*H*-1,2,3-триазолов *n*-BuLi и алкилизотиоцианатами при −78÷−60°С, при действии этилбромацетата образуют соответствующие 4-(*N*-Восамино)-5-тиоимидаты, которые в насыщенном HCl диоксане подвергаются внутримолекулярной циклоконденсации в 8-(алкилимино)-4,8-дигидро-1*H*-[1,2,3]триазоло[4,5-*e*][1,4]тиазепин-5(6*H*)-оны.

Ключевые слова: 4-(*N*-Вос-амино)-5-тиоимидаты, *N*-Вос-4-амино-1,2,3-триазолы, 4-(*N*-Вос-амино)-1*H*-1,2,3-триазолкарботиоамиды, [1,2,3]триазоло[1,4]тиазепины, этилбромацетат.

Конденсированные 1,4-тиазепиновые системы в течение последних десятилетий активно изучаются как перспективные скаффолды для создания структур с мощным фармакологическим потенциалом. Наиболее показательным результатом таких исследований стало открытие в ряду 4,1-бензотиазепин-2-онов антагониста митохондриального Na²⁺/Ca²⁺-обменника CGP 37157^{1,2} и его структурных аналогов.^{3,4} Было также установлено, что бензотиазепин CGP 37157 и его изопропильный аналог ITH 12575⁵ (рис. 1) также являются эффективными модуляторами гомеостаза ионов Ca²⁺ (CALHM 1).

Заслуживают внимания противоопухолевые свойства^{6,7} производных 4,1-бензотиазепин-2-онов и их способность к ингибированию активности фермента скваленсинтазы.⁸ Не меньший интерес вызывают и гетероаннелированные 1,4-тиазепины, среди которых наиболее исследованы производные пиразоло[3,4-*e*]-[1,4]тиазепин-7-онов – агонисты фарнезоидного Х-рецептора (FXR),^{9,10} а также антиоксидантные и цитотоксические агенты.¹¹ В то же время родственные им по строению [1,2,3]триазоло[1,4]тиазепины остаются практически неизвестными и только недавно появилось сообщение¹² о синтезе первого представителя ряда [1,2,3]триазоло[4,5-f]тиазепинов. С учетом выраженного фармакофорного характера 1,2,3-триазольного фрагмента¹³⁻¹⁷ логичным представлялся вывод, что его сочленение с 1,4-тиазепиновым циклом может ока-

Схема 1

 $R = Me, PIICH_2CH_2, PII, 2-MeOC_6H_4, R = EI, I-PI, I-DU, Cy$

заться весьма полезным для создания новых потенциально биоактивных соединений.

Наиболее общий метод синтеза 4,1-бензотиазепин-2-онов – 3-компонентная реакция анилинов с альдегидами или активированными кетонами и меркаптоуксусными кислотами, протекающая с промежуточным участием 2-аминобензгидролов.^{7,8,18–21} Подобная циклоконденсация с участием 4-незамещенных 5-аминопиразолов оказалась эффективной и для получения производных пиразоло[3,4-*e*][1,4]тиазепина.^{9–11,22–26} Наши попытки использовать в тех же условиях^{9,19} 4-амино-1,2,3-триазол не дали результата.

1,4-тиазепин-3-онов²⁷ Известен способ синтеза конденсацией анилидов β-аминокротоновой кислоты с галогенангидридами α-галогенкарбоновых кислот. Применение такого варианта для получения триазолоаннелированных 1,4-тиазепинов требовало разработки метода синтеза новых реагентов - 4-амино-1,2,3-триазол-5-карботиоамидов или же их 4-(N-Вос-амино)производных. В литературе имеются сведения о селективном С-тиокарбамоилировании некоторых N-замещенных карбоциклических²⁸ и гетероциклических^{29,30} енаминов, которое протекает при их взаимодействии с изотиоцианатами в кипящем PhMe в присутствии NaH. На примере 4-(*N*-Вос-амино)-1-метил-1,2,3-триазола (1а) нами показано, что в таких условиях он не взаимодействует ни с этилизотиоцианатом, ни с фенилизотиоцианатом. По этой причине с учетом недавно полученных данных, 31,32 согласно которым электрофильное замещение по положению 5 4-(N-Вос-амино)-1,2,3-триазолов реализуется только путем их предварительного литирования, субстраты 1a-d были подвержены последовательному действию n-BuLi в ТГФ и алкилизотиоцианатов при -78÷-60°С (схема 1). В результате с выходами 56-74% были получены 4-(N-Восамино)-1,2,3-триазол-5-карботиоамиды 2а-ј – новые бинуклеофильные синтетические блоки, перспективные для конструирования ранее неизвестных типов конденсированных 1,2,3-триазолов. При этом следует отметить, что более электрофильные арилизотиоцианаты оказались неэффективным в роли тиокарбамоилирующих агентов, поскольку в условиях реакции они превращались в смеси трудноидентифицируемых продуктов.

В отличие от одностадийной циклизации тиоамидов β -аминокротоновой кислоты с галогенангидридами α -галогенкарбоновых кислот,²⁻⁷ реакция тиоамидов **2а,b** с хлорацетилхлоридом протекает с образованием сложной смеси продуктов. Этот факт стал весомым основанием для использования двустадийного варианта формирования 1,4-тиазепинового цикла. С этой целью на первой стадии тиоамиды $2\mathbf{a}$ -**j** подвергались селективному *S*-алкилированию этилбромацетатом в мягких условиях, что приводило к 4-(*N*-Вос-амино)-5-тиоимидатам $3\mathbf{a}$ -**j** с выходами 62–81%. Удаление защитной группы Вос действием HCl в диоксане сопровождалось внутримолекулярной циклоконденсацией с образованием целевых [1,2,3]триазоло[4,5-*e*]-[1,4]тиазепин-5(6*H*)-онов $4\mathbf{a}$ -**j** с высокими выходами (схема 1, табл. 1).

Таблица 1. Время реакций получения и выходы соединений 2–4 а–j

Соеди- нение	\mathbf{R}^1	R^2	Время, ч	Выход, %
2a	Me	Et	3	74
2b	Me	<i>i</i> -Pr	4	69
2c	Me	<i>t</i> -Bu	4	72
2d	Me	Су	4	64
2e	PhCH ₂ CH ₂	Et	3	59
2f	PhCH ₂ CH ₂	<i>t</i> -Bu	4	57
2g	Ph	Et	4	63
2h	Ph	<i>t</i> -Bu	4	67
2i	$2\text{-MeOC}_6\text{H}_4$	Et	4	70
2j	$2\text{-MeOC}_6\text{H}_4$	<i>i</i> -Pr	4	56
3a	Me	Et	4	81
3b	Me	<i>i</i> -Pr	4	73
3c	Me	<i>t</i> -Bu	5	73
3d	Me	Су	5	65
3e	PhCH ₂ CH ₂	Et	4	73
3f	PhCH ₂ CH ₂	<i>t</i> -Bu	5	75
3g	Ph	Et	4	72
3h	Ph	t-Bu	5	62
3i	$2\text{-MeOC}_6\text{H}_4$	Et	4	69
3ј	$2\text{-MeOC}_6\text{H}_4$	<i>i</i> -Pr	5	80
4a	Me	Et	5	87
4b	Me	<i>i</i> -Pr	6	92
4c	Me	<i>t</i> -Bu	6	89
4d	Me	Су	6	90
4 e	PhCH ₂ CH ₂	Et	5	91
4f	PhCH ₂ CH ₂	t-Bu	6	87
4g	Ph	Et	5	89
4h	Ph	<i>t</i> -Bu	6	87
4i	$2\text{-MeOC}_6\text{H}_4$	Et	6	88
4j	2-MeOC ₆ H ₄	<i>i</i> -Pr	6	92

Строение как промежуточных (соединений **2а–**ј и **3а–**ј), так и целевых продуктов (соединений **4а–**ј) подтверждено комплексным физико-химическим исследованием. Так, в ИК спектрах тиоамидов **2а–**ј проявляются полосы поглощения средней интенсивности связей N–H (3316–3320 см⁻¹) и C=O (1698–1705 см⁻¹). Спектры ЯМР ¹Н, кроме наличия типичних сигналов заместителей Вос, R¹ и R², характеризуются синглетами протонов групп NHBoc при 9.65–10.24 м. д. и NHR² при 9.04–9.35 м. д. В слабопольной части спектров ЯМР ¹³С содержатся сигналы в диапазоне 179–183 м. д., которые надежно можно отнести к атому углерода группы C=S.³³

В свою очередь, в спектрах ЯМР ¹³С соединений За-j отсутствуют сигналы в указанной области, что указывает на реализацию процесса S-алкилирования тиоамидов 2а-ј. Следует отметить, что структурной особенностью тиоимидатов За-і является удвоение в спектрах ЯМР ¹Н сигналов протонов и в спектрах ЯМР ¹³С сигналов атомов углерода заместителя R² в тиоимидатном фрагменте молекулы, что, по всей видимости, обусловлено существованием тиоимидатов За-ј в виде смеси син- и анти-изомеров. При этом увеличение объема указанного заместителя приводит к увеличению содержания одной из форм. По данным спектров ЯМР ¹Н, в случае соединений 3a,e,i ($R^2 = Et$) относительное содержание изомеров составляет 48-54÷52-46%, в случае соединений **3b**, j ($\mathbb{R}^2 = i$ -Pr) – 25–30÷75–70%, а в случае соединений 3c,f,h (R² = t-Bu) - 5-10÷95-90%. В случае производного 3d ($R^2 = Cy$) мультиплетный характер сигналов не позволяет определить соответствующее соотношение изомеров. В отличие от тиоимидатов 3а-ј их циклические аналоги 4а-ј существуют только в одной изомерной форме, которая в спектре ЯМР ¹Н кроме одного набора сигналов заместителя R² характеризуется синглетами протонов метиленовой группы тиазепинового цикла в интервале 3.42-3.93 м. д.

Таким образом, нами разработан удобный подход к получению новых бифункциональных соединений – 4-(*N*-Вос-амино)-1,2,3-триазол-5-карботиоамидов. Синтетический потенциал этих соединений раскрыт на примере получения производных ранее неизвестной гетероциклической системы [1,2,3]триазоло[4,5-*e*][1,4]-тиазепина.

Экспериментальная часть

ИК спектры зарегистрированы на приборе Bruker Vertex 70 в таблетках KBr. Спектры ЯМР ¹Н и ¹³C записаны на спектрометре Bruker Avance DRX-500 (500 и 126 МГц соответственно) в растворе ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записаны на приборе Agilent LC/MSD SL, ионизация электрораспылением при атмосферном давлении. Колонка Zorbax SB-C18, 4.6 × 15 мм, 1.8 мкм (PN 82(c)75–932); растворитель ДМСО. Элементный анализ выполнен на приборе PerkinElmer CHN Analyzer серии 2400. Температуры плавления определены на столике Кофлера и не исправлены. Соединения **1а-d** синтезированы по ранее описанной литературной методике.³¹

Синтез соединений 2а–ј (общая методика). К охлажденному до –78°С раствору 0.051 моль карбамата 1а–d в 125 мл абсолютного ТГФ в атмосфере аргона добавляют 47 мл (0.107 моль) 2.5 М раствора *n*-BuLi в гексане и перемешивают в течение 1 ч при –60°С. Затем к реакционной смеси добавляют 0.061 моль алкилизотиоцианата, перемешивают в течение 2–3 ч при –60°С, обрабатывают 20% водным раствором NH₄Cl до pH 6–7 и упаривают при пониженном давлении. Остаток растворяют в 100 мл МТБЭ и промывают H₂O (2 × 75 мл). Органический слой сушат над Na₂SO₄, упаривают при пониженном давлении, остаток очищают колоночной хроматографией на SiO₂ (элюент CHCl₃–МТБЭ, 7:3). Полученные продукты 2а–j перекристаллизовывают из PhMe.

трет-Бутил[1-метил-5-(этилкарбамотиоил)-1*H*-1,2,3-триазол-4-ил]карбамат (2а). Выход 10.76 г (74%), бежевый порошок, т. пл. 104–106°С. ИК спектр, v, см⁻¹: 3314, 3206 (NH), 1698 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.32 (3H, т, *J* = 7.2, CH₂C<u>H</u>₃); 1.53 (9H, с, C(CH₃)₃); 3.74 (2H, к, *J* = 6.8, C<u>H</u>₂CH₃); 4.27 (3H, с, NCH₃); 9.04 (1H, с, NHEt); 9.98 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 12.6; 28.1 (3C); 38.1; 40.9; 82.9; 132.3; 135.5; 156.6; 181.7. Масс-спектр, *m/z* (*I*_{отн}, %): 187 [M+2H–Boc]⁺ (100). Найдено, %: С 46.42; H 6.78; N 24.48. C₁₁H₁₉N₅O₂S. Вычислено, %: С 46.30; H 6.71; N 24.54.

трет-Бутил[5-(изопропилкарбамотиоил)-1-метил-1*H*-1,2,3-триазол-4-ил]карбамат (2b). Выход 10.52 г (69%), бежевый порошок, т. пл. 126–128°С. ИК спектр, v, см⁻¹: 3313, 3208 (NH), 1701 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.23 (6H, д, *J* = 6.8, CH(C<u>H</u>₃)₂); 1.42 (9H, c, C(CH₃)₃); 3.99 (3H, c, NCH₃); 4.55–4.60 (1H, м, C<u>H</u>(CH₃)₂); 9.18 (1H, c, NH*i*-Pr); 10.24 (1H, c, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 20.4 (2C); 28.0 (3C); 36.4; 46.7; 79.7; 130.9; 138.4; 154.1; 181.4. Масс-спектр, *m*/*z* (*I*_{отн}, %): 201 [M+2H–Boc]⁺ (100). Найдено, %: С 48.23; H 7.13; N 23.27. C₁₂H₂₁N₅O₂S. Вычислено, %: С 48.14; H 7.07; N 23.39.

трет-Бутил[5-(*трет*-бутилкарбамотиоил)-1-метил-1*H*-1,2,3-триазол-4-ил]карбамат (2с). Выход 11.49 г (72%), бежевый порошок, т. пл. 153–155°С. ИК спектр, v, см⁻¹: 3311, 3207 (NH), 1699 (С=О). Спектр ЯМР ¹H, δ, м. д.: 1.52 (9H, с, СОС(СН₃)₃); 1.61 (9H, с, С(СН₃)₃); 4.20 (3H, с, NCH₃); 9.12 (1H, с, NH*t*-Bu); 9.42 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 25.2 (3С); 26.1 (3С); 35.4; 54.4; 80.2; 131.6; 132.5; 153.9; 179.4. Масс-спектр, *m*/*z* (*I*_{отн}, %): 215 [М+2H–Вос]⁺ (100). Найдено, %: С 49.94; H 7.49; N 22.21. С₁₃H₂₃N₅O₂S. Вычислено, %: С 49.82; H 7.40; N 22.35.

трет-Бутил[1-метил-5-(циклогексилкарбамотиоил)-1*H*-1,2,3-триазол-4-ил]карбамат (2d). Выход 11.06 г (64%), белый порошок, т. пл. 176–178°С. ИК спектр, v, см⁻¹: 3316, 3201 (NH), 1702 (С=О). Спектр ЯМР ¹H, δ, м. д.: 1.17–1.32 (5H, м, Су); 1.42 (9H, с, С(СН₃)₃); 1.59– 1.97 (5H, м, Су); 3.99 (3H, с, NCH₃); 4.26–4.31 (1H, м, Су); 9.21 (1H, с, NHСу); 10.23 (1H, с, NHBoc). Спектр ЯМР ¹³С, б, м. д.: 24.7 (2С); 25.5; 28.5 (3С); 30.7 (2С); 36.8; 54.1; 80.2; 131.4; 138.7; 154.4; 181.8. Масс-спектр, *m/z* (*I*_{огн}, %): 241 [М+2H–Вос]⁺ (100). Найдено, %: С 53.22; Н 7.38; N 20.57. С₁₅H₂₅N₅O₂S. Вычислено, %: С 53.07; Н 7.42; N 20.63.

трет-Бутил[1-фенилэтил-5-(этилкарбамотиоил)-1*H*-1,2,3-триазол-4-ил]карбамат (2е). Выход 11.28 г (59%), желтый порошок, т. пл. 112–113°С. ИК спектр, v, см⁻¹: 3312, 3203 (NH), 1704 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.19 (3H, т, *J* = 7.2, CH₂CH₂); 1.41 (9H, c, C(CH₃)₃); 3.07 (2H, т, *J* = 7.2, CH₂CH₂Ph); 3.60 (2H, к, *J* = 6.8, CH₂CH₃); 4.75 (2H, т, *J* = 7.2, CH₂CH₂Ph); 7.07– 7.33 (5H, м, H Ph); 9.19 (1H, c, NHEt); 10.15 (1H, c, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 12.8; 28.4 (3C); 35.8; 41.1; 50.8; 80.3; 127.0; 128.9 (2C); 129.1 (2C); 130.8; 137.7; 138.9; 154.9; 182.9. Масс-спектр, *m/z* (*I*_{0TH}, %): 277 [M+2H–Boc]⁺ (100). Найдено, %: С 57.41; H 6.66; N 18.72. C₁₈H₂₅N₅O₂S. Вычислено, %: С 57.58; H 6.71; N 18.65.

трет-Бутил[5-(*трет*-бутилкарбамотиоил)-1-фенилэтил-1*H*-1,2,3-триазол-4-ил]карбамат (2f). Выход 11.71 г (57%), бежевый порошок, т. пл. 160–162°С. ИК спектр, v, см⁻¹: 3316, 3204 (NH), 1703 (C=O). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.44 (9H, с, С(СН₃)₃); 1.51 (9H, с, СОС(СН₃)₃); 3.09 (2H, т, *J* = 7.2, С<u>H</u>₂CH₂Ph); 4.65 (2H, т, *J* = 7.2, CH₂C<u>H</u>₂Ph); 7.11–7.30 (5H, м, H Ph); 9.26 (1H, с, NH*t*-Bu); 9.65 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 26.8 (3C); 28.1 (3C); 35.3; 50.3; 55.9; 79.9; 126.7; 128.5 (2C); 128.8 (2C); 132.5; 137.1; 137.5; 154.6; 182.6. Масс-спектр, *m*/*z* (*I*_{отн}, %): 305 [M+2H–Boc]⁺ (100). Найдено, %: С 59.39; H 7.20; N 17.48. C₂₀H₂₉N₅O₂S. Вычислено, %: С 59.53; H 7.24; N 17.35.

трет-Бутил[1-фенил-5-(этилкарбамотиоил)-1*H*-1,2,3-триазол-4-ил]карбамат (2g). Выход 11.15 г (63%), бежевый порошок, т. пл. 169–171°С. ИК спектр, v, см⁻¹: 3314, 3200 (NH), 1700 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.04 (3H, т, *J* = 7.2, CH₂C<u>H₃</u>); 1.43 (9H, с, C(CH₃)₃); 3.52 (2H, к, *J* = 6.8, C<u>H</u>₂CH₃); 7.41–7.59 (5H, м, H Ph); 9.32 (1H, с, NHEt); 10.50 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 12.4; 28.4 (3C); 40.8; 80.0; 124.0 (2C); 129.7 (2C); 129.9; 130.1; 136.6; 138.9; 155.1; 183.1. Масс-спектр, *m/z* (*I*_{отн}, %): 249 [M+2H–Boc]⁺ (100). Найдено, %: C 55.49; H 6.04; N 20.03. C₁₆H₂₁N₅O₂S. Вычислено, %: C 55.31; H 6.09; N 20.16.

трет-Бутил[5-(*трет*-бутилкарбамотиоил)-1-фенил-1*H*-1,2,3-триазол-4-ил]карбамат (2h). Выход 12.81 г (67%), желтый порошок, т. пл. 188–190°С. ИК спектр, v, см⁻¹: 3317, 3201 (NH), 1701 (С=О). Спектр ЯМР ¹H, δ, м. д.: 1.39 (9H, с, С(СН₃)₃); 1.46 (9H, с, СОС(СН₃)₃); 7.51–7.65 (5H, м, H Ph); 9.35 (1H, с, NH*t*-Bu); 9.98 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 27.0 (3С); 28.5 (3С); 56.1; 80.0; 124.7 (2С); 129.5 (2С); 129.8; 132.7; 136.7; 138.7; 154.3; 182.9. Масс-спектр, *m/z* (*I*_{отн}, %): 277 [M+2H–Boc]⁺ (100). Найдено, %: С 57.75; H 6.64; N 18.52. С₁₈H₂₅N₅O₂S. Вычислено, %: С 57.58; H 6.71; N 18.65.

тиоил)-1*H*-1,2,3-триазол-4-ил]карбамат (2i). Выход

13.46 г (70%), желтый порошок, т. пл. 156–158°С. ИК спектр, v, см⁻¹: 3310, 3204 (NH), 1705 (С=О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.10 (3H, т, *J* = 7.2, СН₂С<u>Н</u>₃); 1.44 (9H, с, С(СН₃)₃); 3.52 (2H, к, *J* = 6.8, С<u>Н</u>₂СН₃); 3.69 (3H, с, ОСН₃); 7.09 (1H, т, *J* = 8.4, H Ar); 7.16 (1H, д, *J* = 8.4, H Ar); 7.52–7.64 (2H, м, H Ar); 9.25 (1H, с, NHEt); 10.05 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 12.4; 28.0 (3С); 40.7; 55.6; 80.1; 112.4; 120.6; 125.5; 127.6; 131.2; 132.4; 137.0; 152.9; 154.2; 182.3. Масс-спектр, *m*/*z* (*I*_{отн}, %): 279 [M+2H–Boc]⁺ (100). Найдено, %: С 54.21; H 6.00; N 18.64. C₁₇H₂₃N₅O₃S. Вычислено, %: С 54.09; H 6.14; N 18.55.

трет-Бутил[5-(изопропилкарбамотиоил)-1-(2-метоксифенил)-1*H*-1,2,3-триазол-4-ил]карбамат (2j). Выход 11.17 г (56%), желтый порошок, т. пл. 191– 193°С. ИК спектр, v, см⁻¹: 3314, 3203 (NH), 1704 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.32 (6H, д, *J* = 6.8, СH(С<u>H</u>₃)₂); 1.49 (9H, с, С(СН₃)₃); 4.01 (3H, с, OCH₃); 4.12–4.23 (1H, м, С<u>H</u>(CH₃)₂); 7.15 (1H, д, *J* = 8.4, H Ar); 7.29–7.41 (2H, м, H Ar); 7.56 (1H, д, *J* = 8.4, H Ar); 9.18 (1H, с, NH*i*-Pr); 10.11 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 20.3 (2C); 27.7 (3C); 47.6; 56.0; 81.4; 113.0; 119.9; 126.9; 127.4; 131.3; 131.9; 137.2; 153.1; 154.8; 183.1. Масс-спектр, *m*/*z* (*I*_{отн}, %): 293 [M+2H–Boc]⁺ (100). Найдено, %: С 55.07; H 6.47; N 18.01. С₁₈H₂₅N₅O₂S. Вычислено, %: С 55.22; H 6.44; N 17.89.

Синтез соединений За–ј (общая методика). К раствору 5 ммоль тиоамида 2а–ј в 50 мл МеСN добавляют 0.76 г (5.5 ммоль) К₂CO₃ и 0.84 г (5 ммоль) этилбромацетата, перемешивают в течение 4–5 ч при 40°С и упаривают при пониженном давлении. Остаток растворяют в 50 мл МТБЭ, промывают H_2O (2 × 25 мл), органический слой сушат над Na_2SO_4 , упаривают при пониженном давлении, остаток очищают колоночной хроматографией на SiO₂ (элюент CHCl₃–МТБЭ, 7:3).

Этил{[(4-[(*трет*-бутоксикарбонил)амино]-1-метил-1Н-1,2,3-триазол-5-ил)(этилимино)метил]сульфанил}ацетат (За), смесь двух изомеров в соотношении 48:52. Выход 1.40 г (81%), желтое масло. ИК спектр, v, см⁻¹: 3175 (NH), 1719, 1697 (С=О). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.09 (3H, т, *J* = 7.2, OCH₂CH₃); 1.21 (1.44H, т, J = 7.2, NCH₂CH₃); 1.29 (1.56H, T, J = 7.2, NCH₂CH₃); 1.39 (9H, c, C(CH₃)₃); 3.55 (2H, c, CH₂CO₂Et); 3.66 $(0.96H, \kappa, J = 6.8, NCH_2CH_3); 3.95 (1.04H, \kappa, J = 6.8)$ NCH₂CH₃); 3.92 (3H, c, NCH₃); 4.05 (2H, κ , J = 6.8, ОС<u>H</u>₂CH₃); 9.44 (1H, с, NHBoc). Спектр ЯМР ¹³С, б, м. д.: 12.0 (NCH₂<u>C</u>H₃); 12.2 (NCH₂<u>C</u>H₃); 13.8; 26.1 (3C); 34.1; 46.3; 59.1 (NCH₂CH₃); 59.6 (NCH₂CH₃); 60.1; 78.5; 116.4; 138.2; 151.9; 166.4; 166.6. Масс-спектр, *m/z* (*I*_{отн}, %): 273 [М+2H–Вос]⁺ (100). Найдено, %: С 48.64; Н 6.84; N 18.71. С₁₅Н₂₅N₅O₄S. Вычислено, %: С 48.50; H 6.78; N 18.85.

Этил{[(4-[(*трет*-бутоксикарбонил)амино]-1-метил-1*H*-1,2,3-триазол-5-ил)(изопропилимино)метил]сульфанил}ацетат (3b), смесь двух изомеров в соотношении 30:70. Выход 1.40 г (73%), желтое масло. ИК спектр, v, см⁻¹: 3174 (NH), 1722, 1699 (С=О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.01 (3H, т, *J* = 7.2, ОСН₂С<u>Н</u>₃); 1.15 (1.80H, д, *J* = 6.8, СН(С<u>Н</u>₃)₂); 1.27 (4.20H, д, J = 6.8, CH(C<u>H</u>₃)₂); 1.39 (9H, с, C(CH₃)₃); 3.61 (2H, с, C<u>H</u>₂CO₂Et); 3.71–3.82 (1H, м, C<u>H</u>(CH₃)₂); 3.89 (3H, с, NCH₃); 4.09 (2H, к, J = 6.8, OC<u>H</u>₂CH₃); 9.30 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 14.3; 23.0 (CH(<u>C</u>H₃)₂); 23.2 (CH(<u>C</u>H₃)₂); 28.4 (3C); 33.7; 45.9; 53.9 (<u>C</u>H(CH₃)₂); 54.2 (<u>C</u>H(CH₃)₂); 61.5; 79.9; 117.1; 140.0; 153.9; 168.3; 169.2. Масс-спектр, m/z (I_{0TH} , %): 287 [M+2H–Boc]⁺ (100). Найдено, %: C 49.98; H 7.14; N 18.03. C₁₆H₂₇N₅O₄S. Вычислено, %: C 49.85; H 7.06; N 18.17.

Этил{[(*трет*-бутилимино)(4-[(*трет*-бутоксикарбонил)амино]-1-метил-1*H*-1,2,3-триазол-5-ил)метил]сульфанил}ацетат (3с), смесь двух изомеров в соотношении 5:95. Выход 1.42 г (73%), бежевое масло. ИК спектр, v, см⁻¹: 3172 (NH), 1718, 1694 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.13 (3H, т, *J* = 7.2, OCH₂C<u>H₃</u>); 1.36 (0.45H, с, С(CH₃)₃); 1.38 (0.45H, с, С(CH₃)₃); 1.39 (8.55H, с, С(CH₃)₃); 1.41 (8.55H, с, С(CH₃)₃); 3.58 (2H, с, С<u>H</u>₂CO₂Et); 3.98 (3H, с, NCH₃); 4.10 (2H, к, *J* = 6.8, OC<u>H</u>₂CH₃); 9.36 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 14.4; 25.1 (NC(<u>C</u>H₃)₃); 28.3 (3C); 33.6; 46.2; 54.4 (N<u>C</u>(CH₃)₃); 61.2; 81.6; 118.9; 140.0; 153.7; 168.2; 169.0. Масс-спектр, *m*/*z* (*I*_{отн}, %): 301 [M+2H–Boc]⁺ (100). Найдено, %: C 51.39; H 7.23; N 17.64. C₁₇H₂₉N₅O₄S. Вычислено, %: C 51.11; H 7.32; N 17.53.

Этил{[(4-[(*трет*-бутоксикарбонил)амино]-1-метил-1*H*-1,2,3-триазол-5-ил)(циклогексилимино)метил]сульфанил}ацетат (3d). Выход 1.38 г (65%), бежевое масло. ИК спектр, v, см⁻¹: 3170 (NH), 1720, 1696 (С=О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.08 (3H, т, *J* = 7.2, OCH₂C<u>H</u>₃); 1.11–1.34 (5H, м, Су); 1.39 (9H, с, С(СН₃)₃); 1.47–1.74 (5H, м, Су); 3.60 (2H, с, С<u>H</u>₂CO₂Et); 3.79–3.83 (1H, м, Су); 4.01 (3H, с, NCH₃); 4.10 (2H, к, *J* = 6.8, OC<u>H</u>₂CH₃); 9.19 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 13.9; 23.8 (2C); 25.2; 28.0 (3C); 32.4 (2C); 33.2; 45.9; 54.2; 60.9; 79.4; 118.2; 140.3; 153.4; 168.1; 168.5. Массспектр, *m/z* (*I*_{0TH}, %): 327 [M+2H–Boc]⁺ (100). Найдено, %: С 53.72; Н 7.39; N 16.37. С₁₉Н₃₁N₅O₄S. Вычислено, %: C 53.63; H 7.34; N 16.46.

Этил{[(4-[(mpem-бутоксикарбонил)амино]-1-фенилэтил-1Н-1,2,3-триазол-5-ил)(этилимино)метил]сульфанил}ацетат (Зе), смесь двух изомеров в соотношении 48:52. Выход 1.68 г (73%), желтое масло. ИК спектр, v, см⁻¹: 3176 (NH), 1718, 1701 (С=О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 1.07 (3H, т, *J* = 7.2, OCH_2CH_3); 1.17 (1.44H, T, J = 7.2, NCH_2CH_3); 1.21 (1.56H, T, J = 7.2, NCH₂CH₃); 1.38 (9H, c, C(CH₃)₃); 3.15 $(2H, T, J = 7.2, CH_2CH_2Ph); 3.56 (2H, c, CH_2CO_2Et); 3.67$ $(0.96H, \kappa, J = 6.8, NCH_2CH_3); 3.89 (1.04H, \kappa, J = 6.8)$ NCH₂CH₃); 3.95 (2H, к, J = 6.8, OCH₂CH₃); 4.47 (2H, т, J = 7.2, CH₂C<u>H</u>₂Ph); 7.18–7.31 (5H, м, H Ph); 9.29 (1H, с, NHBoc). Спектр ЯМР ¹³С, б, м. д.: 13.9 (NCH₂<u>C</u>H₃); 14.1 (NCH₂<u>C</u>H₃); 15.2; 27.9 (3C); 35.1; 48.3; 50.0; 60.2; 60.9 (NCH₂CH₃); 61.3 (NCH₂CH₃); 79.5; 119.1; 126.7; 128.5 (2C); 128.7 (2C); 137.2; 140.3; 153.2; 167.8; 168.5. Maccспектр, *m/z* (*I*_{отн}, %): 363 [M+2H–Boc]⁺ (100). Найдено, %: С 57.37; Н 6.84; N 15.06. С₂₂Н₃₁N₅O₄S. Вычислено, %: C 57.25; H 6.77; N 15.17.

Этил{[(*трет*-бутилимино)(4-[(*трет*-бутоксикарбонил)амино]-1-фенилэтил-1*H*-1,2,3-триазол-5-ил)- метил]сульфанил}ацетат (3f), смесь двух изомеров в соотношении 10:90. Выход 1.83 г (75%), оранжевое масло. ИК спектр, v, см⁻¹: 3174 (NH), 1722, 1697 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.11 (3H, т, *J* = 7.2, OCH₂CH₃); 1.39 (0.90H, с, NC(CH₃)₃); 1.40 (8.10H, с, NC(CH₃)₃); 1.44 (9H, с, C(CH₃)₃); 3.14 (2H, т, *J* = 7.2, CH₂CH₂Ph); 3.52 (2H, с, CH₂CO₂Et); 4.08 (2H, к, *J* = 6.8, OCH₂CH₃); 4.44 (2H, т, *J* = 7.2, CH₂CH₂Ph); 7.17–7.33 (5H, м, H Ph); 9.48 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 14.4; 26.1 (3C); 28.6 (3C); 35.0; 47.9; 50.2; 54.5; 61.5; 79.8; 119.3; 127.1; 128.9 (2C); 129.4 (2C); 138.0; 140.5; 153.1; 168.4; 169.0. Масс-спектр, *m/z* (*I*_{отн}, %): 391 [M+2H–Boc]⁺ (100). Найдено, %: С 58.87; H 7.21; N 14.30.

Этил{[(4-[(трет-бутоксикарбонил)амино]-1-фенил-1Н-1,2,3-триазол-5-ил)(этилимино)метил]сульфанил}ацетат (3g), смесь двух изомеров в соотношении 49:51. Выход 1.56 г (72%), желтое масло. ИК спектр, v, см⁻¹: 3178 (NH), 1719, 1695 (С=О). Спектр ЯМР ¹Н, б, м. д. $(J, \Gamma \mu)$: 1.06 (3H, T, J = 7.2, OCH₂CH₃); 1.18 (1.47H, T, J = 7.2, NCH₂CH₃); 1.22 (1.53H, T, J = 7.2, NCH₂CH₃); 1.42 (9H, c, C(CH₃)₃); 3.50 (2H, c, CH₂CO₂Et); 3.66 $(0.98H, \kappa, J = 6.8, NCH_2CH_3); 3.88 (1.02H, \kappa, J = 6.8)$ NCH₂CH₃); 4.08 (2H, κ , J = 6.8, OCH₂CH₃); 7.20–7.61 (5H, м, H Ph); 9.51 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 13.8 (NCH₂<u>C</u>H₃); 14.1 (NCH₂<u>C</u>H₃); 15.0; 27.9 (3C); 48.7; 60.4; 60.8 (NCH₂CH₃); 61.2 (NCH₂CH₃); 79.7; 118.9; 123.3 (2C); 129.1; 129.9 (2C); 135.9; 141.5; 153.5; 168.2; 169.1. Масс-спектр, *m/z* (*I*_{отн}, %): 335 [M+2H–Boc]⁺ (100). Найдено, %: С 55.59; Н 6.37; N 16.04. С₂₀Н₂₇N₅O₄S. Вычислено, %: С 55.41; Н 6.28; N 16.15.

Этил{[(*трет*-бутилимино)(4-[(*трет*-бутоксикарбонил)амино]-1-фенил-1*H*-1,2,3-триазол-5-ил)метил]сульфанил}ацетат (3h), смесь двух изомеров в соотношении 7:93. Выход 1.43 г (62%), бежевое масло. ИК спектр, v, см⁻¹: 3177 (NH), 1722, 1698 (C=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.04 (3H, т, *J* = 7.2, ОСН₂С<u>Н</u>₃); 1.37 (0.72H, с, С(СН₃)₃); 1.39 (8.28H, с, С(СН₃)₃); 1.43 (9H, с, С(СН₃)₃); 3.55 (2H, с, С<u>Н</u>₂CO₂Et); 4.02 (2H, к, *J* = 6.8, ОС<u>Н</u>₂СН₃); 7.52–7.80 (5H, м, H Ph); 9.45 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 14.5; 28.3 (3C); 29.3 (3C); 48.4; 60.4; 61.2; 80.0; 119.1; 123.5 (2C); 129.3; 130.4 (2C); 136.1; 141.7; 153.4; 168.4; 169.2. Массспектр, *m*/*z* (*I*_{0TH}, %): 363 [M+2H–Boc]⁺ (100). Найдено, %: С 57.41; H 6.86; N 15.09. С₂₂H₃₁N₅O₄S. Вычислено, %: С 57.25; H 6.77; N 15.17.

Этил{[(4-[(*трет*-бутоксикарбонил)амино]-1-(2-метоксифенил)-1*H*-1,2,3-триазол-5-ил)(этилимино)метил]сульфанил}ацетат (3i), смесь двух изомеров в соотношении 46:54. Выход 1.60 г (69%), желтое масло. ИК спектр, v, см⁻¹: 3172 (NH), 1723, 1697 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.01 (3H, т, *J* = 7.2, ОСН₂С<u>Н</u>₃); 1.13 (1.38H, т, *J* = 7.2, NCH₂С<u>Н</u>₃); 1.19 (1.62H, т, *J* = 7.2, NCH₂С<u>Н</u>₃); 1.42 (9H, с, С(СН₃)₃); 3.42 (0.92H, к, *J* = 6.8, NC<u>H</u>₂CH₃); 3.61 (1.08H, к, *J* = 6.8, NC<u>H</u>₂CH₃); 3.67 (2H, с, C<u>H</u>₂CO₂Et); 3.75 (3H, с, OCH₃); 3.99 (2H, к, *J* = 6.8, OC<u>H</u>₂CH₃); 7.12 (1H, т, *J* = 8.4, H Ar); 7.26 (1H, д, *J* = 8.4, H Ar); 7.43 (1H, д, *J* = 8.4, Н Аг); 7.57 (1Н, т, J = 8.4, Н Аг); 9.34 (1Н, с, NHBoc). Спектр ЯМР ¹³С, δ , м. д.: 14.3 (NCH₂<u>C</u>H₃); 14.5 (NCH₂<u>C</u>H₃); 15.8; 28.4 (3C); 48.9; 56.1; 60.6 (N<u>C</u>H₂CH₃); 61.8 (N<u>C</u>H₂CH₃); 61.4; 79.9; 113.1; 118.5; 121.0; 125.0; 128.4; 132.5; 141.1; 153.5; 153.9; 168.4; 168.7. Массспектр, m/z ($I_{\text{огн}}$, %): 365 [M+2H–Boc]⁺ (100). Найдено, %: С 54.59; Н 6.38; N 15.02. С₂₁H₂₉N₅O₅S. Вычислено, %: С 54.41; Н 6.31; N 15.11.

Этил{[(4-[(*трет*-бутоксикарбонил)амино]-1-(2-метоксифенил)-1Н-1,2,3-триазол-5-ил)(изопропилимино)метил]сульфанил}ацетат (3j), смесь двух изомеров. Выход 1.91 г (80 %), коричневое масло. ИК спектр, v, см⁻¹: 3174 (NH), 1721, 1696 (С=О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.03–1.29 (9Н, м, ОСН₂С<u>Н</u>₃, СН(С<u>Н</u>₃)₂); 1.43 (9H, c, C(CH₃)₃); 3.66 (2H, c, CH₂CO₂Et); 3.71–4.02 (6H, м, ОСН₃, С<u>H</u>(CH₃)₂, ОС<u>H₂</u>CH₃); 7.13 (1H, т, *J* = 8.4, Н Ar); 7.22 (1Н, д, J = 8.4, Н Ar); 7.41 (1Н, д, J = 8.4, H Ar); 7.56 (1H, т, J = 8.4, H Ar); 9.39 (1H, с, NHBoc). Спектр ЯМР ¹³С, б, м. д.: 15.8; 23.1 (NCH(<u>CH</u>₃)₂); 23.4 (NCH(CH₃)₂); 28.4 (3C); 48.7; 53.8 (NCH(CH₃)₂); 54.2 (NCH(CH₃)₂); 56.2; 61.4; 79.9; 113.1; 119.0; 122.1; 125.7; 128.5; 132.5; 141.3; 153.8; 154.1; 168.9; 169.1. Масс-спектр, *m/z* (*I*_{отн}, %): 379 [M+2H–Boc]⁺ (100). Найдено, %: С 55.52; Н 6.61; N 14.49. С₂₁Н₂₉N₅O₄S. Вычислено, %: C 55.33; H 6.54; N 14.66.

Синтез соединений 4а-j (общая методика). Раствор 3 ммоль соединения 3а-j в 20 мл насыщенного HCl диоксана перемешивают в течение 5-6 ч при комнатной температуре, упаривают при пониженном давлении, к остатку добавляют 10 мл МТБЭ, осадок отфильтровывают и сушат на воздухе.

1-Метил-8-(этилимино)-4,8-дигидро-1*H***-[1,2,3]триазоло[4,5-***e***][1,4]тиазепин-5(6***H***)-он (4а). Выход 0.59 г (87%), белый порошок, т. пл. 222–224°С. ИК спектр, v, см⁻¹: 3396 (NH), 1711 (С=О), 1644 (С=N). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 1.31 (3H, т,** *J* **= 7.2, CH₂C<u>H</u>₃); 3.43 (2H, к,** *J* **= 6.8, C<u>H</u>₂CH₃); 3.69 (2H, с, CH₂); 4.12 (3H, с, NCH₃); 10.07 (1H, с, NH). Спектр ЯМР ¹³С, б, м. д.: 15.1; 31.1; 38.2; 48.0; 123.5; 143.7; 151.9; 168.8. Масс-спектр,** *m/z* **(***I***_{отн}, %): 225 [M+H]⁺ (100). Найдено, %: С 42.52; H 4.86; N 31.22. C₈H₁₁N₅OS. Вычислено, %: С 42.65; H 4.92; N 31.09.**

8-(Изопропилимино)-1-метил-4,8-дигидро-1*H*-**[1,2,3]триазоло[4,5-***е***][1,4]тиазепин-5(***6H***)-он (4b**). Выход 0.66 г (92%), белый порошок, т. пл. 216–218°С. ИК спектр, v, см⁻¹: 3394 (NH), 1709 (С=О), 1641 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.21 (6H, д, *J* = 6.8, СН(С<u>Н</u>₃)₂); 3.70–381 (1H, м, С<u>Н</u>(СН₃)₂); 4.11 (3H, с, NCH₃); 10.71 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 22.7 (2С); 31.0; 38.5; 54.6; 123.7; 143.6; 152.1; 169.1. Массспектр, *m/z* (*I*_{отн}, %): 240 [М+Н]⁺ (100). Найдено, %: С 45.32; Н 5.53; N 29.19. С₉Н₁₃N₅OS. Вычислено, %: С 45.17; Н 5.48; N 29.27.

8-(*трет***-Бутилимино)-1-метил-4,8-дигидро-1***H***-[1,2,3**]триазоло[**4,5-***e*][**1,4**]тиазепин-5(6*H*)-он (**4**с). Выход 0.68 г (89%), желтый порошок, т. пл. 239–241°С. ИК спектр, v, см⁻¹: 3391 (NH), 1707 (С=О), 1639 (С=N). Спектр ЯМР ¹H, δ, м. д.: 1.39 (9H, с, С(СН₃)₃); 3.70 (2H, с, СН₂); 4.06 (3H, с, NCH₃); 10.67 (1H, с, NH). Спектр ЯМР ¹³С, б, м. д.: 28.7 (3С); 32.7; 38.9; 57.7; 125.5; 143.5; 152.1; 169.8. Масс-спектр, *m/z* (*I*_{отн}, %): 254 [М+Н]⁺ (100). Найдено, %: С 47.59; Н 5.93; N 27.72. С₁₀Н₁₅N₅OS. Вычислено, %: С 47.41; Н 5.97; N 27.65.

1-Метил-8-(циклогексилимино)-4,8-дигидро-1*Н*-**[1,2,3]триазоло[4,5-***e***][1,4]тиазепин-5(6***H***)-он (4d)**. Выход 0.75 г (90%), бежевый порошок, т. пл. 218–220°С. ИК спектр, v, см⁻¹: 3394 (NH), 1705 (С=О), 1637 (С=N). Спектр ЯМР ¹Н, δ, м. д.: 1.32–1.76 (10Н, м, Су); 1.43– 3.49 (1Н, м, Су); 3.69 (2Н, с, СН₂); 4.12 (3Н, с, NCH₃); 10.71 (1Н, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 24.1 (2С); 25.7; 31.4 (2С); 32.6; 39.0; 62.5; 124.1; 144.1; 148.7; 169.8. Масс-спектр, *m/z* (*I*_{отн}, %): 280 [М+Н]⁺ (100). Найдено, %: С 51.78; H 6.22; N 24.98. C₁₂H₁₇N₅OS. Вычислено, %: С 51.59; H 6.13; N 25.07.

1-Фенилэтил-8-(этилимино)-4,8-дигидро-1*H*-**[1,2,3]триазоло[4,5-***e***][1,4]тиазепин-5(6***H***)-он (4е)**. Выход 0.86 г (91%), желтый порошок, т. пл. 174–176°С. ИК спектр, v, см⁻¹: 3388 (NH), 1704 (С=О), 1638 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.32 (3H, т, *J* = 7.2, CH₂CH₃); 3.08 (2H, т, *J* = 7.2, CH₂CH₂Ph); 3.36 (2H, к, *J* = 6.8, CH₂CH₃); 3.48 (2H, с, CH₂); 4.89 (2H, т, *J* = 7.2, CH₂CH₂Ph); 7.09–7.27 (5H, м, H Ph); 10.70 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 15.8; 31.5; 36.5; 48.7; 51.5; 123.6; 127.1; 128.9 (2C); 129.1 (2C); 137.9; 143.8; 150.1; 169.3. Масс-спектр, *m*/*z* (*I*_{отн}, %): 316 [M+H]⁺ (100). Найдено, %: С 57.12; H 5.43; N 22.21. C₁₅H₁₇N₅OS. Вычислено, %: С 56.97; H 5.36; N 22.33.

8-(*трет*-Бутилимино)-1-фенилэтил-4,8-дигидро-1*H*-[1,2,3]триазоло[4,5-*e*][1,4]тиазепин-5(6*H*)-он (4f). Выход 0.89 г (87%), бежевый порошок, т. пл. 185–187°С. ИК спектр, v, см⁻¹: 3391 (NH), 1709 (С=О), 1639 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.39 (9H, с, С(СН₃)₃); 3.06 (2H, т, *J* = 7.2, С<u>H</u>₂CH₂Ph); 3.42 (2H, с, CH₂); 4.84 (2H, т, *J* = 7.2, CH₂C<u>H</u>₂Ph); 7.07–7.27 (5H, м, H Ph); 10.64 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 28.4 (3C); 30.9; 37.2; 50.2; 61.7; 124.5; 127.1; 128.8 (2C); 129.1 (2C); 138.0; 143.9; 150.2; 169.6. Масс-спектр, *m*/*z* (*I*_{0тн}, %): 344 [M+H]⁺ (100). Найдено, %: С 59.37; H 6.23; N 20.50. C₁₇H₂₁N₅OS. Вычислено, %: С 59.45; H 6.16; N 20.39.

1-Фенил-8-(этилимино)-4,8-дигидро-1*H***-[1,2,3]триазоло[4,5-***e***][1,4]тиазепин-5(6***H***)-он (4g). Выход 0.77 г (89%), белый порошок, т. пл. 178–180°С. ИК спектр, v, см⁻¹: 3394 (NH), 1710 (С=О), 1642 (С=N). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 0.84 (3H, т,** *J* **= 7.2, CH₂C<u>H₃</u>); 3.18 (2H, к,** *J* **= 6.8, С<u>H</u>₂CH₃); 3.93 (2H, с, CH₂); 7.42– 7.55 (5H, м, H Ph); 10.91 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 14.6; 31.0; 48.2; 124.3; 125.3; 128.7 (2С); 129.1 (2С); 137.1; 144.2; 151.8; 169.3. Масс-спектр,** *m/z* **(***I***_{отн}, %): 288 [M+H]⁺ (100). Найдено, %: С 54.51; H 4.63; N 24.24. С₁₃H₁₃N₅OS. Вычислено, %: С 54.34; H 4.56; N 24.37.**

8-(*трет***-Бутилимино)-1-фенил-4,8-дигидро-1***H***-[1,2,3]триазоло[4,5-***е***][1,4]тиазепин-5(6***H***)-он (4h). Выход 0.82 г (87%), белый порошок, т. пл. 253–255°С. ИК спектр, v, см⁻¹: 3387 (NH), 1706 (С=О), 1637 (С=N). Спектр ЯМР ¹H, δ, м. д.: 1.00 (9H, с, С(СH₃)₃); 3.91 (2H, с, CH₂); 7.41–7.59 (5H, м, H Ph); 10.77 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 28.0 (3С); 32.7; 57.1; 126.0** (2С); 126.4; 129.1 (2С); 129.3; 138.1; 144.1; 151.7; 169.8. Масс-спектр, *m/z* (*I*_{отн}, %): 316 [M+H]⁺ (100). Найдено, %: С 56.98; Н 5.51; N 22.47. С₁₅Н₁₇N₅OS. Вычислено, %: С 57.12; Н 5.43; N 22.21.

1-(2-Метоксифенил)-8-(этилимино)-4,8-дигидро-1H-[1,2,3]триазоло[4,5-е][1,4]тиазепин-5(6H)-он (4i). Выход 0.84 г (88%), оранжевый порошок, т. пл. 173– 174°С. ИК спектр, v, см⁻¹: 3397 (NH), 1708 (C=O), 1640 (C=N). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.78 (3H, т, *J* = 7.2, CH₂C<u>H</u>₃); 3.14 (2H, к, *J* = 6.8, C<u>H</u>₂CH₃); 3.74 (3H, с, OCH₃); 3.81 (2H, с, CH₂); 7.09 (1H, т, *J* = 8.4, H Ar); 7.16 (1H, д, *J* = 8.4, H Ar); 7.43–7.57 (2H, м, H Ar); 10.80 (1H, с, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.9; 32.5; 48.2; 55.4; 112.8; 120.2; 124.5; 126.1; 128.4; 131.1; 144.2; 151.6; 152.9; 169.5. Масс-спектр, *m/z* (*I*_{отн}, %): 318 [M+H]⁺ (100). Найдено, %: С 53.16; H 4.84; N 21.95. С₁₄H₁₅N₅O₂S. Вычислено, %: С 52.98; H 4.76; N 22.07.

8-(Изопропилимино)-1-(2-метоксифенил)-4,8-дигидро-1*H***-[1**,**2**,**3**]триазоло[**4**,**5**-*e*][**1**,**4**]тиазепин-5(*6H*)-он (**4j**). Выход 0.91 г (92%), коричневый порошок, т. пл. 181–183°С. ИК спектр, v, см⁻¹: 3396 (NH), 1710 (С=О), 1641 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.20 (6Н, д, *J* = 6.8, 2CH₃); 3.69–3.80 (4Н, м, С<u>H</u>(CH₃)₂, OCH₃); 7.14 (1H, т, *J* = 8.4, H Ar); 7.19 (1H, д, *J* = 8.4, H Ar); 7.41 (1H, д, *J* = 8.4, H Ar); 7.57 (1H, т, *J* = 8.4, H Ar); 9.34 (1H, с, NHBoc). Спектр ЯМР ¹³С, δ, м. д.: 21.4 (2C); 32.7; 54.1; 55.5; 112.9; 120.1; 124.8; 126.8; 129.1; 131.5; 144.4; 151.9; 153.1; 169.3. Масс-спектр, *m/z* (*I*_{отн}, %): 332 [M+H]⁺ (100). Найдено, %: С 54.21; H 5.23; N 21.02. С₁₅Н₁₇N₅OS. Вычислено, %: С 54.37; H 5.17; N 21.13.

Список литературы

- 1. Chiesi, M.; Schwaller, R.; Eickenberger, K. Biochem. Pharmacol. 1988, 37, 4399.
- Malli, R.; Frieden, M.; Trenker, M.; Graier, W. F. J. Biol. Chem. 2005, 280, 12114.
- Pei, Y.; Lilly, M. J.; Owen, D. J.; D'Souza, L. J.; Tang, X.-Q.; Yu, J.; Nazarbaghi, R.; Hunter, A.; Anderson, C. M.; Glasco, S.; Ede, N. J.; James, I. W.; Maitra, U.; Chandrasekaran, S.; Moos, W. H.; Ghosh, S. S. J. Org. Chem. 2003, 68, 92.
- Martínez-Sanz, F. J.; Lajarín-Cuesta, R.; González-Lafuente, L.; Moreno-Ortega, A. I.; Punzón, E.; Cano-Abad, M. F. *Eur. J. Med. Chem.* 2016, 109, 114.
- Moreno-Ortega, A. I.; Martínez-Sanz, F. J.; Lajarín-Cuesta, R.; De Los Ríos, C.; Cano-Abad, M. F. *Neuropharmacology* 2015, 95, 503.
- Garofalo, A.; Campiani, G.; Fiorini, I.; Nacci, V. Farmaco 1993, 48, 275.
- Wu, L.; Yang. X.; Peng, Q.; Sun, G. Eur. J. Med. Chem. 2017, 127, 599.

- Miki, T.; Kori, M.; Fujishima, A.; Mabuchi, H.; Tozawa, R.; Nakamura, M.; Sugiyama, Y.; Yukimasa, H. *Bioorg. Med. Chem.* 2002, 10, 385.
- Marinozzi, M.; Carotti, A.; Sansone, E.; Macchiarulo, A.; Rosatelli, E.; Sardella, R.; Natalini, B.; Rizzo, G.; Adorini, L.; Passeri, D.; De Franco, F.; Pruzanski, M.; Pellicciari, R. *Bioorg. Med. Chem.* 2012, 20, 3429.
- Marinozzi, M.; Carotti, A.; Sardella, R.; Buonerba, F.; Ianni, F.; Natalini, B.; Passeri, D.; Rizzo, G.; Pellicciari, R. *Bioorg. Med. Chem.* 2013, *21*, 3780.
- 11. Shi, F.; Zeng, X.-N.; Cao, X.-D.; Zhang, S.; Jiang, B.; Zheng, W.-F.; Tu, S.-J. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 743.
- Zhang, L.-L.; Li, Y.-T.; Gao, T.; Guo, S.-S.; Yang, B.; Meng, Z.-H.; Dai, Q.-P.; Xu, Z.-B.; Wu, Q.-P. Synthesis 2019, 4170.
- 13. Dheer, D.; Singh, V.; Shankar, R. Bioorg. Chem. 2017, 71, 30.
- 14. Lal, K.; Yadav, P. Anti-Cancer Agents Med. Chem. 2018, 18, 21.
- Kumar, S.; Sharma, B.; Mehra, V.; Kumar, V. Eur. J. Med. Chem. 2021, 212, 113069.
- Bozorov, K.; Zhao, J.; Aisa, H. A. Bioorg. Med.Chem. 2019, 27, 3511.
- 17. Gonzaga, D. T. G.; da Rocha, D. R.; da Silva, F. C.; Ferreira, V. F. Curr. Top. Med. Chem. 2013, 13, 2850.
- Tu, S.-J.; Cao, X.-D.; Hao, W.-J.; Zhang, X.-H.; Yan, S.; Wu, S.-S.; Han, Z.-G.; Shi, F. Org. Biomol. Chem. 2009, 7, 557.
- Drawanz, B. B.; Zimmer, G. C.; Rodrigues, L. V.; Nörnberg, A. B.; Horner M; Frizzo, C. P.; Cunico, W. Synthesis 2017, 5167.
- Saini, R.; Malladi, S. R.; Dharavath, N. J. Heterocycl. Chem. 2018, 55, 1579.
- 21. Anisetti, R.; Reddy, M. S. J. Sulfur Chem. 2012, 33, 363.
- 22. Joshi, K. C.; Pathak, V. N.; Gard, U. J. Heterocycl. Chem. 1980, 17, 789.
- 23. Chen, H.; Shi, D. Tetrahedron 2011, 67, 5686.
- Karnakar, K.; Murthy, S. N.; Ramesh, K.; Reddy, K. H. V.; Nageswar, Y. V. D.; Chandrakala, U.; Prabhavathi Devi, B. L. A.; Prasad, R. B. N. *Tetrahedron Lett.* **2012**, *53*, 3497.
- 25. Dandia, A.; Singh, R.; Joshi, J.; Maheshwari, S.; Soni, P. *RSC Adv.* **2013**, *3*, 18992.
- 26. Zhang, F.; Li, C.; Qi, C. RSC Adv. 2016, 6, 102924.
- Zaleska, B.; Cież, D.; Grochowski, J.; Serda, P.; Winnik, W. Liebigs Ann. 1996, 1996, 211.
- Greenhill, J. V.; Hanaee, J.; Steel. P. J. J. Chem. Soc., Perkin Trans. 1 1990, 1869.
- 29. Augustin, M.; Köhler, H. J. Prakt. Chem. 1984, 326, 401.
- Gros, L.; Wesolowska, A.; Westerlich, S.; Jagodzinski, T. J. Heterocycl. Chem. 2007, 44, 167.
- Syrota, N. A.; Kemskiy, S. V.; Bol'but, A. V.; Vovk, M. V. Chem. Heterocycl. Compd. 2019, 55, 1092. [Химия гетероцикл. соединений 2019, 55, 1092.]
- 32. Syrota, N. A.; Kemskiy, S. V.; Bol'but, A. V.; Chernobaev, I. I.; Vovk, M. V. *Chem. Heterocycl. Compd.* **2020**, *56*, 1048. [Химия гетероцикл. соединений **2020**, *56*, 1048.]
- 33. Jagodzinski, T. S.; Dziembowska, T.; Jagodzinska, E.; Rozvadovski, Z. Pol. J. Chem. 2001, 75, 1853.