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Dynamics of topological magnetic textures are typically induced externally by, e.g. magnetic fields
or spin/charge currents. Here, we demonstrate the effect of the internal-to-the-system geometry-
induced motion of a domain wall in a curved nanostripe. Being driven by the gradient of the
curvature of a biaxial stripe, transversal domain walls acquire remarkably high velocities of up to
100 m/s and do not exhibit any Walker-type speed limit. We pinpoint that the inhomogeneous
distribution of the curvature-induced Dzyaloshinskii–Moriya interaction is a driving force for the
motion of a domain wall. Although we showcase our approach on the specific Euler spiral geometry,
the approach is general and can be applied to a wide class of geometries.

PACS numbers: 75.30.Et, 75.40.Mg, 75.60.Ch, 75.78.Cd, 75.78.Fg

I. INTRODUCTION

The deterministic manipulation of magnetic textures,
e.g. domain walls (DWs) and skyrmions, in magnetic
stripes is a key practical task to realize high-speed, high-
density, low-power, and non-volatile memory devices [1–
4]. Typically, the motion of DWs is realized exter-
nally by applying a magnetic field [5] or electric cur-
rent [6–8]. The main hurdle on the way towards achiev-
ing high translational speed for DWs is the appearance
of the Walker limit [9–11], which imposes a maximum
value of the driving force (magnetic field, current den-
sity) for translational motion. Several approaches have
been proposed to achieve a high-speed translational DW
motion: usage of antiferromagnetically coupled magnetic
nanowires [12, 13], application of spin currents perpen-
dicular to the wire [14], application of spin-orbit torques
for chiral DWs [15, 16]. In spite of the fact that max-
imum value of the driving force is zero for the case of
head-to-head (tail-to-tail) DWs in uniaxial wires, one can
realize DW motion with a high and constant velocity in
the precessional regime with a uniform rotation of the
DW phase [17]. Furthermore, it was shown that the
curvature has drastic influence on the Walker limit [18–
23]. For example, under certain conditions, the Walker
limit can be suppressed in nanotubes [22, 23]. Alterna-
tive way to achieve the motion of DWs is based on the
deformation of the DW structure and known as automo-
tion [24–27]. This type of motion can be realized rely-
ing on the coordinate-dependent cross-sectional area of a
nanostripe [26, 27], nucleation of DWs with inertial mo-
tion [25] or transformation of DWs from the transversal
to the vortex [24] by short current pulses.

Here, we propose a concept of geometry-induced mo-
tion of topological defects in a curved nanostripe. We
demonstrate that a DW performs a translational motion

under the influence of the gradient of the stripe cur-
vature. As we do not observe a transition to the pre-
cessional regime of motion in the case of a biaxial as
well as uniaxial nanowire, the geometry-induced motion
is free of a Walker-type speed limit. We pinpoint that
the inhomogeneous distribution of the curvature-induced
Dzyaloshinskii–Moriya interaction (DMI) driven by the
exchange [28, 29] acts as a driving force for the motion
of transversal DWs in curved nanostrips. We propose
a general approach valid for a wide class of geometries.
The analytical results are confirmed by means of micro-
magnetic simulations.

II. THE MODEL AND EQUATIONS OF
MOTION

We consider a flat narrow curved ferromagnetic stripe
of a rectangular cross-section whose thickness and width
are small enough to ensure the magnetization uniformity
along a wire cross-section. The stripe length is substan-
tially larger than the transversal dimensions. Thus, the
magnetization is described by the continuous and nor-
malized functionm = M/Ms = m(s, t), where Ms is the
saturation magnetization, s is the arc length coordinate,

FIG. 1. (Color online) Geometry and notations: we consider a
one-dimensional curved biaxial ferromagnet of thickness h and
width w with the easy-axis et and easy-plane tn anisotropies.
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and t denotes time. Such a stripe can be parametrized in
the following way r(s, ξ1, ξ2) = γ(s) + ξ1en(s) + ξ2eb(s).
Here, the three-dimensional radius vector r defines the
space domain, occupied by the stripe, γ(s) = γx(s)x̂ +
γy(s)ŷ is a two-dimensional vector, which lies within the
xy-plane and determines the stripe center line, see Fig. 1.
The parameters ξ1 ∈ [−w/2, w/2] and ξ2 ∈ [−h/2, h/2]
are coordinates in the transversal cross-section w ≥ h,
see Fig. 1.

The magnetic properties of a narrow ferromagnetic
stripe are described using a model of a classical ferro-
magnetic wire with a biaxial anisotropy. The easy-axis is
tangential to the stripe central line γ whereas the easy-
plane coincides with the stripe plane (tn-plane). The
magnetic energy of the stripe normalized by 4πM2

s reads

E = S
∞∫
−∞

[
Eex − ka (m · et)

2
+ kp (m · eb)

2
]

ds. (1)

Here, S = hw is the cross-section area. The first
term in (1) is the exchange energy density Eex =

`2
∑
i=x,y,z (∂im)

2
with ` =

√
A/ (4πM2

s ) being the ex-
change length where A is the exchange constant. The
last two terms in (1) determine the anisotropy energy
density. Vectors et and eb are unit vectors along the
anisotropy axes, which are assumed to be oriented along
the tangential and binormal directions [30]. Constants
ka = Ka/

(
4πM2

s

)
+ kms

a and kp = Kp/
(
4πM2

s

)
+ kms

p

are dimensionless anisotropy constants of easy-tangential
and easy-plane types, respectively, with Ka > 0 and
Kp > 0 being magneto-crystalline anisotropy constants.
Terms kms

a and kms
p arise from the magnetostatic contri-

bution. It is known [31–33] that the magnetostatic en-
ergy of a straight and uniformly magnetized stripe with
rectangular cross-section can be reduced to the effective
shape anisotropy [33] with constants

kms
a =

1−δ2
2δ ln

(
1 + δ2

)
+ δ ln δ + 2 arctan 1

δ

2π
,

kms
p =

1

2
− 2kms

a , δ = w/h ≥ 1.

(2)

For thin, narrow, and curved stripes (ribbons) the ap-
proximation of the shape anisotropy is used also for inho-
mogeneous magnetization states [34], including domain
walls [11]. In the limit case of square (w/h = 1) or
circular cross-sections, the magnetostatic-shape-induced
anisotropy coefficients (2) are simplified to kms

a = 1/4 and
kms
p = 0, which is a well known result [31, 35] including

the case of curvilinear wires [36].
The energy density (1) in terms of the angu-

lar parametrization m = et cos θ + en sin θ cosφ +
eb sin θ sinφ has the following form

E = `2
{

(θ′ + κ cosφ)
2

+ [φ′ sin θ − κ cos θ sinφ]
2
}

+ sin2 θ
(
ka + kp sin2 φ

)
,

(3)

FIG. 2. (Color online) Illustration of a one-dimensional head-
to-head DW (p = +1 and C = −1) geometry in a stripe
with shape of an Euler spiral described by two collective co-
ordinates: the DW position q and phase Φ. Red axes deter-
mine curvilinear basis; green arrows and color scheme deter-
mine the magnetization distribution in the stripe obtained by
means of Nmag micromagnetic simulations. Simulation is per-
formed for the Permalloy stripe with h = 5 nm, w = 15 nm,
and χ`2 = 2× 10−4 in an overdamped regime (α = 0.5).

where the first term corresponds to the exchange energy
density in the curved wire [29] with κ being a curvature
of the γ. In (3) it is taken into account that a flat wire
has zero torsion.

To analyze the dynamics of a DW in a curved magnetic
stripe we use a collective variable approach based on the
q − Φ model [37, 38]

cos θ = −p tanh
s− q

∆
, φ = Φ. (4)

Here, {q,Φ} are time-dependent conjugated collective
variables, which determine the DW position and phase,
respectively, see Fig. 2; ∆ is a DW width; p is a topo-
logical charge, which determines the DW type: head-to-
head (p = +1) or tail-to-tail (p = −1). The model (4)
coincides with the exact DW solution for a rectilinear
wire (κ′ ≡ 0). In the following, the curvature is consid-
ered as a small perturbation, which results in the DW
drift while keeping the form (4) unchanged. The anal-
ysis is carried out in the approximation linear with re-
spect to the curvature and its gradient: κ`/

√
ka � 1 and

κ′`2/ka � 1.
Substituting the Ansatz (4) into (3) and performing

integration over the arc length s, we obtain the energy of
a DW in a curved stripe in the form (up to an additive
constant and quadratic terms with respect to κ)

E
2S
≈ `2

∆
+ ∆ka + ∆kp sin2 Φ + pπκ(q)`2 cos Φ, (5)

where the condition κ∆ � 1 was applied when in-
tegrating (3). First three terms in (5) determine the
competition of the isotropic exchange and anisotropy
contributions, while the forth term originates from the
curvilinear-geometry-induced DMI driven by the ex-
change [28, 29].
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FIG. 3. (Color online) Typical behavior of the DW position (a) and phase deviation (b) for a head-to-head DW (p = +1).
Geometrical parameters of the stripe are as follows: χ`2 = 2× 10−4, w = 15 nm, h = 5 nm. Solid and dashed lines correspond
to solutions of the collective variables equations (6) and predictions (C3)-(C4) of the linearized model, respectively. Asymptotic
time calculated accordingly to (9) for ε = 0.9. Symbols show the results of Nmag micromagnetic simulations. Central inset
demonstrates the comparison of solutions of the collective variables equations (6) and predictions (C3)-(C4) of long time
dynamics. In all cases α = 0.01 and Ka = Kp = 0.

In terms of the collective variables, the equations of
motion take a form (see Appendix A)

α

∆
q̇ + pΦ̇ = −pπω0`

2 ∂κ(q)

∂q
cos Φ,

pq̇ − α∆Φ̇ = −pπω0`
2κ(q) sin Φ + kp∆ω0 sin 2Φ,

(6)

where ω0 is a characteristic time scale of the system, α is
a damping parameter. The DW width is assumed to
be a slaved variable [18, 31], i.e., ∆(t) ≡ ∆ [Φ(t)] =

`/
√
ka + kp sin2 Φ. From (6) it follows that the gradi-

ent of the curvature is a driving force for DWs. The
physical origin of this force is the curvilinear-geometry-
induced DMI driven by the exchange.

The ground state in a curved wire (κ′ 6= 0) cannot be
strictly tangential: the magnetization vector m deviates
from the tangential direction by an angle ϑ ≈ χ`2/ka
(for the case κ′ ≡ χ) in the tn-plane. As shown in Ap-
pendix B, this effect results in the modification of Eqs. (6)
up to corrections in curvature and its gradient of the sec-
ond order of magnitude. Therefore, the carried out anal-
ysis of the DW motion in the approximation linear with
respect to the curvature and its gradient is valid.

III. DOMAIN WALL DYNAMICS IN EULER
SPIRALS

In the following we apply the general q − Φ equations
of motion (6) for a particular case of an Euler spiral [39],
also known as Cornu spiral or clothoid, see Fig. 2. The
equation for the central line of such a stripe has the form

γ(s) = x̂

s∫
0

cos
(χ

2
ζ2
)

dζ + ŷ

s∫
0

sin
(χ

2
ζ2
)

dζ. (7)

The curvature in this case is a linear function of the arc
length coordinate κ (s) = χs with χ being the gradient

of the curvature. It is necessary to mention that we are
interested in the stripes of a finite width w. Therefore,
to avoid an overlap between the neighboring windings
of the spiral, the distance between them must be bigger
than the stripe width w. The minimal distance between
windings is determined by the condition κw � 1.

Using a small-angle approximation for the DW phase
ϕ = Φ − Φ0 (ϕ � 1, see Appendix C), we obtain the
asymptotic expression for the wall velocity

V = −p Cπ∆0ω0
χ`2

α
, (8)

where C = cos Φ0 = ±1 with Φ0 being the initial DW
phase, ∆0 = `/

√
ka. In the following it will be shown

that the initial value of the DW phase coincides with
Φ(t → ∞). Therefore, we can interpret C as the DW
magnitochirality [40]. Remarkably, the DW velocity (8)
is similar to the well known expression [41] V u = uβ/α in
magnetic biaxial stripes caused by the Zhang–Li mech-
anism [7, 8], where β is a nonadiabatic spin-transfer
parameter. Current-induced translational DW motion
takes place only if u < uw, where uw being Walker cur-
rent [11, 41]. However, for the case of a geometry-induced
motion, a Walker-limit-like effect of the transition to the
precessional regime does not appear and the DW demon-
strates a high-speed translational motion without any ex-
ternal driving. The DW behavior (8) is also similar to
the dynamics of bubbles in a gradient magnetic field [38].
Still, in our case the DW moves in the direction of the
gradient of the curvature, while bubbles are displaced in
the perpendicular direction to the gradient of the field.

The DW velocity (8) is independent of the easy-plane
anisotropy coefficient. However, this coefficient deter-
mines the time needed for the DW velocity to reach the
asymptotic value (8). This time can be estimated as (for
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FIG. 4. (Color online) DW velocity as a function of the gra-
dient of the curvature. Solid lines correspond to the predic-
tion (8) with the asymptotic parameter ε = 0.9. Symbols
show the the DW velocity at moment tas obtained from Nmag

micromagnetic simulations for the stripe with w = 15 nm,
h = 5 nm, and Ka = Kp = 0 (for details see Appendix E).

details see Appendix C)

tas ≈ −
1 + α2

ω0

ln
[(

1 + α2
)

(1− ε)
]

2αkp + χ`2
, (9)

where ε < 1 is an asymptotic parameter. Addition-
ally, the easy-plane anisotropy determines the maxi-
mal DW phase value Φmax = Φ0 + ϕmax with ϕmax ≈
−Cπχ`2/ (2αkp)� 1 and kp > 0. At long timescale, the
change of the DW phase can be written as (for details
see Appendix C)

Φ ≈ Φ0 + p
∆0

αV t
, (10)

which results in the condition Φ (t→∞) = Φ0. A typ-
ical time evolution of the DW position q(t) and phase
deviation ϕ(t) is shown in Fig. 3.

In the no-damping approximation (see Appendix D),
the DW motion differs from (8) and (10). For the case
of zero damping, the DW phase deviation reaches the
value ϕ(α = 0) → −Cπ/2, while the velocity of the DW
increases exponentially with time within the considered
model. Note that for the velocities larger than the mini-
mal phase velocity of magnons, the model should be re-
vised by including the Cherenkov-like effect [23].

We checked the theoretically predicted velocities for
the DW motion (8) by micromagnetic simulations of
magnetically soft stripes with material parameters of
Permalloy [42] using Nmag code [43], see Figs. 3-4 and
Appendix E for details. The numerics agrees well with
the analytical prediction (8).

The resulting DW velocity as a function of the gradient
of the curvature is plotted in Fig. 4. The DW velocity in-
creases almost linearly with the gradient of the curvature.

The direction of the DW motion depends on the sign of
the product of the topological charge p, magnitochirality
C of the DW, and sign of the gradient of the curvature
χ (q̇ ∝ p Cχ), see Figs. 3(a) and 4. In Fig. 3(a) the DW
position is shown as a function of time for walls with
different sign of the product of the topological charge
and magnitochirality: for p C = −1, the DW moves in
the direction of the increasing curvature. For the case
p C = +1, DW moves in the opposite direction (in both
cases χ > 0) [44].

IV. CONCLUSION

In conclusion, we predict the effect of geometry-
induced motion of a DW in a curved nanostripe: DWs are
driven by the gradient of the stripe curvature without any
external stimuli, see Eqs. (6) and (8). The physical origin
of the driving force is the curvature-induced DMI driven
by the exchange [28, 29]. Geometry-induced motion re-
sults in a high-speed translational motion of the DW posi-
tion without transition into the precessional regime. The
latter effect can be interpreted as a curvature-induced
suppression of the Walker limit. We show that the di-
rection of the DW motion is determined by the product
of the DW magnitochirality, topological charge, and gra-
dient of the curvature q̇ ∝ p Cχ, see Eq.(8), while the
change of the DW phase at long timescales results in
Φ − Φ0 ∝ 1/q (t). Additionally, it is necessary to men-
tion that the coefficient of the easy-plane anisotropy de-
termines the time (9), which is needed for the DW to
reach the asymptotic velocity (8).

Linear model of the curvature-induced DW motion (6)
can be used also for a 3D wires with small torsion. The
latter contributes to the negligibly small quadratic cor-
rections. However, role of the torsion becomes significant,
when the spin-torques are applied [45].
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Appendix A: Details of the q − Φ model

Magnetization dynamics of this system is studied
by means of phenomenological Landau–Lifshitz–Gilbert
equations

−sin θθ̇ = ω0
δE
δφ

+α sin2 θφ̇, sin θφ̇ = ω0
δE
δθ

+αθ̇, (A1)

where constant α is a Gilbert damping coefficient, over-
dot indicates the time derivative, frequency ω0 = 4πγ0Ms

determines the characteristic timescale of the system
with γ0 being the gyromagnetic ratio.

The equations of motion (A1) are the Lagrange–
Rayleigh equations

δL
δXi
− d

dt

δL
δẊi

=
δF
δẊi

, Xi ∈ {θ, φ} (A2)

for Lagrange function [46]

L = −S
∞∫
−∞

φ sin θθ̇ds− ω0E (A3)

and dissipative function [47, 48]

F =
α

2
S
∞∫
−∞

[
θ̇2 + sin2 θφ̇2

]
ds. (A4)

Substituting the Ansatz (4) into (A3) and (A4) and per-
forming the integration over the arc length s we obtain
the Lagrange and dissipative functions in the form

L = 2pSΦq̇ − ω0E , F =
α

∆
S
[
q̇2 +

(
∆Φ̇
)2

+ c∆̇2

]
,

(A5)
where c = π2/12. Substituting (A5) into the Lagrange–
Rayleigh equations (A2) results in the equations of mo-
tion

α

∆
q̇ + pΦ̇ = −pπω0`

2 ∂κ(q)

∂q
cos Φ,

pq̇ − α∆Φ̇ = −pπω0`
2κ(q) sin Φ + kp∆ω0 sin 2Φ,

c
α

ω0
∆̇ =

`2

∆
−∆

(
ka + kp sin2 Φ

)
.

(A6)

The third equation in (A6) shows that ∆ relaxes towards

its equilibrium value ∆0 = `/
√
ka + kp sin2 Φ. The char-

acteristic time trelax of this relaxation is proportional to
the damping trelax ∝ α/ω0 [31]. Usually α� 1, therefore
one can conclude that the DW width is a slave variable
∆(t) = ∆ [Φ(t)] and DW dynamics can be described by
the set (6) with the equilibrium DW width ∆ = ∆0.

Appendix B: Equations of motion in a rotated
reference frame

The static magnetization distribution of the system is
determined by minimum of the energy (3). Minimization
of (3) with respect to φ results in the solution φ = φ0 =
{0, π}, while minimization with respect to θ results in
an inhomogeneous Sine-Gordon equation (for details see
Ref. 49)

`2

ka
θ′′ − sin θ cos θ = −κ′ `

2

ka
cosφ0. (B1)

This equation has a homogeneous solution for κ′ = χ (the
case of an Euler spiral)

θ0 =
1

2
arcsin

(
2χ

`2

ka
cosφ0

)
. (B2)

This means that the magnetization is not oriented along
the tnb basis.

Now we will rotate the reference frame in a local rec-

tifying surface by the angle ϑ = 1
2 arcsin

(
2χ `

2

ka
cosΦ

)
using a unitary transformation

m = Um̃, m̃ = U−1m, m̃ = {m1,m2,m3}t,

U =

 cosϑ −sgn(cosΦ) sinϑ 0
sgn(cosΦ) sinϑ cosϑ 0

0 0 1

 .
(B3)

After this transformation, the energy density can be writ-
ten as

E = `2
[
|m̃′|2 + 2χs (m1m

′
2 −m′1m2) + (χs)

2 (
1−m2

3

)]
−ka [cosϑm1 − sgn(cosφ) sinϑm2]

2
+ kpm

2
3

(B4)

Using the angular parametrization m̃ =
{cos Θ, sin Θ cosΦ, sin Θ sinΦ}, the energy density (B4)
can be written in the form

E = `2
[
Θ′2 + Φ′2 sin2 Θ + (χs)

2 (
1− sin2 Φ sin2 Θ

)
+χs (2Θ′ cosΦ− Φ′ sin 2Θ sinΦ)

]
+ kp sin2 Φ sin2 Θ

−ka [cosϑ cos Θ− sgn(cosΦ) sinϑ cosΦ sin Θ]
2
.

(B5)

Static form of Landau–Lifshitz–Gilbert equations (A1)
read δE/δΘ = 0 and δE/δΦ = 0. Taking into account
the energy density (B5) one obtains the following set of
equations:



6

sin Θ cos Θ
[
ka
(
cos2 ϑ− cos2 Φ sin2 ϑ

)
+ kp sin2 Φ

]
+

1

2
ka cos 2Θ cosΦ sin 2ϑsgn(cosΦ)

+`2
[
−χ2s2 sin Θ cos Θ sin2 Φ− χ cosΦ−Θ′′ + Φ′ sin Θ (Φ′ cos Θ + 2χs sin Θ sinΦ)

]
= 0

(B6a)

−ka cot Θ sinΦ sin 2ϑsgn(cosΦ)+ka sin 2Φ sin2 ϑ+ sin 2Φ
(
kp − `2χ2s2

)
−2`2 (2Θ′Φ′ cot Θ + Φ′′) + 2`2χ sinΦ (cot Θ− 2sΘ′) = 0

(B6b)

Equation (B6b) has a homogeneous solution Φ = Φ0 =
{0, π}. Substitution of this solution into (B6a) results in

sin 2(Θ + ϑ)− 2
`2

ka
Θ′′ = sin 2ϑ, (B7)

where we use ϑ = 1
2 arcsin

(
2χ `

2

ka
cosΦ0

)
. Equation (B7)

has a homogeneous solution Θ = Θ0 = {0, π}. However,
this equation has not static solution of a DW type with
boundary conditions cos Θ (±∞) = ∓p.

In the following we will modify q − Φ model (4) for
angles Θ and Φ

cos Θ = −p tanh
s− q

∆
, Φ = Φ. (B8)

By inserting Ansatz (B8) into the energy density (B5)
and integrating over the arc length s, we obtain

Edw

2S
≈ `2

∆
+ ∆

(
kp +

1

2
ka − χ2q2

)
sin2 Φ

+
1

4
∆ka cos 2ϑ (3 + cos 2Φ) + pπ`χq cos Φ.

(B9)

Equations of motion (6) will be modified in the follow-
ing way

α

∆
q̇ + pΦ̇ = −pπω0`

2χ cos Φ + 2ω0`
2∆χ2q sin2 Φ,

pq̇ − α∆Φ̇ = −pπω0`
2χq sin Φ + ∆ω0 sin 2Φ

×
[
kp − `2χ2q2 +

1

4

(
ka −

√
k2
a − 4χ2`4

)]
,

c
α

ω0
∆̇ =

`2

∆
−∆

[(
kp +

ka
2
− χ2q2

)
sin2 Φ

+
1

2

√
k2
a − 4χ2q2

(
2− sin2 Φ

)]
.

(B10)

Equations of motion (B10) coincide with (6) and (A6) up
to corrections in χ of the second order of magnitude.

Appendix C: Details of the DW motion in an Euler
spiral

In the limit case of constant curvature κ′ = 0, static
Eqs. (A1) have a solution of a DW with the phase Φ0 = π

and Φ0 = 0. Therefore, to analyze the dynamics of DW in
stripes with the non-zero gradient of the curvature κ′ 6= 0
and κ′`2/ka � 1 we will use small-angle approximation
ϕ(t) = Φ(t)−Φ0, which is valid for stripes with in-plane
magnetization. Using this approximation, equations of
motion (6) can be written in the form

α

∆0
q̇ + pϕ̇ = −pCπω0`

2χ,

pq̇ − α∆0ϕ̇ = −pCπω0`
2χqϕ+ 2kp∆0ω0ϕ,

(C1)

where C = cos Φ0 with Φ0 being the initial DW phase.

The first equation in (C1) can be simply integrated,
while the second can be written as(

1 + α2
)
ϕ̇ = −Cπω0`

2χ− π2ω2
0`

4χ2ϕt

−
(

2kp + pCπ`2χ q0

∆0

)
αω0ϕ,

(C2)

where we keep only linear terms with respect to ϕ. Here,
q0 is the initial DW position. Equation (C2) has the
following solution

ϕ(t) = −C
√

2

1 + α2

{
F

(
D +

π`2χ√
2 (1 + α2)

ω0t

)
− F (D)

× exp

[
−

(
2D +

π`2χ√
2 (1 + α2)

ω0t

)
π`2χ√

2 (1 + α2)
ω0t

]}
,

(C3)

where D = α
(

2kp + p Cπ`2χ q0
∆0

)
/
[
π`2χ

√
2 (1 + α2)

]
,

F (x) = exp
(
−x2

) ∫ x
0

exp
(
y2
)

dy is a Dawson’s inte-
gral [50]. DW phase deviation (C3) allows to obtain the
following equation for the DW position

q(t) = q0 − V t− p
∆0

α
ϕ(t), (C4)

where V = −p Cπ∆0ω0χ`
2/α is an asymptotic DW ve-

locity. The time needed for the DW velocity to reach
the asymptotic value V can be found as a solution of
the equation q̇(tas) = εV , where ε < 1 is an asymptotic
parameter.

The precise analysis of the DW phase deviation (C3)
results in the following expression ϕ ≈ p∆0/ (αV t) at
long timescale.
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Appendix D: No-damping approximation for the
DW motion in an Euler spiral

Here, we consider a limiting case of zero damping (α =
0). In this case, equations of motion can be written as

Φ̇ = −πω0`
2χ cos Φ,

q̇ = −πω0`
2χq sin Φ + pkp∆0ω0 sin 2Φ.

(D1)

The solution of Eqs. (D1) are

Φ =Φ0 − C
π

2
+ 2 arctan e−πω0`

2χt,

q =

(
q0 − p C

kp∆

π`2χ
tanh pπω0`

2χt

)
cosh pπω0`

2χt.

(D2)

The behavior of first equation in (D2) at long
timescale corresponds to ϕ → −Cπ/2, while the sec-
ond equation shows that the DW position changes
with an exponential law with time limitation ω0t <(
π`2χ

)−1
ln
[
2π`2/

(
kp∆

2
)]

.

Appendix E: Numerical simulations

To verify our analytical results, we perform numeri-
cal micromagnetic simulations of the Landau–Lifshitz–
Gilbert equation utilizing the Nmag code [43]. We re-
strict ourselves to the case of magnetically soft material.
Therefore only two magnetic interactions are taken into
account, namely the exchange and magnetostatic contri-
butions.

We consider stripes whose central line is determined
by (7). In simulations we use material parameters of
Permalloy [42]. The dimensions of a stripe are fixed for
all studied cases (thickness h = 5 nm, width w = 15 nm,
and length L = 2 µm), while the curvature is varied in
the range χ`2 ∈ [1, 2] × 10−4. An irregular tetrahedral
mesh with a cell size about of 2.75 nm is used.

The numerical experiment consists of two steps. First,
we relaxed the DW with certain values of topological
charge p and DW magnitochirality C in a curved stripe
in an overdamped regime (α = 0.5), see Fig. 2 and Fig. 5
with t = 0 ns. After relaxation, the magnetization dy-
namics are simulated for a typically used value of the
damping coefficient α = 0.01.

To determine the values of q and Φ, we extract the
curvilinear magnetization components mt = m · et,
mn = m · en, and mb = m · eb from the simulation
data and apply fitting with the Ansatz (4). Namely, the

position q is determined as a fitting parameter for the
function mt(s) = −p tanh[(s − q)/∆], then the phase is
determined from the equation tan Φ = mb(q)/mn(q). A
typical behavior of the DW position and phase is plotted
in Fig. 3. The tangential component of the DW profile is
determined with the relative error smaller than 10−5%.

FIG. 5. (Color online) Comparison of the magnetization com-
ponents mt = m · et and mn = m · en obtained by means
of Nmag micromagnetic simulations and from the Ansatz (4):
Φ0 = π. Simulations are performed for a Permalloy stripe
with the gradient of the curvature χ`2 = 2× 10−4 and damp-
ing α = 0.01. In the Ansatz (4) the DW width ∆0 = `/

√
ka

was used.

The velocity of DW is calculated as q̇ (tas), where q̇ is
extracted from mictomagnetic simulations, tas is calcu-
lated with Eq. (9) for an asymptotic parameter ε = 0.9.
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deros, “Chirality switching and propagation control of
a vortex domain wall in ferromagnetic nanotubes,” Ap-
plied Physics Letters 100, 072407 (2012).
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Schütz, and Mathias Kläui, “Switching by domain-wall
automotion in asymmetric ferromagnetic rings,” Phys.
Rev. Applied 7, 044009 (2017).

[28] Yuri Gaididei, Volodymyr P. Kravchuk, and Denis D.
Sheka, “Curvature effects in thin magnetic shells,” Phys.
Rev. Lett. 112, 257203 (2014).

[29] Denis D. Sheka, Volodymyr P. Kravchuk, and Yuri Gai-
didei, “Curvature effects in statics and dynamics of low
dimensional magnets,” Journal of Physics A: Mathemat-
ical and Theoretical 48, 125202 (2015).

[30] Anisotropy axis et in a curved magnet is spatially depen-
dent, while eb for planar wire is constant. Therefore, it is
convenient to represent the energy of the magnet in the
curvilinear Frenet–Serret reference frame with et = γ′

being a tangential (t), en = γ′′/ |γ′′| being a normal (n)
and eb = et × en being a binormal (b) vector, respec-
tively (tnb basis).

[31] B. Hillebrands and A. Thiaville, eds., Spin dynamics
in confined magnetic structures III, Topics in Applied
Physics, Vol. 101 (Springer, Berlin, 2006).

[32] D. G. Porter and M. J. Donahue, “Velocity of transverse
domain wall motion along thin, narrow strips,” Journal
of Applied Physics 95, 6729 (2004).

http://dx.doi.org/ 10.1126/science.1145799
http://dx.doi.org/10.1038/nnano.2008.1
http://dx.doi.org/10.1038/nnano.2008.1
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2015.41
http://dx.doi.org/10.1016/S0304-8853(01)01353-1
http://dx.doi.org/10.1016/S0304-8853(01)01353-1
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/ 10.1103/PhysRevB.57.R3213
http://dx.doi.org/ 10.1103/PhysRevB.57.R3213
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/ 10.1063/1.1663252
http://dx.doi.org/ 10.1063/1.1663252
http://stacks.iop.org/0295-5075/78/i=5/a=57007
http://stacks.iop.org/0295-5075/78/i=5/a=57007
http://dx.doi.org/10.1038/nnano.2014.324
http://dx.doi.org/10.1063/1.4964261
http://dx.doi.org/10.1063/1.4964261
http://dx.doi.org/ 10.1103/PhysRevLett.102.067206
http://dx.doi.org/10.1038/nmat3675
http://dx.doi.org/10.1038/nmat3675
http://dx.doi.org/10.1038/nnano.2013.102
http://dx.doi.org/ 10.1103/PhysRevLett.104.057201
http://dx.doi.org/ 10.1103/PhysRevLett.104.057201
http://dx.doi.org/ 10.1063/1.3466747
http://dx.doi.org/ 10.1063/1.3466747
http://dx.doi.org/http://dx.doi.org/10.1063/1.3687154
http://dx.doi.org/http://dx.doi.org/10.1063/1.3687154
http://stacks.iop.org/0953-8984/24/i=43/a=436007
http://stacks.iop.org/0953-8984/24/i=43/a=436007
http://www.sciencedirect.com/science/article/pii/S0304885313002333
http://www.sciencedirect.com/science/article/pii/S0304885313002333
http://dx.doi.org/ 10.1088/0953-8984/28/48/483002
http://dx.doi.org/ 10.1088/0953-8984/28/48/483002
http://dx.doi.org/ 10.1063/1.3643037
http://dx.doi.org/10.1103/PhysRevB.82.214414
http://dx.doi.org/10.1103/PhysRevB.82.214414
http://dx.doi.org/10.1063/1.4881061
http://dx.doi.org/10.1063/1.4881061
http://dx.doi.org/10.1103/PhysRevB.94.024435
http://dx.doi.org/10.1103/PhysRevApplied.7.044009
http://dx.doi.org/10.1103/PhysRevApplied.7.044009
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/10.1103/PhysRevLett.112.257203
http://dx.doi.org/http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://dx.doi.org/ 10.1063/1.1688673
http://dx.doi.org/ 10.1063/1.1688673


9

[33] Amikam Aharoni, “Demagnetizing factors for rectangu-
lar ferromagnetic prisms,” Journal of Applied Physics
83, 3432 (1998).

[34] Yuri B Gaididei, Arseni Goussev, Volodymyr P
Kravchuk, Oleksandr V Pylypovskyi, Jonathan M Rob-
bins, Denis Sheka, Valeriy Slastikov, and Sergiy Va-
sylkevych, “Magnetization in narrow ribbons: curvature
effects,” Journal of Physics A: Mathematical and Theo-
retical 50, 385401 (2017).

[35] Volodymyr P. Kravchuk, “Stability of magnetic
nanowires against spin-polarized current,” Ukr. J. Phys.
59, 1001 (2014).

[36] V. V. Slastikov and C. Sonnenberg, “Reduced models
for ferromagnetic nanowires,” IMA Journal of Applied
Mathematics 77, 220–235 (2012).

[37] J. C. Slonczewski, “Dynamics of magnetic domain
walls,” Int. J. Magn 2, 85–97 (1972).

[38] A. P. Malozemoff and J. C. Slonzewski, Magnetic do-
main walls in bubble materials (Academic Press, New
York, 1979).

[39] J. Dennis Lawrence, A Catalog of Special Plane Curves
(Dover Books on Mathematics) (Dover Publications,
2014).

[40] June-Seo Kim, Mohamad-Assaad Mawass, André Bisig,
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