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ON EXPANSIVE AND ANTI-EXPANSIVE TREE MAPS

Sergiy Kozerenko

Communicated by Andrzej Żak

Abstract. With every self-map on the vertex set of a finite tree one can associate the directed
graph of a special type which is called the Markov graph. Expansive and anti-expansive
tree maps are two extremal classes of maps with respect to the number of loops in their
Markov graphs. In this paper we prove that a tree with at least two vertices has a perfect
matching if and only if it admits an expansive cyclic permutation of its vertices. Also, we show
that for every tree with at least three vertices there exists an expansive map with a weakly
connected (strongly connected provided the tree has a perfect matching) Markov graph as
well as anti-expansive map with a strongly connected Markov graph.
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1. INTRODUCTION

Let X be a finite tree and σ : V (X)→ V (X) be a map from the vertex set V (X) of
X to itself. The Markov graph Γ = Γ(X,σ) is a directed graph whose vertices are
the edges of X, i.e. V (Γ) = E(X) and there is an arc e1 → e2 in Γ if e1 “covers” e2
under σ. In other words, if u2, v2 ∈ [σ(u1), σ(v1)]X for ei = uivi, i = 1, 2 (here [a, b]X
denotes the vertex set of a unique shortest path joining a and b in a tree X). For
example, let X be a path with at least two vertices and σ be a cyclic permutation
of V (X). In this case the corresponding Markov graph Γ(X,σ) is called a periodic
graph. In [2,10] it was showed that using periodic graphs one can prove the famous
Sharkovsky’s theorem from one-dimensional dynamics in a purely combinatorial way.

The graph-theoretic criterion for periodic graphs was obtained in [8]. In [5] the
pairs (X,σ) were characterized for several prescribed classes of Markov graphs Γ(X,σ).
The complete list of Markov graphs that are tournaments is presented in [7].

In this paper we study two classes of vertex maps on trees using Markov graphs.
Namely, let X be a tree and σ : V (X) → V (X) be some map. The map σ is
called expansive if each vertex in Γ(X,σ) has a loop (i.e. an arc from the vertex
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to itself). Similarly, the map σ is called anti-expansive if Γ(X,σ) does not contain
vertices with loops. Using the properties of anti-expansive maps in [4] it was proved
that Markov graphs satisfy Seymour’s Second Neighborhood Conjecture as well as
Caccetta-Häggkvist Conjecture. Also, one can show that a tree has a fixed point
property for expansive maps if and only if it does not have a perfect matching (again,
see [4]). We will strengthen this result by showing that the existence of a perfect
matching in a tree X is equivalent to the existence of expansive cyclic permutation
of V (X). We also prove that for every tree with at least three vertices there exists
an expansive map with a weakly connected (strongly connected provided the tree
has a perfect matching) Markov graph as well as anti-expansive map with a strongly
connected Markov graph.

2. PRELIMINARIES

2.1. BASIC DEFINITIONS

The symbols Im σ and fix σ denote the image and the set of all fixed points of a map σ.
Also, having a map σ with | Im σ| = 2 we define the corresponding map σ∗ as the
composition f ◦ σ, where f is unique non-identity permutation of Im σ.

A graph G is a pair of sets (V,E), where V = V (G) is the set of its vertices and
E = E(G) is the set of its edges which are unordered pairs of vertices. The neighborhood
of a vertex u ∈ V (G) is the set

NG(u) = {v ∈ V (G) : uv ∈ E(G)}.

Similarly, NG[u] = NG(u) ∪ {u} is called the closed neighborhood of u. We also put
EG(u) = {e ∈ E(G) : u is incident to e}. The degree dG(u) of a vertex u ∈ V (G) is
the number of its neighbors, i.e. dG(u) = |NG(u)|. The vertex u ∈ V (G) is a leaf
provided dG(u) = 1. The set of all leaf vertices in G is denoted by L(G). For any set
of vertices A ⊂ V (G) we define NG(A) = {u ∈ V (G) \A : uv ∈ E(G) for some v ∈ A}
and E(A) = {uv ∈ E(G) : u, v ∈ A}. By G[A] we denote the subgraph of G induced
by A.

A set of edges E′ ⊂ E(G) is called dominating if for every vertex u ∈ V (G) we
have EG(u) ∩ E′ 6= ∅. Similarly, E′ is called weakly dominating if for every non-leaf
vertex u ∈ V (G) \ L(G) it holds EG(u) ∩ E′ 6= ∅. Further, E′ is a matching if no two
edges from E′ share a common vertex. The dominating matching is called perfect.

On the vertex set V (G) of every connected graph G one can define the “shortest
paths” metric dG(u, v) = min{|E(P )| : P is a path joining u and v} for all pairs
u, v ∈ V (G). The set

[u, v]G = {x ∈ V (G) : dG(u, x) + dG(x, v) = dG(u, v)}

is called metric interval between u and v in G. For every edge uv ∈ E(G) we put

AG(u, v) = {x ∈ V (G) : dG(u, x) ≤ dG(v, x)}.
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Also, for a vertex u ∈ V (G) in a connected graph G and any number k ≥ 0 we define

Nk
G(u) = {v ∈ V (G) : dG(u, v) = k}

(thus, N1
G(u) = NG(u) for all u ∈ V (G)).

A tree is a connected acyclic graph. It is well known that each tree with at least
two vertices has at most one perfect matching.
Lemma 2.1 ([6]). For every tree X with |V (X)| ≥ 2 there exists a set of leaf vertices
A ⊂ L(X) such that X −A has a perfect matching.

For every tree X and a pair of its vertices u, v ∈ V (X) the metric interval [u, v]X
induces a path in X. Also, for every connected set of vertices A ⊂ V (X) in a tree
X one can define the projection map prA : V (X)→ V (X) in the following way: put
prA(u) = v, where v is the unique vertex from A with

dX(u, v) = min{dX(u, x) : x ∈ A}.
A directed graph or just a digraph D is a pair of sets (V,A), where V = V (D) is

the set of its vertices and A = A(D) ⊂ V × V is the set of its arcs. Sometimes we will
write u→ v for an arc (u, v). An arc of the form u→ u is called a loop at u. A pair of
vertices u, v ∈ V (D) is a digon provided (u, v), (v, u) ∈ A(D). A vertex v is reachable
from the vertex u if there is a directed walk from u to v in D. If two digraphs D1 and
D2 are isomorphic, then we write D1 ' D2.

A digraph is called strongly connected if each pair of its vertices lie on a cycle.
Similarly, digraph is called unilaterally connected if for every pair of its vertices there
is a (directed) path joining them. A digraph is called weakly connected if its underlying
graph (which is obtained by “forgetting” orientations of arcs and ignoring loops and
digons) is connected. Finally, digraph is disconnected if it is not weakly connected.
The next lemma is clear.
Lemma 2.2. A digraph D is weakly (strongly) connected if and only if for every
proper (i.e. V ′ /∈ {∅, V (D)}) set of its vertices V ′ ⊂ V (D) there exist two vertices
u ∈ V ′ and v ∈ V (D) \ V ′ such that u→ v or v → u (v is reachable from u).

With every linear ordering of the vertex set V (D) = {u1, . . . , un} of a digraph D
we can associate the adjacency matrix MD, where (MD)ij = 1 if ui → uj in D and
(MD)ij = 0 otherwise. Note that for any number m ≥ 1 an element (Mm

D )ij equals
the number of walks from ui to uj in D of length m.

For every map of the form f : X → X we can define its functional graph as a digraph
with the vertex set X and the arc set {(x, y) ∈ X ×X : y = f(x)}. A digraph is called
functional if the out-degree of each of its vertices equals one. Similarly, digraph is
partial functional provided out-degrees of its vertices are at most one. Clearly, each
partial functional digraph D corresponds to a partial map on V (D).

A preordering is reflexive and transitive binary relation. Having a preordered set
(X,≤) an element x ∈ X is called minimal (maximal) if from y ≤ x (x ≤ y) it follows
x ≤ y (y ≤ x) for all y ∈ X. Further, x is called the least element if for all y ∈ X we
have x ≤ y and x = y whenever y ≤ x. Similarly, one can define the greatest element
in a preordered set.
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2.2. MARKOV GRAPHS FOR TREE MAPS

Let X be a tree and σ : V (X)→ V (X) be some map. The Markov graph Γ = Γ(X,σ)
is a digraph with the vertex set V (Γ) = E(X) and there is an arc e1 → e2 in Γ
if u2, v2 ∈ [σ(u1), σ(v1)]X for ei = uivi, i = 1, 2.

Lemma 2.3 ([5]). Let X be a tree and σ : V (X) → V (X) be some map. Then for
every pair of vertices u, v ∈ V (X) and an edge xy ∈ E([σ(u), σ(v)]X) there exists an
edge wz ∈ E([u, v]X) with wz → xy in Γ(X,σ).

Lemma 2.4 ([7]). Let X be a tree, A ⊂ V (X) be some connected set of vertices,
σ : V (X)→ V (X) be a map and Γ = Γ(X,σ). Then Γ(X[A],prA ◦σ) = Γ[E(A)].

Using Markov graphs one can define the natural preordering of the set of all maps
V (X)V (X) in the following way: put σ1 ≤m σ2 whenever Γ(X,σ1) ⊂ Γ(X,σ2). Clearly,
relation ≤m is reflexive and transitive, thus a preordering. This preordering is called
the Markov preordering.

It is easy to see that minimal elements for ≤m are precisely constant maps (as
they have empty Markov graphs). Thus, for a tree X with |V (X)| ≥ 2 the Markov
preordering ≤m has no least element. Similarly, in this case ≤m does not have the
greatest element. To see this fix any map σ ∈ V (X)V (X) and consider its Markov
graph Γ = Γ(X,σ). If Γ is not a complete digraph, then there exists two edges
ei = uivi ∈ E(X), i = 1, 2 such that (e1, e2) /∈ A(Γ). Putting σ′(x) = u2 for all
x ∈ AX(u1, v1) and σ′(x) = v2 for all x ∈ AX(v1, u1) we obtain the map σ′ ∈ V (X)V (X)

with A(Γ(X,σ′)) = {(e1, e2)}. This would imply σ′ �m σ which is a contradiction.
Otherwise, let Γ be a complete digraph. In this case | Im σ| = 2. Thus, σ∗ ≤m σ and
σ ≤m σ∗, however σ∗ 6= σ. A contradiction again. For results on maximal elements in
(V (X)V (X),≤m) see [4].

Proposition 2.5 ([5]). Let X be a tree with n ≥ 1 vertices. Suppose that some linear
ordering of the edge set E(X) is fixed. Then the correspondence σ →MΓ(X,σ) defines
a homomorphism from the full transformation semigroup Tn to the matrix semigroup
Matn−1(F2).

2.3. EDGE LABELINGS AND NEIGHBORHOOD MAPS

Having a graph G, a map τ : E(G)→ V (G) is called an orientation of the edges in G
provided τ(e) is incident to e for all e ∈ E(G). The following construction is from [4].
Let X be a tree and σ : V (X)→ V (X) be some map. Define the next edge labeling

τσ(e) =





u, if σ(u), σ(v) ∈ AX(u, v),
v, if σ(u), σ(v) ∈ AX(v, u),
1, if σ(u) ∈ AX(u, v) and σ(v) ∈ AX(v, u),
−1, if σ(u) ∈ AX(v, u) and σ(v) ∈ AX(u, v)

for all edges e = uv ∈ E(X). Thus, if τσ(e) = u, then the edge e gets an orientation
v → u (similarly, for τσ(e) = v we have the orientation u→ v). Otherwise, the edge e
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is σ-positive or σ-negative depending on the sign of τσ(e). The corresponding mixed
tree is denoted by X(τσ). A labeling τ : E(X)→ V (X) ∪ {1,−1} is called admissible
if τ = τσ for some map σ.
Theorem 2.6 ([4]). Let X be a tree and τ : E(X) → V (X) ∪ {1,−1} be an edge
labeling such that the restriction τ |τ−1(V (X)) is orientation of the edges in X. Then τ
is admissible if and only if
1. each vertex in X(τ) has out-degree at most one;
2. each vertex in X(τ) is incident to at most one σ-negative edge;
3. if the vertex from X(τ) is incident to a negative edge, then its out-degree equals

zero.
If the labeling τ satisfies the conditions of Theorem 2.6, then one can construct

the map στ in the following way. Put στ (u) = v if there is an arc u→ v in X(τ) or
uv is a σ-negative edge and στ (u) = u otherwise for all u ∈ V (X). Clearly, τστ = τ .
However, generally speaking, στσ 6= σ.

A map f : V (G) → V (G) is called a neighborhood map if f(u) ∈ NG[u] for all
vertices u ∈ V (G). Clearly, for connected graphs G (in particular, for trees) a map f
is a neighborhood map if and only if dG(u, f(u)) ≤ 1 for every u ∈ V (G).
Proposition 2.7 ([6]). For a map σ on a tree X it holds στσ = σ if and only if σ is
a neighborhood map.

The number of arcs in Markov graphs for neighborhood maps can be calculated
explicitly. Denote by p(X,σ) and n(X,σ) the number of σ-positive and σ-negative
edges in X, respectively.
Theorem 2.8 ([6]). For a tree X and its neighborhood map σ : V (X) → V (X)
we have

|A(Γ(X,σ))| = |E(X)|+ 2p(X,σ)−
∑

u∈fixσ
dX(u).

It should be noted that neighborhood permutations on trees were studied in [11–13]
under the name of compatible permutations. Proposition 2.7 asserts that each edge
transposition is a compatible permutation. This means that the class of compatible
permutations on a tree is a generating set for the group of all permutations. Moreover,
the minimal number k such that each permutation of the vertex set of an n-vertex
tree X can be obtained as a composition of at most k compatible permutations,
is at least n, [12] (the equality k = n holds for n-vertex path Pn, [11]).
Theorem 2.9 ([4]). For a tree X and its map σ : V (X)→ V (X) we have

n(X,σ) + |fix σ| = p(X,σ) + 1.

2.4. EXPANSIVE AND ANTI-EXPANSIVE MAPS

A map σ on a tree X is called expansive if in Γ(X,σ) each vertex has a loop. In other
words, σ is expansive if idV (X) ≤m σ (here idV (X) denotes the identity map on V (X)).
Note that maps σ with σ ≤m idV (X) were characterized in [5].
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Theorem 2.10 ([5]). Let X be a tree and σ : V (X) → V (X) be some map. Then
each arc in Γ(X,σ) is a loop if and only if σ = pr∗e for some edge e ∈ E(X), or σ is
a projection on a connected set of vertices in X.

The following result is a direct corollary of Theorem 2.6.
Proposition 2.11 ([4]). Let X be a tree and τ : E(X)→ {1,−1}. Then τ is admissible
if and only if τ−1(−1) is a matching in X.

Conversely, for every matching E′ ⊂ E(X) in a treeX put τE′(e) = 1 for e /∈ E′ and
τE′(e) = −1 for e ∈ E′. Clearly, the resulting labeling τE′ : E(X)→ {1,−1} satisfies
the condition of Proposition 2.11 and thus the map σE′ = στE′ : V (X) → V (X)
is correctly defined. This means that there is a one-to-one correspondence between
labelings τσ for expansive maps σ and matchings in X.

Observe that for an admissible edge labeling τ on a tree X the map στ is a per-
mutation if and only if στ is expansive. Thus, the number of admissible labelings τ
with στ being a permutation, equals the number of matchings in X (including the
empty matching). The last number is a well-known topological index, which is called
the Hosoya index, [3].

Also, using the formula

W (X) =
∑

uv∈E(X)

|AX(u, v)| · |AX(v, u)|

for the Wiener index (originally defined as W (X) =
∑
{u,v}⊂V (X) dX(u, v)) for trees

X (see [1]), one can observe that the number of expansive maps σ with n(X,σ) = 1 is
equal to W (X).

A map σ on a tree X is called anti-expansive if Γ(X,σ) does not contain vertices
with loops. Thus, τσ is just an orientation of the edges in X. Having a tree X and
orientation of its edges τ : E(X) → V (X) we say that X(τ) is an in-tree if there
is a vertex u0 ∈ V (X) such that u → v in X(τ) implies v ∈ [u, u0]X for all edges
uv ∈ E(X). The vertex u0 is called the root of X(τ).
Proposition 2.12 ([4]). Let X be a tree and τ : E(X)→ V (X) be an orientation of
the edges in X. Then τ is admissible if and only if X(τ) is an in-tree.

From Proposition 2.12 we can conclude that every anti-expansive map on a finite
tree has a unique fixed point (namely, the root of the corresponding in-tree). Further,
if σ1 and σ2 are two anti-expansive maps, then τσ1 = τσ2 if and only if fix σ1 = fix σ2.
Therefore, there is a one-to-one correspondence between labelings τσ for anti-expansive
maps σ and vertices in V (X).
Example 2.13. Consider the tree X with the vertex set V (X) = {1, . . . , 7} and
the edge set E(X) = {12, 23, 34, 45, 26, 47} as well as the pair of maps

σ1 =
(

1 2 3 4 5 6 7
1 7 6 5 3 6 7

)
, σ2 =

(
1 2 3 4 5 6 7
3 5 3 1 6 4 2

)
.

It is easy to see that σ1 is expansive and σ2 is anti-expansive (see Figure 1).
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1 2 3 4 5

6 7

1 2 3 4 5

6 7

+ − + −
+ +

X(τσ1) : X(τσ2) :

Fig. 1. Mixed trees for maps from Example 2.13 (the signs + and − denote σ1-positive and
σ1-negative edges, respectively)

3. MAIN RESULTS

We start by showing that a tree X can be reconstructed from the Markov graph
Γ(X,στσ ) for any anti-expansive map σ : V (X)→ V (X).

Theorem 3.1. Let X be a tree and σ : V (X)→ V (X) be an anti-expansive map with
fix σ = {u0}. Then Γ(X,στσ ) ' X(τσ)− {u0}.
Proof. Consider the map ϕ : V (X) \ {u0} → E(X), where ϕ(u) = uστσ(u) for all
u ∈ V (X) \ {u0}. Fix an edge e = uv ∈ E(X) and suppose that v ∈ [u, u0]X . Then
στσ (u) = v and thus ϕ(u) = e. Hence, ϕ is a surjective map. Combining this with the
fact that the sets V (X) \ {u0} and E(X) have the same cardinality, we can conclude
that ϕ is bijective.

Now assume that there is an arc u → v in X(τσ) − {u0}. Then uv ∈ E(X) and
στσ (u) = v. This means that there exists an arc

ϕ(u) = uστσ (u) = uv → vστσ (v) = ϕ(v)

in Γ(X,στσ ). Therefore, ϕ induces an injective map

ϕ′ : A(X(τσ)− {u0})→ A(Γ(X,στσ )).

But the equality

|A(Γ(X,στσ ))| = |E(X)| − dX(u0) = |V (X)| − 1− dX(u0) = |A(X(τσ)− {u0})|

implies that ϕ′ is bijective. Therefore, ϕ is an isomorphism between X(τσ)−{u0} and
Γ(X,στσ ).

Corollary 3.2. For a digraph Γ there exists a tree X and its anti-expansive map
σ : V (X)→ V (X) with Γ(X,στσ) ' X(τσ)− {u0} if and only if Γ is acyclic partial
functional digraph.

Proof. If σ is anti-expansive, then from Theorem 3.1 it follows that Γ(X,στσ) '
X(τσ) − {u0} is acyclic partial functional digraph. This proves the necessity of the
condition. To prove its sufficiency assume that Γ is acyclic partial functional digraph
and let f be the corresponding partial map on V (Γ). Clearly, each component of Γ is an
in-tree. Let V ′ denotes the set of roots of components of Γ (thus, f : V (Γ) \ V ′ → V ).
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Consider the graph X with V (X) = V (Γ) t {u0} and E(X) = {uf(u) : u ∈ V (Γ)} ∪
{u0v : v ∈ V ′}. Clearly, X is a tree.

Construct the map σ on V (X) in the following way:

σ(u) =
{
f(u), if u ∈ V (Γ) \ V ′,
u0, if u ∈ V ′ or u = u0

for all u ∈ V (X). It is easy to see that σ is an anti-expansive neighborhood map on X,
thus by Proposition 2.7 we have στσ = σ. Moreover, Γ ' Γ(X,σ) by construction.

The next result shows that the map στσ is the least element (with respect to ≤m)
in {σ′ ∈ V (X)V (X) : τσ′ = τσ} provided σ is expansive.

Proposition 3.3. For every tree X and its expansive map σ : V (X)→ V (X) it holds
στσ ≤m σ.

Proof. Fix an edge e = uv ∈ E(X). If e is σ-negative, then

N+
Γ(X,στσ )(e) = {e} ⊂ N+

Γ(X,σ)(e).

Further, let e be σ-positive. If u, v ∈ fix σ, then

N+
Γ(X,στσ )(e) = {e} = N+

Γ(X,σ)(e).

If u ∈ fix σ and v /∈ fix σ, then e is adjacent to some σ-negative edge e′ = vw with
σ(v) ∈ AX(w, v). In this case

N+
Γ(X,στσ )(e) = {e, e′} ⊂ N+

Γ(X,σ)(e).

Finally, if u, v /∈ fix σ, then there exist two σ-negative edges e1 = uw1 and e2 = vw2
with σ(u) ∈ AX(w1, u) and σ(v) ∈ AX(w2, v). We have

N+
Γ(X,στσ )(e) = {e, e1, e2} ⊂ N+

Γ(X,σ)(e).

Therefore, Γ(X,στσ ) ⊂ Γ(X,σ) and the desired is proved.

Corollary 3.4. For every expansive map σ on a tree X it holds

|A(Γ(X,σ))| ≥ |E(X)|+ 2p(X,σ)−
∑

u∈fixσ
dX(u).

Proof. Follows from Theorem 2.8 and Proposition 3.3.

Now we prove that the Markov graph Γ(X,σ) for an expansive map σ almost
always contains a digon.

Proposition 3.5. Let X be a tree with |V (X)| ≥ 2 and σ : V (X) → V (X) be its
expansive map. Then Γ(X,σ) has no digons if and only if σ = στσ .



On expansive and anti-expansive tree maps 387

Proof. First, we prove the necessity of this condition. If |V (X)| = 2, then for each
of the two different expansive maps σ on V (X) we have σ = στσ . Therefore, let
|V (X)| ≥ 3. Fix a vertex u ∈ V (X). If each edge e ∈ EX(u) is σ-positive, then
u ∈ fix σ and therefore σ(u) = στσ(u). Hence, suppose that there exists σ-negative
edge e = ux ∈ EX(u). If σ(u) 6= x = στσ (u), then there exists a vertex y ∈ [x, σ(u)]X
adjacent to x. Clearly, the edge xy is σ-positive. This means that there is a digon
xy ↔ ux in Γ(X,σ) which is a contradiction.

Now we prove the sufficiency of this condition. Fix an arbitrary arc e1 → e2 in
Γ(X,σ) which is not a loop. Since σ = στσ , then σ is a neighborhood map on X. This
means that the edges e1 and e2 are adjacent in X. In other words, e1 = u1v and
e2 = u2v for some u1, u2, v ∈ V (X). We have σ(v) = u2 implying e2 9 e1 in Γ(X,σ).
Therefore, the Markov graph Γ(X,σ) has no digons.

Proposition 3.6. Let X be a path and σ : V (X) → V (X) be its anti-expansive
map with fix σ = {u0}. Then στσ ≤m σ if and only if στσ(u) = σ(u) for all u ∈
V (X) \NX(u0).

Proof. First, we prove the necessity of this condition. Fix a vertex u ∈ V (X) \NX(u0).
If u = u0, then clearly στσ (u) = σ(u). Otherwise, dX(u, u0) ≥ 2 implying the existence
of two vertices x, y ∈ [u, u0]X with ux, xy ∈ E(X) (it can be u0 = y). Since τσ(ux) = x
and τσ(xy) = y, there is an arc ux → xy in Γ(X,στσ). But στσ ≤m σ means
that there is an arc ux → xy in Γ(X,σ) as well. Therefore, x, y ∈ [σ(u), σ(x)]X .
Further, σ(x), σ(y) ∈ AX(y, x) as σ is anti-expansive. Hence, σ(x) /∈ AX(x, y) implying
σ(u) ∈ AX(x, y). But X is a path which means dX(x) = 2. Combining these facts
with σ(u) ∈ AX(x, u), we can conclude that σ(u) = x. Thus, στσ (u) = σ(u).

To prove the sufficiency of this condition fix an edge e ∈ E(X). If e is incident
to u0, then N+

Γ(X,στσ )(e) = ∅ trivially implying N+
Γ(X,στσ )(e) ⊂ N+

Γ(X,σ)(e). Thus
let e = ux is not incident to u0. Without loss of generality, we can assume that
x ∈ [u, u0]X . Since x 6= u0, there exists a vertex y ∈ [x, u0]X adjacent to x. Clearly,
N+

Γ(X,στσ )(e) = {xy}. But since u /∈ NX(u0), we have σ(u) = στσ (u) = x. Combining
this with σ(x) ∈ AX(y, x), we obtain x, y ∈ [σ(u), σ(x)]X . In other words, there
is an arc e → xy in Γ(X,σ) which means that N+

Γ(X,στσ )(e) ⊂ N+
Γ(X,σ)(e) again.

Therefore, Γ(X,στσ ) ⊂ Γ(X,σ) and the desired is proved.

Theorem 3.7. Let X be a tree and A ⊂ V (X) be some set of its vertices. A map
σ : A → V (X) can be extended to an expansive map on V (X) if and only if the
following conditions hold:

1. the map prB ◦σ is expansive on X[B] for every maximal connected subset B ⊂ A;
2. for each vertex u ∈ V (X) \ A there is at most one vertex v ∈ A ∩ NX(u) with
σ(v) ∈ AX(u, v).

Proof. Let σ′ : V (X) → V (X) be an expansive extension of σ. Clearly, prB ◦σ′ is
expansive on X[B] for every connected set B ⊂ V (X). Thus, the first condition holds.
To prove the second condition assume that there is a vertex u ∈ V (X) and a pair
of vertices v1, v2 ∈ A ∩NX(u) with σ(vi) ∈ AX(u, vi), i = 1, 2. Since σ′ is expansive,
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σ′(u) ∈ AX(vi, u), i = 1, 2. This means that the edges uv1 and uv2 are both σ′-negative
which contradicts Proposition 2.11.

Conversely, assume both conditions hold. Consider two vertex sets

V0 = {u ∈ NX(A) : σ(v) ∈ AX(v, u) for all v ∈ A ∩NX(u)}
and

V1 = {u ∈ NX(A) : σ(v) ∈ AX(u, v) for some v ∈ A ∩NX(u)}.
Put

σ′(u) =





σ(u), if u ∈ A,
u, if u ∈ V0 ∪ (V (X) \ (A ∪NX(A))),
v, if u ∈ V1

for all u ∈ V (X). By the second condition, the map σ′ is correctly defined. Moreover,
from the first condition and the construction of σ′ it follows that σ′ is an expansive
extension of σ.

Note that the first condition in Theorem 3.7 can be omitted provided the set A is
independent.
Proposition 3.8. Let X be a tree and A ⊂ V (X) be some set of its vertices. A map
σ : A→ V (X) can be extended to an anti-expansive map on V (X) if and only there
exists a vertex u0 ∈ V (X) such that
1. for all v ∈ A \ {u0} the vertices σ(v) and u0 lie in the same connected component

of X − {v};
2. if additionally u0 ∈ A, then σ(u0) = u0.
Proof. Assume that σ′ : V (X) → V (X) is an anti-expansive extension of σ. Then
|fix σ′| = 1. Let u0 be the unique vertex from fix σ′. To the contrary, suppose there
exists v ∈ A \ {u0} such that σ(v) and u0 lie in different connected components
of X − {v}. Consider the (connected) set of vertices B = [u0, v]X and the map
σ′′ = prB ◦σ′ on B. We have σ′′(u0) = u0 and σ′′(v) = v, i.e. |fix σ′′| ≥ 2. Using
Theorem 2.9, we obtain

p(X[B], σ′′) = n(X[B], σ′′) + |fix σ′′| − 1 ≥ 1.

Thus, X[B] contains a σ′′-positive edge e. By Lemma 2.4, e is also a σ′-positive edge
which is a contradiction. Conversely, suppose both conditions hold. Then the map

σ′(v) =
{
σ(v), if v ∈ A,
u0, if v ∈ V (X) \A

for all v ∈ V (X), is an anti-expansive extension of σ.

Theorem 2.9 implies that for any tree X with an odd number of vertices each
expansive map σ : V (X) → V (X) has a fixed point. Indeed, if σ is expansive, then
the sum p(X,σ) + n(X,σ) = |E(X)| = |V (X)| − 1 is even. Clearly, the difference
p(X,σ)− n(X,σ) is also even. By Theorem 2.9, |fix σ| = p(X,σ)− n(X,σ) + 1 is odd.
This result can be easily generalized as follows.
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Proposition 3.9. Let X be a tree and A ⊂ V (X) be some set of its vertices. Then
there exists an expansive map σ : V (X)→ V (X) with fix σ = A if and only if X −A
has a perfect matching.

Proof. For an expansive map σ : V (X)→ V (X) we have u ∈ fix σ if and only if each
edge from EX(u) is σ-positive. Thus, all σ-negative edges form a perfect matching in
X − fix σ. Conversely, given a set of vertices A ⊂ V (X) and a perfect matching
E′ ⊂ E(X −A) in X −A the map σE′ is expansive and fix σE′ = A.

We can also show that if a tree X has a perfect matching, then we can construct
not only an expansive map on V (X) without fixed points but rather an expansive
cyclic permutation of V (X).

Theorem 3.10. For a tree X with |V (X)| ≥ 2 there exists an expansive cyclic
permutation σ of V (X) if and only if X has a perfect matching.

Proof. If σ is an expansive cyclic permutation of V (X), then since |V (X)| ≥ 2, σ does
not have fixed points. This means that the set of all σ-negative edges in X forms
a perfect matching.

To prove the converse we use induction on |V (X)|. Clearly, if X has a perfect
matching, then X has an even number of vertices. If |V (X)| = 2, then X is a path
with two vertices and the unique cyclic permutation of V (X) is expansive. Thus the
induction basis holds. Now let |V (X)| ≥ 4 and E′ ⊂ E(X) be the perfect matching
in X. Since |V (X)| ≥ 4, the tree X ′ = X − L(X) has at least one edge.

Fix a leaf vertex v ∈ L(X ′). Since each leaf edge in X belongs to E′, there exists
a unique leaf vertex u ∈ L(X) with uv ∈ E′. It is easy to see that E′ \{uv} is a perfect
matching in a tree X ′′ = X−{u, v}. By induction assumption there exists an expansive
cyclic permutation σ0 : V (X ′′)→ V (X ′′). Since v ∈ L(X ′), there is a unique vertex
w ∈ V (X ′′) with vw ∈ E(X ′). Consider the map

σ(x) =





v, if x = σ−1
0 (w),

u, if x = v,

w, if x = u,

σ0(x), otherwise

for all x ∈ V (X). Then σ is an expansive cyclic permutation of V (X).

Example 3.11. Consider the tree X with V (X) = {1, . . . , 6} and E(X) =
{12, 23, 34, 45, 36}. Then E′ = {12, 45, 36} is a perfect matching in X. The corre-
sponding expansive cyclic permutation is σ = (136452).

Theorem 2.9 implies that a tree with at least two vertices does not admit an
anti-expansive cyclic permutation of its vertices. We will call a permutation σ of V (X)
almost cyclic if |fix σ| = 1 and the restriction σ|V (X)\fixσ is a cyclic permutation.
In [12] it was proved that for any tree X with a singleton centroid u0 there exists
almost cyclic permutation σ of V (X) such that v and σ(v) lie in different components
of X − {u0} for all v ∈ V (X) \ {u0}. Clearly, such a permutation σ is anti-expansive.
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Proposition 3.12. For every tree X and its non-leaf vertex u0 ∈ V (X) \ L(X) there
exists an anti-expansive almost cyclic permutation σ of V (X) with fix σ = {u0}.
Proof. Let NX(u0) = {v1, . . . , vd}, where d = dX(u0) ≥ 2. For all 1 ≤ i ≤ d and
j ≥ 0 fix a linear ordering of N j

X(vi)∩AX(vi, u0) = {xi,j1 , . . . , xi,jk }, where k = kij (for
example, ki0 = 1 and xi,01 = vi for all 1 ≤ i ≤ d). Put

mi = max{dX(vi, w) : w ∈ AX(vi, u0)}
for 1 ≤ i ≤ d. Consider the map

σ(y) =





u0, if y = u0,

xi,jl+1, if y = xi,jl and l 6= kij ,

xi,j−1
1 , if y = xi,jk for k = kij , j ≥ 2,
vi, if y = xi,1k for k = ki1,

x
i+1,mi+1
1 , if y = vi, i 6= d,

x1,m1
1 , if y = vd

for all y ∈ V (X). Then σ is anti-expansive almost cyclic permutation of V (X) with
fix σ = {u0}.
Example 3.13. Consider the tree X with V (X) = {1, . . . , 8} and E(X) =
{12, 23, 34, 45, 26, 37, 48}. Let u0 = 3. Then d = 3 and NX(u0) = {2, 4, 7}. Let
v1 = 2, v2 = 4 and v3 = 7. Then m1 = m2 = 1 and m3 = 0. We have
N1
X(v1) ∩ AX(v1, u0) = {1, 6} and N1

X(v2) ∩ AX(v2, u0) = {5, 8}. Suppose x1,1
1 =

1, x1,1
2 = 6 and x2,1

1 = 5, x2,1
2 = 8. Then the map σ has a cycle

x1,1
1 → x1,1

2 → v1 → x2,1
1 → x2,1

2 → v2 → v3 → x1,1
1 .

In other words, σ = (3)(1625847).
Theorem 3.14. For a neighborhood map σ on a tree X with |V (X)| ≥ 2 its Markov
graph Γ(X,σ) is weakly connected if and only if fix σ ⊂ L(X).
Proof. Assume that Γ(X,σ) is weakly connected, but there is a non-leaf fixed vertex
u ∈ fix σ \ L(X). Fix its neighbor v ∈ NX(u) and consider an edge set

E′ = E(AX(v, u)) ∪ {uv}.
Clearly, E′ 6= ∅. Moreover, the inequality dX(u) ≥ 2 implies E(X) \ E′ 6= ∅ as well.
Now observe that

A(Γ(X,σ)) ⊂ (E′ × E′) ∪ ((E(X) \ E′)× (E(X) \ E′))
which contradicts to the weak connectedness of Γ(X,σ) (see Lemma 2.2).

Conversely, suppose fix σ ⊂ L(X). Fix a proper edge subset E′ ⊂ E(X). Since
X is connected, there exists a vertex u ∈ V (X) with EX(u) ∩ E′ 6= ∅ and
EX(u) ∩ (E(X) \ E′) 6= ∅. Trivially, u /∈ L(X). Thus, u /∈ fix σ. Further, since σ
is a neighborhood map, uσ(u) ∈ E(X). Without loss of generality, assume uσ(u) ∈ E′.
Fix a vertex v ∈ NX(u) with uv ∈ E(X) \ E′. Then uv → uσ(u) in Γ(X,σ) and thus
by Lemma 2.2 the Markov graph Γ(X,σ) is weakly connected.
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Corollary 3.15. Every expansive tree map without fixed points has a weakly connected
Markov graph.

Proof. Follows from Theorem 3.14 and Proposition 3.3.

Corollary 3.16. Let X be a tree and E′ ⊂ E(X) be a matching in X. Then the
Markov graph Γ(X,σE′) is weakly connected if and only if E′ is a weakly dominating
set of edges.

Proof. Follows from Theorem 3.14 and the fact that and edge e is σE′ -negative if and
only if e ∈ E′.
Corollary 3.17. For every tree X with |V (X)| ≥ 2 there exists an expansive map
on V (X) with a weakly connected Markov graph.

Proof. From Lemma 2.1 it follows that there exists a set A ⊂ L(X) such that X −A
has a perfect matching E′ ⊂ E(X −A). Clearly, E′ is a matching in X. Moreover, for
every vertex u ∈ V (X) \ L(X) there exists an edge e ∈ E′ incident to u. Thus, E′ is
a weakly dominating matching in X. By Corollary 3.16, the Markov graph Γ(X,σE′)
is weakly connected.

Note that the result of Corollary 3.17 is best possible since stars K1,n for n ≥ 3 do
not permit expansive maps with unilaterally (and therefore with strongly) connected
Markov graphs.

Remark 3.18. Consider a tree X together with the linear ordering of its edge set
E(X) = {e1, . . . , en−1}. If there is an arc ei → ej in Γ(X,σm) for some m ≥ 1, then
by Proposition 2.5, (Mm

Γ(X,σ))ij = (MΓ(X,σm))ij = 1 mod 2. Thus, (Mm
Γ(X,σ))ij ≥ 1

which means that ej is reachable from ei in Γ(X,σ).

Theorem 3.19. If a tree X with |V (X)| ≥ 2 has a perfect matching, then there exists
an expansive map on V (X) with a strongly connected Markov graph.

Proof. Fix a cyclic permutation σ′ of L(X). For every u ∈ V (X) \ L(X) let eu = uvu
be the unique edge from the perfect matching in X. Since AX(vu, u) ∩ L(X) 6= ∅ for
all u ∈ V (X), we can fix a vertex xu ∈ AX(vu, u) ∩ L(X). Put

σ(u) =
{
σ′(u), if u ∈ L(X),
xu, if u ∈ V (X) \ L(X)

for all u ∈ V (X). Clearly, the map σ is expansive.
Let us show that Γ(X,σ) is strongly connected. Fix a proper edge subset E′ ⊂

E(X). Since X is connected, there is a vertex v ∈ V (X) with EX(v) ∩ E′ 6= ∅ and
EX(v)∩(E(X)\E′) 6= ∅. If vxv ∈ E(X)\E′, then e→ vxv in Γ(X,σ) for all e ∈ EX(v).
Thus, assume that vxv ∈ E′ and fix an edge uv ∈ E(X) \ E′. Since the restriction
σ|L(X) is a cyclic permutation, there exists m ≥ 1 such that σm(σ(v)) ∈ AX(u, v). Let
m0 be the smallest such an m. Then σm0−1(σ(v)) = σm0(v) ∈ AX(v, u). Therefore,
uv ∈ E([σm0(v), σm0(σ(v))]X). By Lemma 2.3, this implies the existence of an edge
e ∈ E([v, σ(v)]X) with e→ uv in Γ(X,σm0). By Remark 3.18, the edge uv is reachable
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from e in Γ(X,σ). Finally, the construction of σ yields [v, σ(v)]X ⊂ [σ(xv), σ(v)]X
which means that uv is reachable from vxv in Γ(X,σ). Thus, Lemma 2.2 asserts that
Γ(X,σ) is strongly connected.

Theorem 3.20. For every tree X with |V (X)| ≥ 3 there exists an anti-expansive map
on V (X) with a strongly connected Markov graph.

Proof. First, let X be a star with V (X) \ L(X) = {u0}. Consider an almost cyclic
permutation on V (X) with fix σ = {u0}. Clearly, σ is anti-expansive. Moreover, Γ(X,σ)
is a cycle thus a strongly connected digraph.

Further, we use induction on |V (X)|. If |V (X)| = 3, then X ' P3 ' K1,2 is
a star. Therefore, induction basis trivially holds. Now suppose |V (X)| ≥ 4. Without
loss of generality, we can assume that X is not a star. Then there exists a vertex
u0 ∈ L(X − L(X)). Obviously, L(X) ∩NX(u0) 6= ∅. Hence, we can consider the tree
X ′ = X − (L(X) ∩NX(u0)). Trivially, |V (X ′)| < |V (X)|. By induction assumption
there exists an anti-expansive map σ′ : V (X ′) → V (X ′) with a strongly connected
Markov graph Γ′ = Γ(X ′, σ′). Note that σ′(u0) 6= u0 as u0 ∈ L(X ′) and |E(X ′)| ≥ 2
(as X is not a star).

Since u0 ∈ L(X ′), there exists a unique vertex x0 adjacent to u0 in X ′. Also, we
have |V (Γ′)| = |E(X ′)| ≥ 2. Combining this fact with the strong connectedness of Γ′,
we obtain the inequality d−Γ′(u0x0) ≥ 1. But u0 is a leaf vertex in X ′. Therefore, there
exists an edge y0y ∈ E(X ′) with σ′(y0) = u0 and σ′(y) 6= u0.

Let L(X) ∩NX(u0) = {x1, . . . , xm}, m ≥ 1. Consider the following map:

σ(u) =





x1, if u = y0,

xi+1, if u = xi for i 6= m,

u0, if u = xm,

σ′(u), otherwise

for all u ∈ V (X). Then σ is anti-expansive map and Γ′ is a subgraph of Γ(X,σ).
Moreover, Γ(X,σ) contains the path

P = {y0y → u0x1 → · · · → u0xm → u0x0}.

Since both edges y0y and u0x0 lie in Γ′ and Γ′ is strongly connected, we can conclude
that Γ(X,σ) is strongly connected as well (as it contains the spanning strongly
connected subgraph Γ′ ∪ P ). This proves the theorem.
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