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Aim of the paper

• develop and programme GRF model, and develop programme for it

Main task

• analyse results and limitations of it for image segmentation using developed model



Gibbs random fields

Gibbs random field a set of random variables 𝑋 = {𝑋𝑖, 𝑖 ∈ 𝑆} defined on finite set = {1, … , 𝑁},  

with respect to neighbourhood ℵ = {ℵ i , i ∈ S}, which obeys Gibbs distribution (also term 

Gibbs measure is is used):

𝑃 𝑋 = 𝑥 =
1

𝑍
∗ exp{−

1

𝑇
𝐸(𝑥)}

where 𝑍 is a constant used to normalise distribution: 𝑍 = σ𝑥 𝑋 exp{−
1

𝑇
𝐸(𝑥)}. 𝑇 is 

temperature constant which is generally assumed to be equal to 1.  𝐸 𝑥 is energy function 

which is equal to the sum of clique potentials.

𝐸 𝑥 = ෍

𝑐 𝐶

𝜙𝐶 𝑥𝐶

Clique 𝐶 ⊆ 𝑆



Markov random fields

All nodes in 𝑆 are related to each other through the neighbourhood system ℵ = {ℵ i , i
∈ S}, where ℵ(i) is a subset of 𝑆, which consists of neighbouring to 𝑖, nodes. A node cannot 
be a neighbour to itself. For a finite set of nodes 𝑆 = {1, … , 𝑁}, MRF is a family of random 
variables 𝑋𝑖, 𝑖 ∈ 𝑆 ,which probability function, with relation to the neighbourhood system ℵ
satisfies the following conditions [1]:

1) 𝑃 𝑋 = 𝑥 > 0 – positivity property, which ensures that all possible values of 𝑋 have a 
positive probability of occurring;

2) 𝑃 𝑋𝑖 = 𝑥𝑖|𝑋𝑗 = 𝑥𝑖 , 𝑗 ≠ 𝑖 = 𝑃[𝑋𝑖 = 𝑥𝑖|𝑋𝑗 = 𝑥𝑗 , 𝑗 ∈ ℵ i ] – Markov property

The drawback of representing MRFs through local conditional probabilities is that complete system representation is 
represented through joint probability, and there is no direct method to derive joint probability 𝑃 𝑋1,… , 𝑋𝑁 from 
conditional 𝑃[𝑋𝑖|𝑋𝑗, 𝑗 ∈ ℵ i ] .



Hammersley-Clifford theorem

An MRF is characterized by its Markov property which is a local property, while 
Gibbs random fields are characterized by the Gibbs distribution, which is a global 
property. 

The Hammersley-Clifford theorem allows us to equate these properties. 

Hammersley-Clifford theorem states the equivalence of Markov Random Field and 
Gibbs Random Field defined on the same graph, with the same set of random 
variables 𝐹 set on the set 𝑆, with respect to the same neighbourhood system ℵ



Redefined Gibbs random fields (1)

Gibbs random fields are models for a set of random variables 𝑋 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) on an 

undirected graph, where these variables are organized in cliques 𝑋𝑐 ,where 𝐶 is a set of 

cliques; and for each clique the compatibility function Ψ𝐶(𝑋𝐶) is defined, such that the 

probability distribution 𝑝 over random variables, has the following form:

𝑃 𝑋 = 𝑥 =
1

𝑍
ෑ

𝑐 𝐶

Ψ𝑐 𝑋𝑐 , (1)

The probability of 𝑥 is taken with the respect to the joint distribution of the 𝑋𝑐 [5]

A clique is a subset of nodes which all are connected with each node in a subset.

𝑍 is a normalization function to ensure probability distribution, called partition. 



Redefined Gibbs random fields (2)

Probability distribution is positive for all domains and can be represented as a Gibbs 

measure.

𝑃 𝑋 = 𝑥 =
1

𝑍
∗ exp{−

1

𝑇
𝐸(𝑥)}

𝐸 𝑥 = ෍

𝑐 𝐶

𝜙𝐶 𝑥𝐶

𝜙𝐶 𝑥𝐶 = −log(Ψ𝐶(𝑥𝐶)) − 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑛 𝑐𝑙𝑖𝑞𝑢𝑒 𝐶

On such graphs, the Markov property is ensured



Segmentation as pixel labeling task

For each pixel in the picture 𝑠 ∈ 𝑆 the feature vector is defined. 

For the picture in general it can be represented as 𝑓 = { Ԧ𝑓𝑠 : 𝑠 ∈ 𝑆} .

The features most commonly include different colour characteristics and brightness. 

The set of labels is defined, and for each pixel, a label is assigned 𝑥 = {𝑥𝑠 : 𝑠 ∈ 𝑆}, 𝑥𝑠∈ Λ. 

Which results in a Λ 𝑁𝑀 variants of labelling, where N *M is the size of the image.

Using GRF for segmentation, means to find optimal labeling from the set of all possible 

labelings, by maximasing posteriory probability of getting label given feature. 

𝑥𝑀𝐴𝑃 = argmax
𝑥∈Λ

𝑃(𝑥|𝑓) = argmin
𝑥∈Λ

𝐸(𝑥)



Pixel labels

Pixel labels are represented through Gaussian distribution, where mean and variance are estimated through 

empirical means.

𝑃 𝑓𝑠 𝑥𝑠 =
1
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𝑆𝑥 is a set of pixels.



Problem formulation

• Let X be coloured image we observe and which we consider a 
representation of random field. The problem, is to find true labeling 
field for this image, where each of the labels correspond to one of the 
pixels.

• Two layer model was used: one layer of pixels and its values,; and 
second is label layer.



Energy function
𝜙𝐶 denotes clique potential of clique 𝐶 with labeling  𝑥𝐶 .

We focus only on cliques of two sizes, assigning for all other potential functions value zero, which is considered 

satisfactory to model spatial dependencies: singleton (𝑐0 )– node itself, and doubleton {𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 }– cliques of two 

nodes (node and it’s neighbour).

𝐸 𝑥 =෍

𝑐 𝐶

𝜙𝑐 𝑥 = ෍

𝑖𝐶1

𝜙𝐶1 𝑥𝑖 + ෍

(𝑖,𝑗)𝐶2

𝜙𝐶2 𝑥𝑖 , 𝑥𝑗 +⋯

Singleton here is proportional to the probability of features given label: log(P(f | x)).

Doubleton prefers smoothness, meaning that neighbouring pixels belong to the same label.

𝜙𝐶2 𝑥𝑖 , 𝑥𝑗 = 𝛽𝛿 𝑥𝑖 , 𝑥𝑗 = ൝
−𝛽 𝑖𝑓 𝑥𝑖 = 𝑥𝑗
+𝛽 𝑖𝑓 𝑥𝑖 ≠ 𝑥𝑗

We can now define 
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Colour spaces: RGB

It is coordinate system represented by three primary 
colours (Red, Green, Blue) and each colour is 
represented by a vector stating intensity of each of 
the values (from 0 to 255).

However, while RGB colour space is useful in 

displaying colour, is not perfect. Disadvantages of 

RGB colour space include:

• Differently displayed on different devices, 

• not perceptually uniform,

• the difference between colours is not linear.



Colour spaces: CIELAB 

CIELAB color space, also referred to as 
L*a*b*. 

This colour space also present colours in 
vectors of size three: L indicates lightness of 
the colour, while a and b representing two 
scales from red to green and from blue to 
yellow. While it is not perfect it was created 
to be perceptually uniform and one of the 
most commonly used. 



Colour spaces: Ohta’s colour space  

Another colourspace used was Ohta’s colour
space also known as I_1 I_2 I_3, which is 
less known but was developed for 
segmentation and is easy to transform to 
from RGB system 



Algorithm

1.Initialise

2.Optimize

3.Reconstruct and save segmented image



Initialise: initial parameters

BETA = 1

TEMPERATURE = 5.0

COOLRATE = 0.95

NEIGHBORHOOD= [(-1,0) , (1,0) , (0,-1) , (0,1)]

beta_variances, beta_neighbours, coefcol, coefbrightnes, diffort=dt

segmentss=[2,3,4,5,6,10]

iterationss=[100000,1000000,2000000,3000000,5000000]



Initialise: image



Initialise: energy function



Optimization algorithm: simulated annealing

1. Initiate the Temperature 𝑇.

2. Compute the energy of the current state of the system.

3. Introduce slight changes to the current state of system.

4. Compute the new energy of the new state and compare it with energy of previous 

state.

5. If energy improved (is lower for new state), accept new state of the system. Else, 

accept new state of the system with some small probability

6. Decrease the temperature.

7. Repeat from step 3, till temperature decreased sufficiently (or the set number of 

iterations are used).



Energy functions



Energy functions



Energy functions



Energy functions



Reconstruct and save



Results: colourspace

Colourspace -

greyscale

Segments – 2

Energy function – basic 

(calculateEnergy_bw)

Iterations 1000000

T-4.0

Colourspace – RGB

Segments – 2

Energy function –

calculateEnergy_colour

Iterations - 1000000

T-4.0

Colourspace – L*a*b*

Segments – 2

Energy function –

calculateEnergy_colour

Iterations - 1000000

T-4.0

Colourspace – L*a*b*

Segments – 2

Energy function –

calculateEnergy_colour

without utilizing 

lightness parameter

Iterations - 1000000

T-4.0

Colourspace – Ohta

Segments – 2

Energy function –

calculateEnergy_clr

(with coefficients bv-

0.25_bn2-0.75)

Iterations - 1000000



Results: number of iterations 

Colourspace - greyscale

Segments – 2

Energy function – basic 

(calculateEnergy_bw)

Iterations - 2000000

T-10.0

Colourspace – L*a*b*

Segments – 2

Energy function –

calculateEnergy_clr (with 

coefficients bv-0.25_bn2-

0.75)

Iterations - 2000000

T - 5

Colourspace – OHTA

Segments – 2

Energy function –

calculateEnergy_clr (with 

coefficients bv-0.25_bn2-

0.75)

Iterations - 2000000

T - 5

Colourspace – OHTA

Segments – 2

Energy function –

calculateEnergy_clr2 

(with coefficients 

coefcol-0.1_coefb-

0.1_dif-2_bv-0.25_bn2-

0.75)

Iterations - 2000000

T - 5

Colourspace – L*a*b*

Segments – 3

Energy function –

calculateEnergy_clr22 

(with coefficients 

coefcol-0.01_dif1-

1_difborders-0.1-_bv-

0.5_bn2-0.5)

Iterations - 2000000

T - 5

Colourspace – L*a*b*

Segments – 3

Energy function –

calculateEnergy_clr22 

(with coefficients 

coefcol-0.01dif1-

1_difborders-0.1_bv-

0.5_bn2-0.5)

Iterations - 2000000

T - 5



Results: weighted energy function

Colourspace – L*a*b*

Segments – 3

Energy function –

calculateEnergy_clr22 

Coefficient for first sum - bv-0

Coeficient for second sum in energy 

function - bn2-1

Iterations - 1000000

T - 4

Colourspace – L*a*b*

Segments – 3

Energy function –

calculateEnergy_clr22 

Coefficient for first sum - bv-1

Coeficient for second sum in energy 

function - bn2-0

Iterations - 1000000

T - 4

Colourspace – OHTA

Segments – 2

Energy function – calculateEnergy_clr

(with coefficients coefcol-10_coefb-

20_dif-2_bv-0_bn2-1)

Coefficient for first sum - bv-0

Coeficient for second sum in energy 

function - bn2-1

Iterations - 2000000

T - 4

Colourspace – OHTA

Segments – 2

Energy function – calculateEnergy_clr

Coefficient for first sum - bv-1

Coeficient for second sum in energy 

function - bn2-0

Iterations - 2000000

T - 4



Results: iterations

Colourspace – RGB

Segments – 4

Energy function – calculateEnergy_colour

Iterations - 100000

T – 4

Colourspace – RGB

Segments – 4

Energy function –

calculateEnergy_colour

Iterations - 1000000

T – 4

Colourspace – L*a*b*

Segments – 2

Energy function –

calculateEnergy_colou

r

Iterations - 100000

T - 4

Colourspace – L*a*b*

Segments – 2

Energy function –

calculateEnergy_colou

r

Iterations - 1000000

T - 4



Results: neighborhood

Colourspace - greyscale

Segments – 2

Energy function – basic (calculateEnergy_bw)

Iterations - 1000000

T-4.0

Neighbourhood includes four pixels

Colourspace - greyscale

Segments – 2

Energy function – basic (calculateEnergy_bw)

Iterations - 1000000

T-4.0

Neighborhood includes eight pixels



Conclusions: simple images

The best results were achieved on flat images, without gradient or significant shadows or much details. 
Greyscale is enough for such images and demonstrates great results.



Conclusions: gradient

Simple gradient in pictures is not recognized as one segment



Conclusions: shadows

While people recognize the colour in shadow and in light as one colour, none of the colourspaces reflect that. 
None of the energy functions or colourspaces used were efficient in combating the problem



Conclusions: number of labels

Another problem, is inability to effectively control number of labels, or more precisely, segmentation of the 
image on the greater amount of labels. 

Colourspace - greyscale

Segments – 3

Energy function – basic 

(calculateEnergy_bw)

Iterations - 2000000

T-10.0

Colourspace - greyscale

Segments – 4

Energy function – basic 

(calculateEnergy_bw)

Iterations - 4000000

T-10.0

Colourspace - greyscale

Segments – 4

Energy function – basic (calculateEnergy_bw)

Iterations - 100000000

T-4



Conclusions: segments

The last identified problem of universal usage of MRFs for image segmentation, is how image is being 
segmented itself. As there are no element of control or learning, and energy function are dependent only on 
colour feature (even if in different formats), segments identified are homogemeus but segmentation is not 
semantic. 



Conclusions

While GRFs introduce benefits in a way of presenting images and have definitely 

use in image processing and segmentation, they are in no way universal tool and 

cannot be applied to any image without preprocessing, some form of supervision or 

learning.

Such model is much more useful for simple images with clear foreground and 

background, and only two main segments.
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Thank you for your attention!
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