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ABSTRACT
Sometimes it is impossible to use the original image and only anonymized

version of it is available (e.g., faces of the people or plate numbers on cars are
blurred). In other words, we can use only edited version of the original image.
Sometimes the class of the edited image is different from original one and we want

to avoid this.

This work is about gradient method which allows to get the class predicted
for unchanged image for the one with blurred sensitive part by applying small

changes in the edited area only.



INTRODUCTION

Cameras are now commonplace and used for a variety of purposes, ranging
from surveillance to information acquisition to the advancement of Al-driven
technology. Every day, vast volumes of picture and video data are gathered in
public for the advancement of autonomous cars, high-definition maps, and smart
retail analytics.

Companies, government organizations, and individuals are expected to
encrypt personal information, which includes biometric data in photographs and
videos, as a result of increasing regulations across the world, such as the GDPR in
the EU, the CCPA in the US, the CSL in China, and the APPI in Japan. Although
various regions' privacy laws provide different legal bases for data gathering and
distribution, they all share one thing in common: consent.

Data privacy is a big concern in the digital age. Concerns about image data
usage affect the way the data is shared and publicized. When it comes to image
data, we may want to make some information not visible for others.

There are multiple ways to make some part of the image anonymized, but
the most popular are pixelating and blurring. The main problem of these methods
is that the classification model may predict the class which is different from the
class of the original image if it is not robust (e.g. trained on some augmented data
with the particular type of data anonymization). In case some part of the image is
blurred we can try to apply gradient method on the edited (blurred) area and
achieve the same class that is predicted for the original image.

In this work gradient method and its application for anonymized images
adaptation to existing model is explained. Practice part includes experiment with
ImageNet test set, where the sensitive part of the image was blurred and fast
gradient method was applied to edited images with wrong class. Accuracy of the
model on images with gradient method applied is calculated to estimate the results.

The first chapter is about the problem of anonymized images and

classification models, also contains some examples.



The second chapter is about Fast Gradient Sign Method (FGSM), which is
the main inspiration for this work — it is used for adversarial attacks, which is
completely the opposite task, but in both tasks gradient values are used to change
the image.

The third chapter is about gradient method application on the ImageNet test

set and results estimation.



CHAPTER 1. Anonymized data problem

1.1. Data anonymization definition and reasoning

Data anonymization is the process to protect private or sensitive information
by its transformation in such a way that a data subject can not be identified. It
refers to data encryption or stripping identifying or personal information from data.
In other words, except for the group responsible for the anonymization, it should
be difficult to extract insights on a specific person from anonymized data. When
handled correctly, such data is not confidential by itself and therefore is not subject
to data privacy laws. Anonymization entails the removal of Plls such as faces and
bodies, as well as license plates, from image and video files. This protects publicly
identifying details in pictures and videos from being identified by facial or license

plate recognition devices.

Healthcare, business, government and other organizations store more and
more individuals’ information locally or using cloud servers, so data

anonymization is crucial to prevent security violation.

Data anonymization is used in most industries, that deal with sensitive data
to reduce the risk of unintended personal information disclosure data when sharing

data between countries, companies, departments etc.

There is still the possibility that anonymized data will lose its anonymity
over time. Any of the methods previously anonymous data sets have been de-
anonymized include combining the anonymized dataset with other data, innovative

methods, and brute strength. The subjects of the data are no longer anonymous.

Anonymized data is cross-referenced with other data sources to re-identify
the anonymous data source, which is known as de-anonymization. The two most
common approaches to anonymizing relational data are generalization and

perturbation. Pseudonymization is the method of obscuring data with the potential



9

to re-identify it later, and it is one way for businesses to preserve data in a HIPAA-

compliant manner.

Generalization, suppression, anatomization, permutation, and perturbation

are the five methods of data anonymization operations.

In order to comply with relevant privacy laws, a variety of technological and
operational measures are available. Basic standards of data gathering and
processing (e.g. GDPR's purpose restrictions, data minimization, and storage
limitation) to specific technical means like encryption and decentralized processing

to "classic” TOMs like privacy are all used to improve enforcement.

In order to comply with relevant privacy laws, a variety of technological and
operational measures are available. Basic standards of data gathering and
processing (e.g. GDPR's purpose restrictions, data minimization, and storage
limitation) to specific technical means like encryption and decentralized processing

to "classic” TOMs like privacy are all used to improve compliance.

1.2 Image data anonymization and classification issue

Image data anonymization in most cases is about blurring, pixelating or cutting
out some sensitive part of the image (Figure 1.1).

If classification model is not trained on data with particular type of
anonymization, then it is likely to struggle with anonymized images (Figure 1.2.).
Model can be robust to such images if it is trained on augmented data, but it is not
always possible and we should deal with the classification model given as it is. In
this case some additional pre- or postprocessing of the input image or its model
output is needed.

In this work gradient method is used to change the image with blur
anonymization in such a way that model will predict the class of the original

Image, nevertheless the image remains anonymized.



10

Blob Anonymization

Pixelate Anonymization

Blur Anonymization

Figure 1.1. Types of image data anonymization

"german shepherd" "chow"
43.4% confidence 51.93% confidence

Original image Blur anonymized image

Figure 1.2. MobileNetV2 predict for original and anonymized images
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CHAPTER 2. Gradient method

2.1. Gradient Descent

Gradient Descent is a very general optimization algorithm that can find optimal
solutions to a wide variety of problems. Gradient Descent's basic concept is to

iteratively tweak parameters in order to minimize a cost function.

To implement Gradient Descent, you must first calculate the cost function's

gradient with respect to each model parameter 6;. In other words, you must
determine how much the cost function would change if 8; is changed slightly. A

partial derivative is what this is called.

Instead of computing partial derivatives separately, using equation above they can
be computed in one go. The gradient vector V4 J(8) contains partial derivates for
all 6; of the cost function J(6):

9
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Once the gradient vector is calculated, which points uphill and we need to go in the
opposite direction (minimizing loss function). This is done by subtracting V, J(6)

multiplied by learning rate n from @ iteratively:

gnextster) = g _ py, J(0)
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2.2. Fast Gradient Sign Method (FGSM)

Several machine learning models, like neural networks, routinely misclassify
adversarial examples—inputs created by adding tiny yet deliberately worst-case
perturbations to dataset examples, resulting in the algorithm producing an incorrect
response with high confidence. Nonlinearity and overfitting were initially proposed
as explanations for this phenomenon. Instead, it is argued that the linear structure
of neural networks is the primary cause of their susceptibility to adversarial
perturbation. This theory is backed up by recent quantitative findings, and it
explains for the first time the most intriguing aspect of them: their ability to
generalize through architectures and training sets. This viewpoint leads to a quick

and easy way to generate adversarial examples.

Adversarial examples make many machine learning models, including state-
of-the-art neural networks, vulnerable. That is, these machine learning models
misclassify data distribution examples that are only slightly different from
correctly categorized examples. Many models with different architectures trained
on different subsets of the training data misclassify the same adversarial example
In many situations. As a result, adversarial examples can reveal fundamental flaws

in our training algorithms.

The cause of these adversarial examples was unknown, but speculative
theories indicated it was due to deep neural network nonlinearity, perhaps coupled
with inadequate model averaging and regularization of the strictly supervised
learning problem. These speculative theories are shown to be unnecessary. In high-
dimensional spaces, linear behavior is enough to provide adversarial examples.
This perspective allows one to implement a fast method for producing adversarial

examples, making adversarial training feasible.

Adversarial images are created with purpose to confuse neural network, so
the image is misclassified by the model. The changes applied to the image are

indistinguishable to the human, but they make the model fail to predict correctly
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the contents of the image. There are a few types of such attacks and FGSM is one
of them. It is white box attack, which means that there should complete access to
the model attacked. The example of such attack is Figure 2.1. Attacker adds
perturbations to the input image with panda, and the model predicts this

transformed image as gibbon.

The fast gradient sign method (FGSM) uses the gradient values of the neural
network to create adversarial example. The method uses input image gradients of
the loss to create a new image with maximized loss, which is called the adversarial

image. The expression to achieve adversarial image is the following:
adv_x = x + € *sign(V,. J(0,x,y)),
where

e adv_x —adversarial image,

e X —original input image,

e y—original input label,

e ¢ — multiplier to ensure the perturbations are small,
e O — parameters of the model,

o J—loss.

+.007 x

=g T+
* en(Val(0:2.9)  ign(v,(6,2,1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 2.1. Example of using FGSM to create adversarial image
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In this case, gradients are taken respectively to the input image, and the
objective of the method is to create the image that maximizes the loss.
Perturbations are calculated from how much each pixel in the input image
contributes to the loss value. This method is called fast because it is relatively easy
to find how much each pixel contributes to the loss, and using chain rule it is easy
to find required gradients. Fast gradient sign method is used to fool already trained

model only — it does not change the parameters (weights) of the model.
2.3 Relevance to the problem and changes

The idea of FGSM for adversarial attacks is completely the opposite to the
adaptation of the anonymized image, nevertheless the method used for this is pretty
similar to FGSM attack (Figure 2.2.).

"chow" —%_1(8,x,y) "german shepherd"
max(lx) 27.14% confidence
o v |

- 005 *
(3 iterations)

Figure 2.2. Gradient method applied on blur anonymized image iteratively

To change the image with the blur anonymized part we should change the

formula in the following way:

Vx
max(V,. )

adapt_x = clip(x[blur] — € * J (0, x,y)[blur]),

where

e adapt x —adapted blurred part of the image,

e Dblur — blurred part mask of the image,



x — original input image with blurred part,

y — original input label,

€ — multiplier to ensure the perturbations are small,
clip(t) — function max(min(t, -1), 1),

6 — parameters of the model,

o J—loss.

This process should be done iteratively until the max number of iterations

performed or target class is achieved.

only.

Notice, that in this case we change the image in the blur anonymized part

15
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CHAPTER 3. Adaptation experiment on ImageNet

For the experiment ImageNet test set is used and model MobileNetV2 is

used for image classification.

3.1. ImageNet description

For the practice part ImageNet test set is used. The ImageNet is a massive
graphic library created to aid in the development of visual object recognition
application. The project has hand-annotated over 14 million photos to indicate the

objects depicted, with bounding boxes given in at least one million of the images.

There are over 20,000 categories in ImageNet, with a common category like
"balloon™ or "strawberry" containing several hundred images. ImageNet provides a
free archive of annotations for third-party image URLS, but the images themselves

are not owned by ImageNet.

Since 2010, the ImageNet project has hosted the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), an international software competition in
which software programs compete to correctly identify and detect objects and
scenes. A "trimmed" list of 1,000 non-overlapping groups is included in the

challenge.

3.2.  MobileNet description

MobileNet is a convolutional neural network which is used for image
classification and mobile vision. Other models exist, but what makes MobileNet

unique is that it needs relatively little computational resources to run or implement



transfer learning (Figure 3.1).
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Figure 3.1. Ball chart reporting the Top-1 accuracy vs. computational complexity

This makes it ideal for mobile devices, embedded systems, and computers

with poor computing performance or no GPU, without compromising the precision

of the results substantially. It's also ideal for web browsers, which have limitations

in terms of computing, graphics processing, and storage.

MobileNets, which are built on a streamlined architecture that uses

depthwise separable convolutions to create light weight deep neural networks, are

proposed for smartphone and embedded vision applications. Two basic global

hyper-parameters that effectively trade off latency and accuracy are introduced.

Depthwise separable filters, also known as Depthwise Separable

Convolution, are core layer of MobileNet. Another aspect that improves efficiency

Is the network structure. Finally, the width and resolution of the image can be

adjusted to balance latency and accuracy.



In MobileNetV2, a better module is introduced with inverted residual

structure (Figure 3.2.). Non-linearities in narrow layers are removed from the

structure.

conv 1x1, Relub

f

Dwise 3x3,
stride=s, Relub

input )

MobileNetV1

Add conv 1x1, Linear

! f

conv 1x1, Linear

f Dwise 3x3,
stride=2, Relu6

Dwise 3x3, Relu6 T

Conv 1x1, Relué

Conv 1x1, Relu6

T/ 1

( . input ) ( _ input )
Stride=1 block Stride=2 block

MobileNetV2

Figure 3.2. The architectures of MobileNetV1 and MobileNetV2.

3.3. Gaussian blur

The Gaussian blur functionality is obtained by blurring (smoothing) an

Image using a Gaussian function to minimize the noise level. It can be thought of

as a nonuniform low-pass filter that maintains low spatial frequency while

reducing image noise and minor information. It's usually done by using a Gaussian

kernel to convolve a picture.

This Gaussian kernel in 2-D form is expressed as:

GZD(x! y: 9) =

1 _x%4+y?
e 20?2
2mo? ’
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Where ¢ is the standard deviation of distribution and x and y are the position
indices. The value o of determines the magnitude of the blurring effect around a

pixel by controlling the variation around a mean value of the Gaussian distribution.

3.4. Blur anonymization application

ImageNet is not already anonymized, so synthetic way of anonymization

was used which is explained here.

Firstly, gradient is computed, so we can define the most sensitive part of the

Image as the area that has the highest absolute gradient values (Figure 3.3).

The size and shape of the area is fixed in this experiment — circle with radius

40, given the size of the image is reshaped to 224x224 for this model.

The sum of absolute gradient values for the area with randomly selected
center coordinates on the image are calculated. This random picking of the center

and gradient computation is done 100 times, and then area with highest sum of

absolute gradient values is selected as area to apply gaussian blur with factor 3
(Figure 3.4.).

Figure 3.3. Left: original image, right: gradient values of the image
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Figure 3.4. Area with highest absolute gradient values

3.5. Experiment description

In 2.2. gradient method was applied to the blur anonymized image with a
german shepherd on it which was misclassified as chow. After 3 iterations with

epsilon equals to 0.05 the predicted class was correct.

ImageNet test set contains 100,000 of images, so applying the gradient

method to all of them will give us a possibility to estimate the results.
The steps for each image were followed:

1) Predicting class for the original image.

2) Applying blur anonymization, as described in 3.3.

3) Predicting class for the image with blurred area.

4) If the classes predicted in steps 1) and 3) are different then gradient method
with epsilon and number of iterations equal to 0.05 and 10 respectively is
applied to get the correct class.

Sometimes it is not possible to get the correct result with this number of

iterations, but more iterations are applied more distinguishable to the human eye
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those changes are. To keep this method fast and make changes with the image

relatively not visible small number of iterations is used.

Python is used as a programming language and TensorFlow framework is used
for modeling. Some other packages are used for image preprocessing and results

visualization are pandas, numpy, cv2, matplotlib.

3.5. Experiment results

After blurring the most sensitive part of the image (as described in 3.3.)
47,679 out of 100,000 images was predicted as class, which is different from the
class of original image. Gradient method is applied only to those images which

changed their class after blur anonymization application.

After gradient method was applied, 45,990 out of 47,679 anonymized
images (96.46%) had the same class as before anonymization added. 1689 out of
47679 images (3.54%) did not change the class same to anonymized image (Table
3.1).

Result Number of images Ratio
Successful (label is corrected) 45,990 96.46%
Successful (label is not corrected) | 1,689 3.54%

Table 3.1. Blur anonymized images adaptation using gradient method on
ImageNet test set

Overall distribution of resulting labels is on the Figure 3.5. This shows that
52,321 (52.3%) images have their classes changed by blur anonymization, 45,990
(46%) images have their classes successfully corrected by gradient method and

only 1,689 (1.7%) images remained incorrectly classified after gradient method.
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class is not changed after anonymization

1.7%

(1689 images) gradient method did not correct the class

46.0%
(45990 images)

gradient method corrected the class

Figure 3.5. Pie chart of test set distribution

The most difficult class to adapt is “basset” — only 28 out of 43 images
(65.11%) of this class were correctly predicted gradient method application. Some
other classes that are hard to adapt are “standard schnauzer” (40 out of 54
(74.07%)) are correct and “hippopotamus” (15 out of 19 (78.95%)).

Overall class accuracies histogram look as follows (Figure 3.6.)
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Figure 3.6. Class accuracies histogram
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SUMMARY

Data anonymization is essential nowadays. The amount of publicly opened
information is growing, so appears more restrictions and attention is more pointed

than before.

When it comes to image data there are plenty of techniques to make
sensitive parts of the image anonymized. Most popular simple techniques are blob,
blur and pixelate anonymization, but also some other Al-driven techniques are
used to make some parts of image anonymized. Some of them are used to solve the
problem of image segmentation, localization or/and recognition to identify the
sensitive area of the image and then some simple techniques mentioned above,
others use auto-encoders to change the image sensitive part, so the anonymized
part does not change the class, but looks unrecognizable (e.g., a face is transformed
Is such a way that it looks as face of another person or a numberplate’s letters and

digits are substituted by other characters).

Gradient descent is an optimization algorithm to train a machine learning
model. It's built on a convex function that iteratively tweaks its parameters to
reduce a function to its local minimum. Fast Gradient Sign Method (FGSM) is an
algorithm to create adversarial images — images that have been altered with small
values, such that image looks almost the same to the human eye but is
misclassified by the model. The FGSM creates an adversarial example by using the
neural network's gradients. The method creates a new image that maximizes the
loss for an input image by using the gradients of the loss with respect to the input

image.

In this work gradient method for blur anonymized images adaptation is
being presented. It works somewhat similar to FGSM and the main difference is
that we move against the direction of the gradient. Also, instead of sign function
normalization is used for gradient values. Computed gradient values multiplied by

small slope are subtracted from the blurred area of the image only, to ensure that
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only anonymized part of the image is being changed. Doing this process iteratively

the class similar to the class of the original image can be achieved.

The gradient method for blur anonymized images adaptation is proved on
ImageNet test set using MobileNetVV2 model for image classification. The most
sensitive part of each image was identified by the largest sum of absolute gradient
values in the area. After this the area is anonymized using gaussian blur. Then
gradient method is used to revert class of the newly created image to the original

one it is changed.

For the experiment on ImageNet test set gradient method is applied
iteratively with maximum number of iterations equals to 10 and epsilon (multiplier
to subtract small values from blurred image) equals to 0.05. After gradient method
was applied, 45,990 out of 47,679 anonymized images (96.46%) had the same
class as before anonymization added and only 1689 out of 47679 images (3.54%)
did not change the class same to the anonymized image. The results of the
experiment prove the effectiveness of the gradient method used for blur

anonymized images adaptation.
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APPLICATION A. Gradient method application (Python code)

#!/usr/bin/env python
# coding: utf-8

# In[1]:

import os
import random
import numpy as np

import pandas as pd

import tensorflow as tf
import matplotlib as mpl
import matplotlib.pyplot as plt

import cv2

# In[2]:

mpl.rcParams|['figure.figsize'] = (8, 8)

# In[3]:

def set seed(seed = 42):
"""Set seed for reproducibility.
os.environ['PYTHONHASHSEED']=str (seed)
os.environ['TF_CUDNN DETERMINISTIC'] = 'l' # new flag present in tf 2.0+
random.seed (seed)
np.random. seed (seed)
tf.random.set seed (seed)

set seed()

# In(4]:

pretrained model = tf.keras.applications.MobileNetV2 (include top=True,
weights='imagenet')

pretrained model.trainable = False

# ImageNet labels

decode predictions = tf.keras.applications.mobilenet v2.decode predictions
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# In([5]:

# Helper function to preprocess the image so that it can be inputted in MobileNetV2
def preprocess (image) :

image = tf.cast(image, tf.float32)

image = tf.image.resize(image, (224, 224))
image = tf.keras.applications.mobilenet v2.preprocess_ input (image)
image = image[None, ...]

return image

# Helper function to extract labels from probability vector
def get imagenet label (probs):
return decode predictions (probs, top=1) [0][0]

# In[6]:

def predict and show (image) :
image probs = pretrained model.predict (image)
plt.figure ()
plt.imshow (image[0] * 0.5 + 0.5) # To change [-1, 1] to [0,1]

_, image class, class_confidence = get imagenet label (image probs)
plt.title('{} : {:.2f}% Confidence'.format (image class, class_confidence*100))
plt.show ()

# In[7]:

def save image(filename, tensor, save dir = './results/'):

return cv2.imwrite (
os.path.join(save dir, filename),

cv2.convertScaleAbs (tensor.numpy () [, :,::-1] * 0.5 + 0.5, alpha=(255.0))

# ### Read image

# In[9]:
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# image path = tf.keras.utils.get file('YellowLabradorLooking new.jpg',
'https://storage.googleapis.com/download.tensorflow.org/example images/YellowLabradorL
ooking new.jpg')

image path = 'C:/Users/daryn/Downloads/IMG 4953.JPG'

image raw = tf.io.read file(image path)

image = tf.image.decode image (image raw, channels=3)

image = preprocess (image)

predict and show (image)

# In[10]:

# cv2.imwrite('./results/original Prada.jpg', cv2.convertScaleAbs (image[0].numpy()[:,
t,::=11 * 0.5 + 0.5, alpha=(255.0)))

save image ('original Prada.jpg', image[0])

# ## Blur

# In[l1l1]:

loss _object = tf.keras.losses.CategoricalCrossentropy ()

# In[12]:

def create adversarial pattern (input image, input label):
with tf.GradientTape () as tape:
tape.watch (input image)
prediction = pretrained model (input image)

loss = loss _object (input label, prediction)
# Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient (loss, input image)
# Get the sign of the gradients to create the perturbation

# signed grad = tf.sign(gradient)

return gradient / tf.math.reduce max(gradient)

# In[13]:



label idx = pretrained model.predict (image)

gradient = create adversarial pattern(image,

plt.imshow (gradient[0]*0.5 + 0.5)

# In[14]:

save image ('grad Prada.jpg', gradient[0])

label idx)

# save_image ('grad blur Prada.jpg', perturbations[0])

# In[15]:

def create circular mask(h, w, center=None, radius=None, channels=3):

if center is None: # use the middle of the image

center = (int(w/2), int(h/2))
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if radius is None: # use the smallest distance between the center and image walls

radius = min (center[0], center[1l],

Y, X = np.ogrid[:h, :w]

dist from center = np.sqrt((X - center([0])**2 +

mask = dist from center <= radius

mask d = np.zeros(shape = (h, w, channels),

for channel in range (channels) :
mask df[:,:,channel] = mask

return mask d

# In[l6]:

w-center[0],

def find best mask(gradient, radius=40, n=100):

radius=40
n = 200
grad max, mask blur = 0, None
for i in range (n):
center = random.randint (0, 224),

mask = create circular mask(224,

(Y-center[1]) **2)

dtype=bool)

random.randint (0, 224)

224,

center,

grad _cur = np.sum(np.abs(gradient[mask]))

if grad cur > grad max:
grad max = grad cur
mask blur = mask

return mask blur

radius)

h-center[1])



# In[17]:

def apply blur(img, mask, factor=3.):
(h, w) = img.shapel[:2]
kW = int(w / factor)
kH = int (h / factor)
# ensure the width of the kernel is odd
if kW % == 0:
kWw -= 1
# ensure the height of the kernel is odd
if kH % == 0:
kH -= 1
blurred img = cv2.GaussianBlur (img, (kW, kH), O0)
out = np.where (mask, blurred img, img)

return out
# In[18]:
mask blur = find best mask(gradient[0])

image blur = tf.convert to tensor([apply blur(image[0].numpy(), mask blur)])

predict and show(image blur)

# In[19]:

save image ('blur Prada.jpg', image blur[0])
# In[21]:

# Get the input label of the image.

# https://gist.github.com/yrevar/942d3alac09ec9e5eb3a

# labrador retriever index = 208

# german shepherd index = 235

target index = np.argmax (pretrained model.predict (image), axis=1) [0]

image probs = pretrained model.predict (image blur)

label = tf.one hot (target index, image probs.shape[-1])
label = tf.reshape(label, (1, image probs.shape[-1]))



perturbations = create adversarial pattern(image blur, label)

perturbations = perturbations.numpy ()

perturbations[0] [~mask blur] = 0

perturbations = tf.convert to tensor (perturbations)

plt.imshow (perturbations[0] * 0.5 + 0.5); # To change [-1, 1] to [0,1]
# In[22]:

predict and show (perturbations)

# In[23]:

save image ('grad blur Prada.jpg', perturbations([0])

# In[25]:

gradient = gradient.numpy ()
gradient [0] [~mask blur] = 0
gradient = tf.convert to tensor(gradient)

save image ('grad area Prada.jpg', gradient[0])

# In[33]:

def display images (image, description):
_, label, confidence = get imagenet label (pretrained model.predict (image))
plt.figure()
plt.imshow (image[0]*0.5+0.5)
plt.title('{} \n {} : {:.2f}% Confidence'.format (description,
label, confidence*100))

print ()

plt.show ()

# In[34]:

perturbations.shape
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# ## Apply FGSM to blurred image

# In[35]:

def apply fgsm(img, mask, correct idx, eps=0.05, max iter=10, display correct=True) :
image probs = pretrained model.predict (img)
label = tf.one hot (correct idx, image probs.shape[-1])

label = tf.reshape(label, (1, image probs.shape[-1]))

for i in range(max_iter):

perturbations = create adversarial pattern(img, label)
adv_x = img.numpy ()
adv_x[0] [mask] -= eps*perturbations([0] [mask]

adv_x = tf.clip by value(adv_x, -1, 1)
img = tf.convert to_ tensor (adv_x)
probs = pretrained model.predict (img)
label idx = np.argmax(probs, axis=1) [0]
label prob = np.max(probs, axis=1) [0]
if label idx == correct idx:
if display correct:
display images (img, f'Epsilon={eps}, step={i+1}")
return img, label idx, label prob, i+l

return img, label idx, label prob, i+l

# In[37]:

res = apply fgsm(image blur, mask blur, target index)
fgsm image = res[0]

# In[38]:

save image ('adapted Prada.jpg', fgsm image[0])

# ## ImageNet

# In[22]:



from tgdm.notebook import tgdm

# In[23]:

IMAGENET PATH = './ILSVRC2012 img test v10102019/test’

# In[24]:

len(os.listdir (IMAGENET PATH))

# In[25]:

from IPython.display import display, Image
display(Image (filename=(os.path.join (IMAGENET PATH,
'ILSVRC2012 test 00000001.JPEG'))))

# In[26]:

image blur masks = dict()

res all = []

items = sorted(os.listdir (IMAGENET PATH)) [:50000]

pbar = tgdm(total=len (items))

def worker (image name) :
global image blur mask, res all
try:
res = {}
image path = os.path.join(IMAGENET PATH, image name)
image raw = tf.io.read file(image path)
image = tf.image.decode image (image raw, channels=3)

image = preprocess (image)

# predict and show (image)
probs = pretrained model.predict (image)
label idx = np.argmax(probs, axis=1) [0]

label prob = np.max(probs, axis=1) [0]

gradient = create adversarial pattern(image, probs)
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plt.imshow (gradient[0]*0.5 + 0.5)

mask blur = find best mask(gradient[0])

image blur = tf.convert to tensor([apply blur (image[0].numpy (), mask blur)])
probs blur = pretrained model.predict (image blur)

label idx blur = np.argmax (probs blur, axis=1) [0]

label prob blur = np.max(probs blur, axis=1) [0]

image blur masks[image name] = mask blur

res = {

'image name': image name,

'initial label idx': label idx,

'initial label prob':label prob,

'blurred label idx': label idx blur,
'blurred label prob': label prob blur,

if label idx == label idx blur:
res_all.append (res)

return

predict and show (image blur)

res fgsm = apply fgsm(image blur, mask blur, label idx, display correct=False)

res.update ({
'fgsm label idx': res fgsm[l],
'fgsm prob': res fgsm[2],
'fgsm iter': res fgsm[3]
'correct': label idx == res fgsm[1]

H)

res_all.append (res)

except Exception as e:

print (image name, e)

finally:

# In|

1:

pbar.update (1)



# from tgdm.contrib.concurrent import process map
# items = os.listdir (IMAGENET PATH)

# process map(worker, items, max workers=10)

from multiprocessing.pool import ThreadPool as Pool

pool size = 12 # your "parallelness"

pool = Pool (pool size)
for item in items:

pool.apply async(worker, (item,))

pool.close()

pool.join ()

# In[ ]:

res all = pd.DataFrame (res_all)

res all['is correct'] = None

res all.loc[res all['initial label idx'] != res all['blurred label idx'],
'is _correct'] = res all['initial label idx']==res all['fgsm label idx']
res all

# In[ ]:

RESULTS DIR = './results'

# In[ ]:

filename identificator = '1-50000'

# In[ ]:

res_all.to csv(os.path.join(RESULTS DIR, f'results {filename identificator}.csv'),

index=False)

# In[ ]:



import json
with open(os.path.join (RESULTS DIR, f'blur masks {filename identificator}.json'),
as f:

json.dump ({k:v.tolist () for k, v in image blur masks.items()}, f)
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APPLICATION B. Results estimation (Python code)

#!/usr/bin/env python
# coding: utf-8

# In[52]:

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
# import tensorflow as tf

import matplotlib.pyplot as plt

# In[29]:

RESULTS DIR = './results'

# In[30]:

mapping = pd.read csv('./mapping/map clsloc.txt', header=None, sep=' ', names=['n'

'idx', 'label'l])

# mapping = dict (zip (mappin))

mapping = dict (zip (mapping['idx'], mapping['label']))
mapping

# In[31]:

dfl = pd.read csv(os.path.join (RESULTS DIR, 'results 1-50000.csv'))

df2 = pd.read csv(os.path.join (RESULTS DIR, 'results 50000-100000.csv"))

df = pd.concat ([dfl, df2])

# In[32]:

df['is changed after blur'] = df["initial label idx"] != df["blurred label idx"]
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# In[33]:

df

# In[34]:

df['initial label'] = df['initial label idx'].map (mapping)

df ['blurred label'] df ['blurred label idx'].map (mapping)

df['fgsm label'] = df['fgsm label idx'].map (mapping)

# In[40]:

sum(df['is correct'].astype (bool))

# In[85]:

# !pip install seaborn

# In[115]:

import seaborn as sns

sns.set (palette='Spectral r')

def func(pct, n):
absolute = int (round (pct/100.%*n))

return "{:.1f}%\n({:d} images)".format (pct, absolute)
df['is correct'].map({np.nan: "class is not changed after anonymization", True:

'gradient method corrected the class', False: 'gradient method did not correct the
class'}) .value counts() .plot.pie(
autopct= lambda pct: func(pct, df.shapel[0]),
figsize=(8, 8),
explode = (0.1, 0, 0),
fontsize=15
)
plt.ylabel('")
plt.savefig('./results/pie blur.jpg', bbox inches = "tight")
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# In[49]:

df label rest = pd.DataFrame ()

df label rest['correct'] =

df [df['is _correct'].notna()].groupby('initial label') .sum(numeric only=False) ['is corr
ect']

df label rest['all'] =

df [df['is_correct'].notna()].groupby('initial label') .count () ['is_correct']

df label rest['correct pct'] = df label rest['correct'] / df label rest['all']

df label rest.sort values(['correct pct'])

# In[67]:

ax = df label rest['correct pct'].hist (figsize=(8, 5))

vals = ax.get xticks()

ax.set xticklabels(['{:,.2%}'.format (x) for x in vals])
ax.set ylabel ('Frequancy (classes)"')
ax.set xlabel ('Class accuracy')

plt.savefig('./results/class_acc_hist.jpg')

# In[47]:

correct label count

# In[48]:

changed label count

# In[ ]:

df.groupby ('initial label').sum('is correct')

# In[9]:



df.shape
print (f'Test set: {df.shapel0]}")

n = sum(df["is changed after blur"])
p_ n = df["is correct"].sum/()
q

n = (df["is correct"] == False).sum()

print (f'Class changed after blurring part of image:

print (f'Class is correct after FGSM applied:

print (f'Class is wrong after FGSM applied: {q_n}/{n}

{p_n}/{n}

{n}")

({p_n/n:.2%})")

({g_ n/n:.2%})")
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