MiHiCTepCTBO OCBITH 1 HAyKH YKpaiH!
Hamonansauii yHiBepcuteT « KneBo-MoOTHISTHChKA aKaaeMisy
®dakyabTer 1HGOPMATHKA

Kadenpa maTemaTruku

Maricrepcbka podora

OCBITHIH CTYTHB — MaricTp

Ha Temy: « KITACUDPIKAIIA TITATEPHIB B PESEPBYAPHUX
OBYNCJ/IEHHSAX 3A JTOITOMOI'OIO ITIOKA3HUKIB JTMHAMIYHOI'O
CTAHY»

Bukonana: cTyaeHTKa 2-r0 pOKy
HaBYaHHS

OCBITHBO-HAYyKOBOi MPOTpamMu
«CHCcTEeMHMI aHAITI3Y,
crnemiaabHOCTI 124 CrcteMHMii aHa3

Posnik Beponika KoctssHTHHIBHA

Kepisauk: I1IBaii H. O.,

KaHauaar (¢i3.-MaT. HayK, JOICHT

Penenszent: [Llamosanx H.B

Ksamdikamitra pobora 3axuiieHa
3 OIIHKOIO

Cexperap EK

« » 20 p.

Kuis — 2022

No
3/

[N

MEPENIK POBIT

Bunbip Temu, 3aTBepAKEHHS iT Ha 3acifgaHHi
Kathegpu Ta 3aKpinieHHs HayKOBOro KepiBHMKa
Y3rogKeHHs KaneHgapHoro rpadika nigrotoBku
KBanigikayiiHoT po6oTw.

O3HalioMneHHs CTyAeHTa 3 KpuTepismu
OLliHIOBaHHA KBanigikayiinHoi po6oTu (n. 8.5).
BuBUeHHS mxepen niTepaTypuw, MaTepianis
apxigiB, NepioguYHMx BugaHb, 36ip Ta
y3arafbHeHHs (haKTiB, AaHnX

CknafjaHHs nnaHy KBanig. poboTu Ta y3rofkeHHs
3 HAYKOBUM KepiBHUKOM

HanncaHHA po3ginis po6oTn, po3pobka
YNCENBbHUX CUMYNALIA ANA aHani3y AUHaMIKK
06paHoi MaTemaTU4HOT Mogeni Ta ii
CMNPOMOXKHOCTI B 3aBfaHHi Knacudikaw,ii
MpOMiIDXXHWIA KOHTPO/Ib BUKOHAaHHSA pOo60TK

HanucaHHA KBanidikaliinHoT po6oTn B LifOMY,
03HaioM/IeHHS 3 i NepLUIMM BapiaHTOM HayKOBOro
KepiBHMKa

Posgin 1: Betyn

(nocTaHoBKa Npo6nemun, TEOPETUYHI OCHOBMU,
ornsg nitTepatypHuX xepen)

Po3gin 2: MeTtoaun
(aHaniTMYHO-AOCNIAHMLbKA YaCTUHA: ONnC Ta
aHani3 BUKOHaHUX KPOKiB Ha LuNsxXy 40 nobynosu
LMHaMIYHOT cucTeMu, WO Knacugikye
306paXKeHHS)

Po3gin 3: PesynbTtatun
(NpoeKTHO-peKoMeHdaL iiHa YacTuHa)

Po3gin 4: BUCHOBKM Ta AUCKYCis

(nifcyMOK pe3ynbTaTiB Ta Or/isif 3anpornoHOBaHMX
noAanbLUNX KPOKiB AN15 LOCIIKEHHS)

MoBHe 3aBepLUEHHS HanucaHHs KBanidikayiliHoi
po60TK, 0hOPMNEHHSA Ti 3rifHO 3 BUMOramu i
NOJaHHA Ha BifryK HayKOBOMY KepiBHUKY
MopaHHs KBaniikauiiHOT poboTn ANst NepeBipKM
NMCbMOBMUX POBIT cTyaeHTiB HaYKMA Ha
BifMOBIAHICTb BUMOram akagemivyHoi
fo06poyecHoCTI,

MofaHHs Ha 30BHILLHIO peLeH3ito

MigroToBKa 0 3aXMCTy KBaniikauiiHOT po6oTu
Ha 3acifaHHi Kadefpu: HanMcaHHA JONOBIAI Ta
BUrOTOB/MIEHHS iMIOCTPATUBHOIO Matepiany
MonepeaHiit 3ax1cT KBanigikaLiiHOT po60Tn Ha
3acifaHHi Kagegpu

TepmiH

BUKOHaHHA

YXOBTEHb
2020p

nuctonag
2020p. -
KBiTEHb
2021p
YyepBEHb
2021p
NUNEHb -
YKOBTEHb
2021p

NNNEHb
2021p
BEPECEHb
2021p. -
rpyieHb
2022p

rpyaeHb
2021p

BEPECEHb-
YXOBTEHb
2021p

nncTonapg
2021p

nncrtonag
2021p

6epeseHb
2022p.

30 yepBHSA
2022p.

cepefnHa
YepBHA
fo 17
YepBHSA
2022p.

17 yepBHA
2022p.

Jara
03Haliomne
HH$l
HayKOBOr0
KepiBHMKa
10.10.2020

01.11.2021

01.06.2021

01.07.2021

23.07.2021

01.10.2021

14.12.2021

05.10.2021

12.11.2021

12.11.2021

20.03.2022

30.06.2022

26.06.2022

14.06.2022

17.06.2022

Mignuc
HayKoBor
0
KepiBHUK
a

MpuMiTK

1 | IMomauus xBaumidikauiiiHoi podoTn Ha Kapeapy 3 Jo 30 30.06.2022
yciMa CynpoOBOKY BATBHUMH TOKY MCHTAMH qepBHS
2022p.
1 | IMyOniunmit 3axucT kBamidikaniiiaoi podoTn 8 mumHA
3. | mepen ex3aMeHALIHHOIO KOMICI€F0 2022p.

I'padix y3romkeHo «17» sxoBTHS 2021p.
Hayxoswmit kepisauk I11Bait Hagis Onexcannpisaa

Buxonaserps kBamidikariiaoi podotun PosHik Beporika KocrsaTrHIBHA
[MPUMITKA: 3aBaaHHA HAa MariCTepchKy poOOTY Ta rpadik MiArOTOBKHM MariCTEpPChKOi poOOTH A0 3aXHUCTY
JPYKYIOTBCSA HA OJHOMY apKyIIi, Ha ABOX CTOPIHKAX.

HauioHanbHWi yHiBepcuTeT «KNEBO-MOrnmnsiHCcbKa akagemisi»

daKy/nbTeT IHPOPMATUKN

Kadgegpa matematmku
OCBITHIW CTYNiHb MaricTp

Hanpsm nigrotoskun “CucteMHuin aHanis”
CneuianbHicTb CUCTEMHUIA aHanis, 124

SATBEPIKYIHO
3aBigyBay Kageapu OniHUK borpgaHa BiTaniiBHa

“ 7 2022 poky

3ABOAHHA
ONA MATICTEPCbKOI POBOTU CTYAEHTY

PoBHIK BepoHili KOCTAHTUHIBHI

1. Tema po6oTu: “Knacudikayis naTepHiB B pe3epByapHUX 064MCNEHHAX 3a
[lONOMOroK NOKa3HUKIB AMHaMiyHOro ctaHy” / “Pattern classification in
reservoir computing with dynamical state measures”

KepiBHUK poboTu LWBaii Hagis OnekcaHapiBHa, cTapwivii BUKNagau,
KaHAnAaaT isnko-mareMaTnyHux Hayk

3aTBep,£l,)KeHi HakKa3oM BMLOIo HaB4a/ibHOI O 3aK/agy Bl,q
«_» 20 poKy Ne

2. CTPOK nofaHHsa CTyeHTOM po60oTK
30 uepBHA 2022p.
3. MnaH poboTn:

1. O3HaMOMUTUCL 3 OCHOBHUMMW [KepenamMu 3a HanpsiMKom poboTn Ta
pe3ynbTaTamu B faHii 061acTi AOCMIIKEHHS.

2. CrnpoeKTyBaTh ecKi3 ManbyTHIX AOCNIAKeHb.

3. Po3pobutu nporpamue 3ade3neueHas MoBorO Python mis mocmimkeHHs
JMHAMIKH CUCTEMH 3a JBOX OCHOBHHMX YMOB: BIJICYTHOCTI 30ypPEHHS 30BHINIHIM
BXOJIOM Ta TIPUCYTHOCTI BX1JHOT'O CHTHAJY.

4. IlpoaHaimi3yBaTH CIPOMOYKHICTh CHCTEMH JI0 BUPIIIESHHS 3a1a4l Kiacugikarii
300pakeHb Ta, MOPIBHIOIOYH PE3YJIbTATH B TIPOIIEC] Bapiallli mapaMmeTpiB
JAHAMIYHOI CHCTEMH, 3HANWTH 1X ONTHUMAJIbHI 3HAYEHHS BIJJHOCHO TOYHOCTI
Kimacugikarii.

5. Po3poOuTH TEKCTOBY YaCTHHY MariCTepPChKoOi pOOOTH: TIOYATH 3 OIHUCY
3alPOMOHOBAHMX METO/IIB, HABECTH OCHOBHI PE3yJIbTATH, 3aBESPIITUTH
HaIMCAaHHSAM BCTYIy, B IKOMY 33/1a€ThCSl KOHTEKCT AaHO1 poOOTH Ta
aKTYaJIbHICTh BJIACHOT'O JIOC/IKEHBb BIITHOCHO THX, IO BJKE ICHYIOTH B
HaIPSIMKY Pe3ePBYapHUX AOCIIKCHB, PCKYPSCHTHHUX HEHPOHHUX MEPEXK Ta
kiacuikarii 300pakeHb.

Abstract

Reservoir computing is a brain-inspired paradigm for RNN training that has
been successfully applied to different computational problems involving sequen-
tial data. One of such problems is temporal pattern classification, where time
series patterns are to be assigned to a specific category. In neuroscience, the
pattern recognition is known as a function of the brain important for a range
of intelligent behaviors: hearing, speech, vision, music, and motor control.

Here we present a reservoir network architecture with the phase oscillator mod-
els as neurons that solves the given task. The proposed computational scheme
consists of data encoding, reservoir dynamics tuning, dynamical state decoding,
and readout training steps.

At the data encoding stage we solve the task of presenting the static data to
the network as a temporal signal. Next, we find suitable network parameter
regimes using dynamical systems theory. At the data decoding stage we ex-
tract information about the dynamical state of the network of oscillators, i.e.,
frequency synchronization emerging given the input. Finally, the readout layer
is trained to linearly separate the high-dimensional states of the reservoir with
accordance to the pattern recognition task.

We evaluate the computational performance of the reservoir architectures by
solving an image classification task on the well-known MNIST digits recognition
data set.

The designed reservoir computing scheme shows decent performance in the
image classification task. We assume that the proposed approach generalizes
to other neuron models that exhibit similar properties of intrinsic dynamics. We
also presume the possibility of direct mapping between the theoretical model
of the reservoirs and their physical implementation in hardware. Due to the
considerably reduced number of trainable parameters, the approach promises to
be more competitive in power efficiency than recurrent neural networks trained
with the conventional back-propagation through time algorithm.

Contents

1

Introduction 1
1.1 Artificial neural NEIWOTIKS .ot 1
1.2 Feed-forward neural NEIW OTK S ..o 2
1.3 Recurrent Neural NETW OTKS ..o 3
1.4 RESEIVOIr COM PUTIN G ciiiiiiiiiiiiiie ettt bbb ettt be bbb ebe e e 5
1.5 Computing by means of oscillator dynam iCS....cccoiiiiiiiinneiniseeeeee e 8

1.5.1 ACtive rotator M Od e .. 9

1.5.2 Kuramoto with inertia model / pendulum equation ... 10
1.6 Classification task With RC .o 1
L7 AIM OF thiS W 0 T K e e e e 12
M ethods 14
2.1 ENCOAING OF @ @ T8 coioiieiiiciiieie ettt et 14
2.2 DYynamiCs OF rBSEIVOIN .ottt 17
2.3 Decoding reSEIVOIT STa T8 .ottt sb e 19

2.3.1 Kuramoto order PAramMeter ..o 19

2.3.2 Frequency clustering
2.4 Readout training
24.1 Task specification
2.4.2 Model selection and fitting
Softmax regression
2.4.2.2 Random forest classifier

24.2.1

Results

3.1 Active rotator reservoir
3.1.1 Fixed network size
Input length effect
3.1.2 Variable network size
3.2 Pendulum reservoir
3.2.1 Fixed network size
3.2.2 Decoding approaches comparison
3.3 Reservoir comparison

3.1.1.1

Conclusions and discussion

Appendix

5.1 Simulations parameters
5.1.1 Neuron models
Active rotator
5.1.1.2 Pendulum

5.1.2 (Hyper) parameters of classifier models
Softmax regression
5.1.2.2 Random forest

5.2 Algorithms ..

5.1.1.1

5.1.21

CONTENTS

5.2.1 Network connectivity modification
5.3 State decoding:visualization

5.3.1 Pendulum model....iiiiiieiiinnnns

References

CONTENTS

Introduction

1.1 Artificial neural networks

Artifical neural networks (ANNSs) are highly abstracted networks that consist of simple
"artificial neurons”. Connections between neurons of ANNs are trained, which is in a way
inspired by synaptic rewiring (plasticity) in the brain (1). In general form, connections
in the networks are weighted and directed. The state of each artificial neuron is called
activation. While the models of neurons may be relatively simple, information processing
happens due to interactions within a network: activation of each neuron affects activations
of other neurons to which it is synaptically connected.

According to differences in structure, complexity, and computational problems they are
expected to solve, most generally, ANNs are divided into two major classes: feed-forward
neural networks and recurrent neural networks.

1.2 Feed-forward neural networks

1.2 Feed-forward neural networks

A feed-forward neural network (FFNN), also known as a multilayer perceptron (MLP) is
the class of an artificial neural network that is structured in the following way:

1. An input layer, where the information enters the network (Figure 1.1: A).

2. A group of hidden layers - a primary part of the network, which performs most of
the information processing (Figure 1.1: B).

3. An output layer that generates a prediction according to the task (Figure 1.1: C).

B

The information flow is directed from the left to the right in such a network, namely,
"forward". The achitecture does not contain any intra-layer connections or recurrences.
Hence, there is no self-state dependence in the network: the activation of a node depends

1.3 Recurrent neural networks

only on the activation of the previous layer. In the absence of input, the system reaches
its resting state within a one-time step for every layer.

Examples of application domain are speech recognition (2), natural language understand-
ing (3) computational biology (4), and image recognition (5).

Feed-forward neural networks are trained with back-propagation (6). The measure of suc-
cess of the training can be defined as an ability to correctly classify previously unseen
data, which is also known as generalization property. For this, training data must be
sufficiently diverse and capture essential features for the whole input data space. A feed-
forward network becomes more powerful with more training data, and more hidden layers
(7). Moreover, multiple FFNNs can be stacked into a deep neural network. The idea of
deep learning lies within an attempt to mimic the architecture similar to the one in the
visual cortex (8, 9), where, it is believed, different levels learn features or representations
at increasing levels of abstraction (10).

1.3 Recurrent neural networks

Recurrent synaptic connections are a characteristic property of neural networks in the
brain. According to Buzsaki (11), "the brain is essentially a multitude of superimposed
and ever-growing loops between the input from the environment and the brain’s outputs.”
Recurrent neural networks (RNNSs) follow this biological principle and extend the applica-
tion of feed-forward networks to sequential/temporal problems by incorporating a temporal
dimension in their architecture. RNNs have proved to solve problems involving time se-
ries, e.g., video prediction (12), gesture and speech recognition (13), and neural machine
translation (14).

The architecture of a recurrent neural network differs fundamentally from that of a feed-
forward neural network due to cycles in its computational graphs. Cycles in the connec-
tivity represent the influence of the present value of a node on its own value at a future
time step (6). This contrasts to FFNNs, where the information processing flow goes from

1.3 Recurrent neural networks

Figure 1.2: Schematic of recurrent neural network’s architecture

left to right. The basic RNN architecture is illustrated in Figure 1.2.

The recurrent network processes information given by the input by incorporating it into
the network’s state h passed forward through time (6). The equation of the network’s state
at time t can be therefore defined as follows:

fo(W=b+ W h A + Ux® (1.1)

where is the state of the network at the previous time step (t —1), b is a vector of
bias weights, W is the matrix of recurrent weights, U is the matrix of input weights,
is the input at the current time step t.

1.4 Reservoir computing

The output of the network is then calculated as

y () = w onth(t) (12)

where ITout is the matrix of output weights. It has been shown in the literature that
Equation 1.2 is universal: any function computable by a Turing machine can be computed
by such a recurrent network of a finite size (15). The recurrent weights need to be trained
to solve a given task, which means optimizing matrix W. The standard technique for
learning is back-propagation (6) - it is applied to the unrolled computational graph of the
recurrent network and therefore is called back-propagation through time or BPTT. It is
usually implemented through stochastic gradient descent (16). However, this algorithm is
implausible from a biological perspective: error signals are transmitted backwards in time
and in space, i.e., from post- to presynaptic neurons (16). Moreover, training is accompa-
nied by high computational costs. The runtime of BPTT is 0(T), where T is the number
of time steps. Furthermore, the runtime can not be decreased via parallelization due to
the sequential nature of the forward propagation: each time step can only be computed
after the previous one. The memory cost for storing states is also 0 (T) (6).

Another challenge that may impede the optimization of an RNN is learning of long-term
dependencies: gradients propagated over many time steps may vanish or explode. This
effect can be explained by the fact that the composition of the same function in the net-
work is evaluated multiple times, once per time step, which consists of the multiplication
of many Jacobians and results in a highly nonlinear behavior (6).

The known limitations of recurrent networks training led to the advancement of new re-
search directions aiming to overcome those. One of them is reservoir computing.

1.4 Reservoir computing

The concept of the reservoir computing (RC) framework was introduced independently
by Maass et al. in (17) and Jaeger in (18), where the proposed artificial neural network

1.4 Reservoir computing

architectures were named echo state networks and liquid state machines respectively. RC
suggests a biology-inspired alternative to back-propagation through time for learning in
RNNs. It has been studied that the cerebellum has properties similar to a reservoir com-
puter (19). RC has been successfully applied to the problems of robotic motion, image
recognition (20), and nonlinear dynamics - reservoirs can emulate the behavior of complex
dynamical attractors. Another beneficial aspect of reservoir computing is the plausibility
of its physical implementation (21, 22).

The general principle of reservoir computing can be condensed to the following. The recur-
rent network is a fixed nonlinear dynamical system called a reservoir; it aims to capture
different aspects of the history of inputs. The recurrent and input connections in the net-
work are generated randomly and remain unchanged during the entire evolution of the
dynamical system. Only the output (readout) weights are trained. A readout of the net-
work is a (linear) model trained on the reservoir states via least squares or gradient descent
methods according to the given task.

To summarize, RC aims to solve linearly non-separable problems via the nonlinear map-
ping of the input signal into a higher dimensional space. Figure 1.3 illustrates the basic
architecture of a reservoir computer.

The fundamental challenge in reservoir computing is two-fold: choosing an optimal dy-
namical system and devising a way to set the input and recurrent connections so that the
rich history of inputs is captured in the spatiotemporal dynamics of the network, which
can then be transformed by the readout into the solution to the task. The most common
approach to the latter problem is to generate recurrent weights at random. The probability
distribution of weights can then be adapted according to the specific task. A more univer-
sal approach would be to optimize the reservoir dynamics for the expected range of tasks.
One of the studied dynamical regimes that has been proved to be suitable for computation
is a so-called Edge of Chaos (23).

There are also certain quantifiable properties (24) that have been studied in order to eval-
uate if a given dynamical system can be exploited as a reservoir, e.g., echo state property,
separation property, approximation property, kernel quality, memory capacity and nonlin-

1.4 Reservoir computing

Figure 1.3: Schematic of reservoir computer architecture

1.5 Computing by means of oscillator dynamics

earity. For instance, in (25) and (26), the authors established the relationship between
the nonlinearity of reservoir dynamics and its memory capacity, which was accordingly
formulated as Memory-Nonlinearity Tradeoff.

1.5 Computing by means of oscillator dynamics

Coupled oscillators are complex dynamical systems, which have long been studied in physics
and mathematics with the goal to model various biological processes (27). Furthermore,
networks of coupled oscillators found their place in the theory of computation, e.g., in the
collective state computing model (28). According to this paradigm, computation is viewed
as a result of complex nonlinear interactions in networks of interconnected units. Such
computational units can be implemented by oscillators and loosely interpreted as neurons.
The phase and frequency of oscillators are then considered a representation of the system’s
input processed in the network. Encoding information in the phase was first suggested by
J. von Neumann in the patent of the device that implied using oscillators as logic gates

{r2hg€) result of a computation in the network of oscillators is commonly expressed in patterns
in the phase and/or frequency domain. These often take form of the synchronization of
the oscillators into an attractor in the state space, such as a limit cycle or an equilibrium.
Since the networks of oscillators are usually high-dimensional nonlinear systems with mem-
ory (30), one can exploit the complexity of the emerging dynamical patterns for information
processing in reservoir computing. An output layer of the reservoir network can then trans-
form the network dynamics into the desired computational result (28).

One of the examples of the successful usage of coupled oscillators in reservoir computing
is the work by (31), where the authors solved function approximation and regression prob-
lems with the synchronization-based phase oscillator reservoir. In (32), a reservoir based
on nonlinear mechanical oscillators was proposed, which performance was evaluated in a
parity of a bit stream and a spoken digit recognition tasks. In (33), the authors designed

1.5 Computing by means of oscillator dynamics

a DNA reservoir with coupled chemical oscillators and applied it to a temporal signal-
tracking task.

In Methods, chapter 2, we propose to use the phase oscillators as building blocks of the
reservoir architecture. The phase dynamics in the reservoirs are governed by the active
rotator and pendulum models with the sinusoidal (Kuramoto) coupling. To justify the
choice of each model’s parameters for the reservoir, we first summarize the existing ana-
lytical and numerical studies of their dynamics and refer the findings to our selection of
features suitable for computation.

1.5.1 Active rotator model

The active rotator model was first studied by S. Shinomoto and Y. Kuramoto in (34). The
active rotator consists of a system moving around the unit circle whose phase 9 satisfies

B—LJ—rsine with BES1 (1-3)

where w is an individual frequency of the oscillator, which can also represent the external
stimulation; @(f, 9(to)) is the state of the active rotator at time t given the initial condition
0(to).

The active rotator is an elementary model of an excitable-oscillating system. By E.M.
Izhikevich (35), a neuron is excitable if its state is near a bifurcation from resting to
spiking activity. This property makes the active rotator model similar to the theta-neuron
studied in (36) as a canonical model for type I membranes. The results of the study showed
that B rotates around the unit circle when |*| > 1, exhibiting periodic oscillations. When
"] < 1, there is a pair of equilibrium phases on the unit circle, the locally stable and
unstable ones. Rotating of 9 counterclockwise through ~ can be interpreted as firing of
the neuron. When r — 0, all points on the circle rotate at the same speed, regardless
of their position (37). At |*| = 1, the system undergoes a saddle-node infinite period
(SNIPER) bifurcation (38) that separates the excitable and oscillating regimes.

1.5 Computing by means of oscillator dynamics

We aim to use the active rotator as the neuron model of the reservoir assuming that its
excitable behavior is beneficial for computation in the network. In section 2.2, we elaborate
on adjusting the parameters of the given model.

1.5.2 Kuramoto with inertia model / pendulum equation

The generalized Kuramoto model with inertia is a second-order continuous-time dynamical
system first introduced by Ermentrout (39) as a phenomenological model to explain the
slow relaxation of firefly Pteroptyx malaccae’s rhythm. The temporal dynamics of G is
given by

N
mi'Oiit) = -e 4 (i) + wi + K aij sin (6j(t) - 6i(t)) (1.4)
where mi is the strength of inertia (mass) of the r-th oscillator, is the damping, K is
the coupling strength, a*- is the element from the adjacency matrix (cy?) € Z*xiV, and wi
is the natural frequency of the r-th oscillator, which is given by some distribution function
9(w).
The model 1.4 is known to exhibit various dynamical phenomena such as synchronization
transitions (40, 41, 42, 43) and chimera states (44, 45). The stability of complete synchro-
nization and nonlinear stability have been studied in (46, 47) and (48) respectively.
We, however, rely on the results from the study (49). In the given work, the authors
derived the conditions on the bistability of synchronous dynamics. By E.M. lzhikevich
(35), a neuron is bistable if it exhibits the coexistence of resting and spiking states. It has
also been concluded inertia affects the intrinsic oscillator dynamics, i.e., it increases its
dimensionality and enables bistability of cluster patterns. We are going to exploit these
findings in order to design a dynamical system suitable for reservoir computing.
The Kuramoto model with inertia can be rewritten into the pendulum equation via rotat-
ing the coordinate frame and applying other transformations (50). Due to this, we will

10

1.6 Classification task with RC

henceforth adopt the term pendulum model when referring to the Kuramoto model with
inertia, but with the following modifications: the gravity term rsin0j(t) is included, the
parameters of mass, damping, and eigenfrequency become homogeneous, i.e.,, rnt = m,
& = ¢, and ujt = uj. The latter means the oscillators now have identical intrinsic dynamics
in the absence of input. However, in the reservoir computing scheme, we break the sym-
metry in the model by replacing the constant coupling strength K with random directed
weights Wij € M/TXT, and the coupling strategy to all-to-all by setting ajij =

Hence, Equation 1.4 can be reformulated as follows

mOi(t) = —e9i(t) + w-rsin(9i(t)) + —1 ’J‘t wtj sin (Oj(t) - Oi(t)) (1.5)
j=i

where r — f, g is the acceleration, and I is the pendulum length.
We aim to exploit the pendulum model as a neuron model of the reservoir network. We
assume that the bistable dynamics may give rise to useful computational properties in the
network. Therefore, we select the model parameters values from the bistable region of the
bifurcation diagram in (49). In section 2.2, we elaborate on adjusting the parameters of
the given model.

1.6 Classification task with RC

According to Devroye’s definition (51), pattern recognition or discrimination is predicting
the unknown nature of an observation, where an observation is understood as a collection
of numerical measurements. An observation can be formalized as an L-dimensional vector
X. The unknown nature of the observation is called a class or category, and denoted by a
variable y that takes values in a finite set {1, 2,..., M}.

In this work, we consider a special instance of the pattern recognition problem, which is a
classification of image data. It can be formulated as the task of learning a mapping h(x)

11

1.7 Aim of this work

between an image represented as D € MLxL and a target output valuey € { 1,2, M},
where M is the number of classes:

h(x) :RLxL -» {1,2,....M} (1.6)

The pattern recognition problem was proved to be solvable by means of reservoir com-
puting. In (52), the images to be classified were suggested to be projected into a higher-
dimensional space of the echo state network before feeding them into a feed-forward neural
network that would then generate a prediction to the face recognition problem. In (53),
a reservoir-based spiking neural network (r-SNN) was developed for terrain classification,
which also promised to be useful for autonomous robot navigation systems. In (54), the au-
thors designed the echo state network with a specific data encoding scheme, which showed
the low error in the classification of the digits of the MNIST database (55).

Since an image segmentation problem can also be modeled as a pattern recognition prob-
lem (56), we also briefly review achievements in this domain. In (57), the authors proposed
the reservoir computing algorithms for efficient and temporally consistent segmentation of
spatio-temporal image series, which outperformed the U-Net and performed on par with
the convolutional LSTM.

1.7 Aim of this work

We aim to design a reservoir network architecture with phase oscillators as neuron mod-
els that solves a temporal classification task. The reservoir architecture consists of data
encoding (section 2.1), tuning the dynamics of neurons (section 2.2), state decoding (sec-
tion 2.3), and readout training (section 2.4). To give rise to the high-dimensional states in
the network, which are useful for computation, we find suitable parameter regimes using
dynamical systems theory. More precisely, we rely on the studies about the active rotator

12

1.7 Aim of this work

(37) and pendulum (49) models of phase oscillators. We evaluate these reservoir architec-
tures by solving the MNIST digits classification task.

13

Methods

In order to describe our reservoir computing setup, the following steps need to be specified:
1. Encoding of image data to the reservoir
2. Dynamics of the reservoir
3. Decoding of the reservoir state and training of the readout

The aim of this chapter is to describe these steps. The reservoir performance is evaluated
in Results, chapter 3.

2.1 Encoding of data

An input stimulus can be encoded in the network as initial conditions or (external) per-
turbations. We encode the stimulus via perturbations, i.e., each oscillator receives a time-

14

2.1 Encoding of data

Figure 2.1: Architecture of reservoir. A: Transforming static image data into time series.

B: Encoding data into reservoir. C: Decoding reservoir state and training output weights.

varying external input derived from the image data.

The encoding of the data consists of two steps: the preprocessing of the image data and
feeding the processed data into the network. We start by describing the preprocessing step.
We write

J={D € MLxXL|H is image} (2-1)

for the space of single channel images from the classification task (55). Writing xr] for
a pixel of an image, by assumption Xij € {0,1,..., 255}. In order to control the average
velocity across neurons, these values are scaled to a (compact) target range [a, b} for usage

15

2.1 Encoding of data

as external inputs. We define u;scaie = b—a and call it the input scaling factor. Its value
is chosen based on observing the system’s response to inputs of different amplitudes with
all other reservoir parameters fixed. The choice of the scaling factor is primarily related
to the oscillator model parameters, described in section 2.2. Denoting

X = max{xij\(xij)fij =Db} v JiJ

as the maximum resp. minimum value of an image D, we use the min-max normalization
(58) to scale each X{j € D to the target range [a, b]\

"inieW — “m'scale |A(I')T(11';1X Aminr @ (2.2)
For each D el, we obtain a new rescaled image Dscaiec] = (x™w)j3 according to 2.2. In the
following, we replace each image in J by its rescaled counterpart.
Next, we describe how to feed the data to the network. Let T be the total time of evolution
of the network. T is split into L intervals of length S. Roughly, we split the image data
into L pieces each of which is fed into the network for a time interval of length S. This
means a static image is transformed to a time series which can be used for sequence-based
processing. The idea here is to expose only partial information of the image to the network
and obtain the corresponding ‘computational responselwhich can be used for classification.
To be precise, we first flatten the image matrix via the mapping

(- WM -A (
/e LxL mL\ Ty (2.3)
\Y% VL) wo)

Next, we transform the flattened image into a time series:

[VA L
X ®([0,T]:ML), iy \t iy E (2.4)

W P

16

2.2 Dynamics of reservoir

Here, v\,... ,vl XA denotes the characteristic function of the set A and 23([0, TJ;
denotes the Borel measurable functions with domain [0, T] and codomain To feed the
time series into the network, we define the read-in matrix Wm € IRiVxi, where N is the
number of neurons. W m is a sparse matrix (59) the entries of which are i.i.d. and drawn
from a Bernoulli distribution with P[x = 1 = P[x = 0] = 1/2. W m remains constant
during the entire system evolution, i.e., it depends neither on time nor the input image.
Given an image D € 3 the input to the reservoir now is defined as

L
lit)= WinX(f(D)){t) = X [(p - i) (2.5
p=i
that is, an input to the r-th neuron is given by
L
h{t)=Y ., X[(P-1)5,p5](r)("4)r (2.6)
p=1

2.2 Dynamics of reservoir

As a trade-off between model complexity and biological plausibility, we suggest using active
rotator and pendulum models as computational units of a reservoir network with N units.
Let SQij be defined as

SQij = 0j - Oi 2.7)
and theinteraction matrix as
(sin”0)y = sin(<50jj) (2.8)
For convenience, we will use the following shorthand notation for 2.8
/ sin <50ji \
(sin<B0)i = (2.9)
\sin 5QiN)

17

2.2 Dynamics of reservoir

The coupling matrix 1Tres € MNxN is defined as a fully-connected random matrix,where
each element is drawn independently from a uniform distribution on [0, q],.where g > 0.
The matrix defines synaptic strengths of reservoir neurons, which remain fixed.

The active rotator reservoir is defined by

0(f) = —rsin(0(f)) + — VTressin ((50(f)) + w + /(f) (2.10)

where r is the gravity term, u is the intrinsic frequency.
The pendulum reservoir is defined as

m@ (t) + e0(f) = —rsin(0(i)) + - W ressin(8Q(t)) + w + I(t) (2.11)

where r — f is the gravity term, g is the acceleration, | is the pendulum length, u is the
intrinsic frequency, € is the damping coefficient, m is the mass of the pendulum.

The computational properties of the network depend on the interplay of the parameters
that control the dynamical properties of neurons, their coupling, the external stimulus.
Using the dynamical system analysis findings for the active rotator and pendulum mod-
els, we tune the reservoir parameters aiming for rich spatio-temporal activity and optimal
performance in the classification task, i.e., to drive a reservoir into a regime suitable for
computation. For the active rotator reservoir, it is essential to ensure the system’s ex-
citability, i.e., it always has to stay near the bifurcation point from equilibrium to the limit
cycle. Therefore, the values of intrinsic frequency w, coupling strength (nij)ij —kFres, "scale
and the gravity term r are tuned in a way to make the total amount of energy received by
an oscillator exceed r when a magnitude of time-varying input is close to its maximum. In
this scenario, the oscillator starts rotating, which can be interpreted as neural firing (37).
Otherwise, if the energy is less than r, the oscillator enters an equilibrium state, i.e., it
stops rotating and goes to the oscillatory mode. From the neuroscientific perspective, this
behavior can be interpreted as the transition to the resting state (35).

For the pendulum reservoir, the values of the damping coefficient e, intrinsic frequency lo,

18

2.3 Decoding reservoir state

gravity term r, coupling strength (nij)ij = ITres, and wscaie are adjusted. The ratio j and
e are the parameters that control the bistable behavior of the oscillator. They are chosen in
accordance with the parameter regions from the bistability diagram that indicates possible
dynamics as a function of bifurcation parameters w, r, and e (49).

To obtain the evolution of the reservoir, the system of ODEs in 2.10 and 2.11 are inte-
grated using the Fourth Order-Runge Kutta Method (60) implementation from scipy (
scipy.integrate.solve_ivp) (61). Initial phases of oscillators are sampled from a uni-
form distribution on [0, 27¢), initial velocities are sampled from a uniform distribution on
[0,1]. Remark: To isolate the effect of initial conditions from the other parameters on
the performance, we generate them once and fix for the numerical experiments.

We denote the solution of the active rotator reservoir as ©r € C'1([0, T]; MN) and the so-
lution of the pendulum, reservoir as @ = (Bp,©p) € CL([0,T];R") x C1([0,T];Mnr). The
solution vectors are the activity of neurons in response to the input I(t). In the follow-
ing step, we aim to extract the features from these input-driven neural responses, i.e., to
decode the reservoir state.

2.3 Decoding reservoir state

The aim of the section is to devise a scheme which allows us to decode the activity of
the reservoir and use it in the classification task. For this, we first introduce two readout
variables which allow for the decoding of the computation done by the network. In the
next step, we describe how to train the readout weights on these variables for solving the
task.

2.3.1 Kuramoto order parameter

The complex order parameter was introduced by Y. Kuramoto (62) to measure the phase
coherence in all-to-all coupling models:

19

2.3 Decoding reservoir state

r(ty No = 1N (2.12)

3=1
Here, if(t) describes the average phase of all oscillators and r(t) the degree of phase co-
herence. The complex number denotes the centroid of the phases (27). It is a common
measure for identifying the synchronous behavior in the network. Motivated by this, we
introduce a first readout variable based on the order parameter for the velocity of the
reservoir averaged over the time intervals of exposition of the chunks of image data.
To be more precise, we define

1 N]
Z :C1([0,T]-,Rn) ~ C 1{[0,T]-R), O {t» N le MW (2.13)
j=1
We call Equation 2.13 the adapted order parameter for velocities. Through measuring the
system state with such a readout variable, we obtain information about synchronization

in neural activity over time. To associate each row of an image with one scalar value, the
average synchronization during its exposition time is calculated as follows

Z :C”QO0.TI;]") =ML (2.14)

where the g-th entry of Z(Q) is given by

Z(Q)q= ’_‘b Sone Z(@)(1)dt (2.15)

The readout vector now is defined as
Z(Qr), Z(0P). (2.16)

for the theta and pendulum reservoir respectively.
Thus, an image is represented by a vector of average frequency synchronization of the

20

2.3 Decoding reservoir state

oscillators.
The examples of velocity time series and corresponding order parameter values are given
in section 5.3.

2.3.2 Frequency clustering

As we observe the emergence of the qualitatively different dynamics in the pendulum
reservoir compared to the active rotator reservoir, namely, clustering of oscillators with a
common mean frequency, we introduce a second readout variable to decode the reservoir
state. It captures the number of clusters and the mean intracluster frequency given the
perturbation of the time-varying input. Let K denote the number of frequency clusters at
time t €[0, T]; Wk, k — 1,..., K the average frequency in k-th cluster; Nk, k —1,..., N
the number of oscillators in the k-th cluster. The weighted average velocities of the system
during input processing is defined as follows

V:C\[0,T]-,RN)AC\[0,T}-,R), ©->l{t->--1£ vk(t)nk(t)} (2.17)
k=1

To again associate each row of an image with one scalar value, the average velocity during
its exposition time is calculated as follows

V: M([OjT];»") "M L (2.18)
where the g-th entry of V (0) is given by
V(Q\ =\ f PS V(Q)(t)dt. (2.19)
* J{p)S
The readout variable for the pendulum reservoir now is defined as

V(QP) (2.20)

21

2.4 Readout training

The effect of the decoding via the two readout variables on the performance is studied in
subsection 3.2.2.

2.4 Readout training
The final step consists of constructing the readout layer that shall approximate the target
output based on the decoded reservoir state. The following steps are to be performed:

1. Task specification
2. Model selection

3. Model fitting (i.e., estimating the parameters of the model)

2.4.1 Task specification

To fit the parameters of the classifier model, a training set is required. The training set
is defined as a labeled set of input-output pairs D — {(xr,?/r)'=1}mwhere n is the number
of trainingdata points. Eachtraining input Xj is an L-dimensional vector, values of which
are calledfeatures', yi isa response variable, which in our problem settingtakes categorical
values.

Thereby, depending on the readout variable, a training input xris defined as

Xi = Zi(e)(ERL (2.21)

or
Xi = Vi(Qp) ERI (2.22)

where Zi(9) or Vi(Qp) is a readout vector of the network dynamics given the r-th image
as an input. The response variable yi representing an image’s class is given as follows:

Yie{l,...,M} (2.23)

22

2.4 Readout training

with M being the number of classes.

Solving the classification task via the readout can be then formulated as learning a mapping
Wout € which transforms inputs x* into outputs yi, such that an error between the
reservoir outputs iji and the target signals y* is minimized, i.e., |y* —y* —min.

2.4.2 Model selection and fitting

As classification models, we use Softmax regression and Random forest. We estimate their
parameters using the previously defined training set T™>

2.4.2.1 Softmax regression

Following K. Murphy’s definition (10), the multinomial logistic regression (also called max-
imum entropy classifier) is a model of the form

py=mix,W)=8T (2.24)
Em'=1lexp(WAX)

2.4.2.2 Random forest classifier

We relate to the concept of classification decision trees explained by Kevin P. Murphy (10).
Decision trees are defined by recursively partitioning the input space, and defining a local
model in each resulting region of input space.

K K
[(x) = E[y|x] = "Wfcl(x € Rk) = ™ u i fe</>(x;ufo) (2.25)
K=1 k=1

where Rk is the k-th region, wk is the mean response in this region, and vk encodes the
choice of variable to split on, and the threshold value, on the path from the root to the
Zc-th leaf.

23

2.4 Readout training

A random forest classifier is then defined as a collection of decision trees {/i(x, Wk), k =
1,...}, where the Wk are independent identically distributed random vectors and each tree
casts a vote for the most popular class at input x (63).

24

Results

This chapter aims to evaluate the reservoir’s performance in the classification task. We use
the MNIST handwritten digits classification as a benchmark problem of pattern recognition
(55). As the primary performance measure, we take accuracy - the fraction of the correct
predictions made by the readout layer trained on the decoded reservoir states.

To save computational resources required for integrating the system of ODEs with the
time-varying inputs, we reduced the training data set’s size from 60 000 to 12 000 images,
which constitute 20% of the original training sample. The distribution of classes in the
resulting sample is the same as in the original data set. The full test data set is used for
accuracy measurements, i.e., all 10 000 images.

25

3.1 Active rotator reservoir

0d 060060 060DbCOO
IV NN LA) f))
Ad-Z2'1z™ Z2'Z1 2 Z 2-d
5J33A“bH3 3333333
4 V4V

Figure 3.1: Handwritten digit examples from the MNIST database

3.1 Active rotator reservoir

In this section, we aim to evaluate performance of the readout layer trained on the active
rotator reservoir’s decoded states to solve the classification task. The readout variable is
fixed to the adapted order parameter for velocities given by Equation 2.15. If not specified
otherwise, the input vector length is fixed to L = 28.

3.1.1 Fixed network size

We measure the accuracy of image class predictions performed by the readout layer of the
reservoir. The network size is fixed to N — 50. The results are compared with respect
to the classifier model used for optimizing H/out. We observe that the Random forest
classifier yields better readout weights. The parameters of the classifiers are given in detail
in chapter 5.

26

3.1 Active rotator reservoir

Classifier model Test accuracy
Softmax Regression 0.641
Random forest 0.6869

Remark: Note that improving the integration accuracy leads to better performance: we
can observe a steep increase in performance for the active rotator model:

Classifier model Test accuracy
Softmax regression 0.69
Random forest 0.81

3.1.1.1 Input length effect

Splitting the input data further down yields increased performance as well. We assume
that this effect is caused by the higher dimensionality of the readout vector. The data,
however, suggest that too short input vectors also impose a penalty on the performance
(Figure 3.2). One should opt for intermediate lengths as a trade-off choice.

3.1.2 Variable network size

Comparing the performance depending on the network size, we observe a trend of increased
accuracy for larger networks regardless of the estimation method (Figure 3.3). Note that
the dimensionality of the readout vector does not change with the increase of the network
size. This hints that the increased computational capabilities of the higher-dimensional
dynamics are reflected even in the lower-dimensional readout vector.

Remark: The strategy for modifying the network’s size is described in detail in subsec-
tion 5.2.1.

27

3.1 Active rotator reservoir

Input vector length

Figure 3.2: Active rotator reservoir: accuracy of image classification w.r.t. input vector

length L. Parameters: w —0.5, r —0.56, wSaie = 0.1, IFres~ 1X([0.0,0.1]), 5=100.

28

Accuracy

3.1 Active rotator reservoir

Number of neurons

Figure 3.3: Active rotator reservoir: accuracy of image classification w.r.t.

the network

size. IVmin = 30, ivimex = 150 are the minimal and maximal network sizes correspondingly.

Reservoir parameters: w = 0.5, r —0.56, wSaie= 0.1, tFres~ 11([0.0, 0.1]),

S —100.

3.2 Pendulum reservoir

3.2 Pendulum reservoir

In this section, we aim to evaluate performance of the readout layer trained on the pendulum
reservoir’s decoded states to solve the classification task. The exploited readout variables
are given by Equation 2.15 and given by Equation 2.19. If not specified otherwise, the
input vector length is fixed to L = 28.

3.2.1 Fixed network size

We measure the accuracy of image class predictions performed by the readout layer of the
pendulum reservoir. The network size is fixed to N —50. The results are compared with
respect to the classifier model used for optimizing W out.

Classifier model Test accuracy
Softmax regression 0.6524
Random forest 0.7264

3.2.2 Decoding approaches comparison

We study the effect of the state decoding techniques, i.e., the adapted order parameter
for velocities and frequency clustering, on the accuracy of classifications. The classifier
model is fixed to Random forest. In the case of the frequency clustering readout variable
(Equation 2.19), the clusters of oscillators are determined via the agglomerative clustering
method from sklearn (64).

Readout variable Test accuracy
Order parameter 0.7264
Frequency clustering 0.6466

30

3.3 Reservoir comparison

Given the accuracy measurements, we conclude that the adapted order parameter func-
tion for velocities better captures the computational capabilities of the higher-dimensional
system dynamics compared to the frequency clustering readout variable.

3.3 Reservoir comparison

We compare the performance of active rotator and pendulum reservoirs using the order
parameter for velocities (Equation 2.15) as the readout variable.

Neuron model Softmax regression Random forest
Active rotator model 0.64 0.69
Pendulum model 0.65 0.73

We observe the pendulum model achieves higher accuracy than the active rotator model.
We assume it is due to its richer bistable dynamics.

31

Conclusions and discussion

We conclude that the proposed reservoir computing scheme can be harnessed for the image
classification task. The results of the work supported our expectations about the suitabil-
ity of active rotator and pendulum oscillators for use as computational units due to their
excitable and bistable dynamics. We saw that the richer dynamics of the pendulum model
leads to increased performance compared to the active rotator model. We also observed
the dependence of reservoir performance on the network size and input vector length. De-
spite being a simple measure for describing the dynamical state, the low-dimensional order
parameter for velocities demonstrated practicality for capturing the computational prop-
erties of high-dimensional spatiotemporal dynamics.

The results of the thesis support the theories of oscillator-based and reservoir comput-
ing. The proposed approach is, however, different from the classical reservoir computing
methods, where the readout layer is trained directly on the time evolution of the states.
Nevertheless, we showed that the averaged transformation of the dynamical state of the
network can also be used for solving the classification task with decent accuracy.

32

We assume our approach generalizes to other neuron models with similar properties but
it is beyond the scope of this study to confirm this hypothesis. We presuppose that the
reservoir architecture has the potential to be implemented in neuromorphic hardware, e.g.,
using memristor devices or Mott insulator-based oscillators.

Future studies should take into account the effects of the reservoir topology, input layer
sparsity, synapse plasticity, transient dynamics, the ratio of excitatory and inhibitory con-
nections on the reservoir performance. It would be also beneficial to evaluate the reservoir
architecture on robustness to noise and deformations in the input data as well as usefulness
in real-world applications.

33

Appendix

5.1 Simulations parameters

This section contains technical details of the reservoir network simulations.

34

5.1.1 Neuron models

5.1.1.1 Active rotator

Parameter

uj

r
©(to)
L res
iyin

"scale

Value/Distribution

05
0.56
N0.0.2r]

'LUo.0,01]
Bern(i)

0.1
28
100

35

5.1 Simulations parameters

Description

eigenfrequency
gravity

initial phases
synapse strength
input weights
input scaling factor
input vector length

time of one vector exposition

5.1 Simulations parameters

5.1.1.2 Pendulum

Parameter Value/Distribution Description
m 1.0 mass
e 0.1 damping
) 0.6 eigenfrequency
r 1.0 gravity
0(fo) [0027] initial phases
©(to) HMo.o,i .d] initial velocities
\Pres "Lo.oai] synapse strength
PPin Bern(4) input weights
Ascale 0.4 input scaling factor
L 28 input vector length
S 500 time of one vector exposition

5.1.2 (Hyper) parameters of classifier models

The classifier models for the readout layer were implemented using scikit-learn library
(64).

36

5.1 Simulations parameters

5.1.2.1 Softmax regression

Class sklearn.neural network.MLPClassifier has been used for the implementation
of Softmax regression. MLPClassifier trains iteratively since at each time step the partial
derivatives of the loss function with respect to the model parameters are computed to
update the parameters (64).

Parameter Value Description

activation logistic’ Activation function for the hidden layer
hidden layer sizes 0 Number of neurons in the ith hidden layer
solver ’sgd’ Solver for weight optimization

alpha 0.0001 L2 penalty (regularization term) parameter
momentum 0.9 Momentum for gradient descent update
learning rate ‘constant’ Learning rate schedule for weight updates

5.1.2.2 Random forest

Class sklearn.ensemble.RandomForestClassifier has been used for the implementa-
tion of Random forest - a meta estimator that fits a number of decision tree classifiers on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting.

37

5.2 Algorithms

Parameter Value Description

n estimators 500 Number of trees in the forest

criterion "entropy” Function to measure the quality of a split

min samples split 2 Minimum number of samples required to split an internal node
bootstrap True Whether bootstrap samples are used when building trees

5.2 Algorithms

5.2.1 Network connectivity modification

The scheme of adding neurons to the network is described as follows. Suppose we want to
increase the existing network of size N —n by K neurons. The connectivity of the given
matrix is defined by (xij) — W™s € IRaxra. Let k — 1,..., K. Then, (k") denotes the
connections from the existing neurons to the new neurons and (kkj) denotes the connections
from the new neurons to the existing neurons. The synapse weights of (xik) and (xkj) are
taken from the same distribution as the entries of W™s. To extend the original matrix
LF"es, the following operations are performed:

"= iky], WEK= i
W r [wr (xiky] (xki)

Now, € M(T+A)x (Tr+/1* is the connectivity matrix of the expanded network. Such
network’s structure modification scheme allows for the comparison of performance of dif-
ferently sized networks by ensuring that for every given network with N —n neurons, the
following holds: bfyjes c C ... C W™K, ie., each smaller network’s connectivity

38

5.3 State decoding: visualization

is a subspace of a larger one. The given scheme is also applicable to the corresponding
W™ WA 1., WM+K matrices, with the difference being that only rows are to be added
to each new matrix.

5.3 State decoding: visualization

To illustrate the decoding step of our reservoir computing scheme, we visualize velocity
time series and readout vectors given images of different classes as inputs.

5.3.1 Pendulum model

Reservoir parameters: N —30, u —0.6, r = 10, wSae—0.4, fVres~ Uj0o.o.ib *
100, readout variable is given by 2.13

39

5.3 State decoding: visualization

(A) (B)

©) (D)

(E) F
40

Figure 5.1: Reservoir dynamics in response to the images of different classes. C-D: velocity

time series given A-B. E-F: frequency synchronization time series given A-B

References

(1

[

(3]

(4]

Bl

Pedro Mateos-Aparicio and Antonio Rodri'guez-Moreno. The Impact of
Studying Brain Plasticity. Frontiers in Cellular Neuroscience, 13:66, 2019. 1

Alex Graves and Jurgen Schmidhuber. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural
Networks, 18(5):602-610, 2005. IJCNN 2005. 3

Ruhi Sarikaya, Geoffrey E. Hinton, and Anoop Deoras. Application of
Deep Belief Networks for Natural Language Understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 22(4):778-784, 2014. 3

Sai Zhang, Jingtian Zhou, Hailin Hu, Haipeng Gong, Ligong Chen, Chao
Cheng, and Jianyang Zeng. A deep learning framework for modeling
structural features of RNA-binding protein targets. Nucleic Acids Research,
44(4):e32-e32, 10 2015. 3

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097-1105, 2012. 3

41

[

(7]

(8]

Bl

[10]

[11]

[12]

[13]

REFERENCES

lan J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, Cambridge, MA, USA, 2016. http://www .deeplearningbook.org. 3, 4,
5

Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4:251-257, 1991. 3

D. H. Hubet AND T. N. WIESEL. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106-154, 1962. 3

Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun.
Unsupervised Learning of Invariant Feature Hierarchies with Applications
to Object Recognition. 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2007. 3

KEVIN P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Com-
putation and Machine Learning Series. MIT Press, Cambridge, MA, 2012. 3, 23

Gyorgy Buzsaki. Rhythms of The Brain, pages xiv, 448 p. 01 2009. 3

Yunbo Wang, Haixu W u, Jianjin Zhang, Zhifeng Gao, Jianmin Wang,
Phitip S. YU, and Mingsheng Long. PredRNN: A Recurrent Neural Net-
work for Spatiotemporal Predictive Learning. 2021. 3

Alex Graves and Navdeep Jaitly. Towards End-To-End Speech Recogni-
tion with Recurrent Neural Networks. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, 32
of Proceedings of Machine Learning Research, pages 1764-1772, Bejing, China, 22-24
Jun 2014. PMLR. 3

42

http://www.deeplearningbook.org

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Kyunghyun Cho,Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. ONn the Properties of Neural Machine Translation: Encoder-
Decoder Approaches, 2014. 3

Hava T. Siegelmann and Eduardo D. Sontag. On the Computational Power
of Neural Nets. COLT 92, page 440-449, New York, NY, USA, 1992. Association
for Computing Machinery. 5

Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert
Legenstein, and W olfgang Maass. Biologically inspired alternatives to
backpropagation through time for learning in recurrent neural nets. CoRR,
abs/1901.09049, 2019. 5

W olfgang Maass, Thomas Natschlager, and Henry Markram. Real-Time
Computing Without Stable States: A New Framework for Neural Compu-
tation Based on Perturbations. Neural computation, 14:2531-60, 12 2002. 5

Herbert Jaeger. The™ echo state™ approach to analysing and training
recurrent neural networks-with an erratum note’. Bonn, Germany: German
National Research Center for Information Technology GMD Technical Report, 148,
01 2001. 5

Tadashi Yamazaki and Jun Igarashi. Realtime cerebellum: A large-scale
spiking network model of the cerebellum that runs in realtime using a
graphics processing unit. Neural Networks, 47:103-111, 2013. Computation in the
Cerebellum. 6

Charis Mesaritakis, Adonis Bogris, Alexandros Kapsalis, and Dimitris
Syvridis. High-speed all-optical pattern recognition of dispersive Fourier
images through a photonic reservoir computing subsystem. Opt. Lett.,
40(14) :3416-3419, Jul 2015. 6

43

