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Abstract 

The models based on self-attention mechanisms have been successful in analyzing 

temporal data and have been widely used in the natural language domain. A new model 

architecture is being proposed for video face representation and recognition based on the 

self-attention mechanism. Moreover, given approach could be used for video with single 

and multiple identities. Notably, no one explored the aggregation approaches that consider 

the video with multiple identities. The proposed approach utilizes existing models to get 

the face representation for each video frame, e.g., ArcFace and MobileFaceNet, and the 

aggregation module produces the aggregated face representation vector for video by 

taking into consideration the order of frames and their quality scores. Empirical results are 

demonstrated on a public dataset for video face recognition called IJB-C to indicate that 

the self-attention aggregation network (SAAN) outperforms naive average pooling. 

Moreover, a new multi-identity video dataset based on the publicly available UMDFaces 

dataset and collected GIFs from Giphy is being proposed. It is shown that SAAN is 

capable of producing a compact face representation for both single and multiple identities 

in a video. The source code is attached in the archive. 

Introduction 
Video face recognition has received increasing interest from the community in recent 

years [11, 12, 24, 28, 30, 36,  38, 46, 42] , partially due to the growing number of video 

content. Compared to an image, a video sequence contains more information about the 

subject's faces, such as varying poses, expressions, motion, and illumination. The key 

challenge for video-based face recognition is how to effectively combine facial information 

available across different video frames to get an appropriate representation of the face in 

the video. 

Deep Convolutional Neural Networks (DCNNs) trained on a large dataset have shown the 

ability to generate compact and discriminative face representations for images that are 
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robust to pose variations, image quality, blur, and occlusions [31, 42, 45, 46]. The naive 

approach is to represent video as a set of frames and use face features extracted by deep 

neural network for each frame [42, 46] . Then the subject's face in the video, called face 

track, is represented as an unordered set of vectors that allows maintaining the 

information across all frames. However, this is not computationally efficient for comparing 

two face tracks. It requires a fusion of matching results and comparison across all pairs of 

vectors between two face templates. Except for O(n²) complexity per match operation, 

face track requires O(n) space per video face, where n - the average number of video 

frames. That is why most methods aggregate feature vectors into fix-size feature 

representation for each face track [33, 41, 40, 44, 54, 55] . It allows constant-time 

matching computation instead of evaluating all powers.  

In this coursework, the aggregation model based on self-attention is proposed, which can 

be applied for videos that contain single or multiple identities. Also, the synthetic dataset is 

being created for multi-identity video face recognition. 
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Related Work 
Image Face Recognition 

Face recognition is an actively studied domain with significant achievements in 

identification and verification tasks [48, 50, 58, 31]  and a great part of that success is due 

to deep convolutional neural networks. Most approaches are focused on learning the 

embedding vector for face representation. The following works focus on exploring different 

loss functions to improve the feature representation. Both contrastive [9, 21]  

and triplet [23, 51]  losses are usually used to increase the Euclidean margin for better 

feature embedding. 

The center loss proposed in [53]  learns centroids for features of each identity to reduce 

intra-class variance. A large margin softmax (L-softmax) [32] adds angular constraints to 

each identity to improve feature discrimination, and angular softmax (A-softmax) [31]  

adds weights normalization for L-softmax. The ArcFace uses additive angular margin loss 

[13]. 

Video Face Recognition 
Existing methods could be classified into the following categories: ones that exploit 

temporal dynamics and ones that treat video as  an orderless set of images. The first 

group of methods heavily relies on RNNs to account for the temporal dependencies in 

frame sequences. For example, RNN was employed for head pose estimation [19], facial 

expression recognition [18] , and emotion recognition [15, 59]. Many previous methods 

have considered the representation of the set of face images as probabilistic distribution 

[2, 43], n-order statistics [34], affine hulls [57, 25, 5], SPD matrices [26] , manifolds [27, 22, 

52], etc. Then, the recognition is performed via similarity or distance measures. Other 

methods aim to train a supervised classifier on each image set or video to obtain 

correspondent representation [37].  

These methods work well under constrained settings but usually struggle to handle the 

challenging unconstrained scenarios with significant appearance variations. The 

aggregation based models aim to fuse a set of deep feature vectors into a single vector. It 

was shown in [4]  that aggregation of multiple face images increases the recognition 

performance of person identification. Compared to simple average pooling [7, 14, 6, 10, 
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13], the recent works show promising results by incorporating the visual quality information 

on instance level via detection score [39] or predicted quality scores [55, 56]. A 

Component-wise Feature Aggregation Network [17]  aggregates the feature vectors in 

each component separately by considering the prediction of their quality. The redundancy 

issue in the video frames is tackled in [16]. However, none of these approaches consider 

the multi-identity video recognition setup.  
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Aggregation networks 
In the following sections, we'll review proposed single and multi-identity aggregation 

architectures. To our knowledge, the aggregation of multiple identities has not been 

addressed so far. We consider a multi-head self-attention mechanism that has been 

successfully used to encode/decode sequence representation as in [47], achieving 

superior results and better parallelization compared to recurrent encoder/decoder 

framework. It is used to achieve reweighting according to the context of the features. 

  

Fig1. Example of video sequence aggregation network using self-attention. n is the 

number of faces in a face track, d is a dimensionality of the embedding, N - is the number 

of consecutive self-attention blocks of the encoder. Figure is read in a bottom-up fashion. 
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To get a compact representation for each image in a given set, we publicly available Arc-
Face model is used pretrained on the MS1MV2 dataset. It is considered to be state-of-the-

art in a lot of public verification/identification benchmarks. 

Additionally, there are experiments with a lightweight feature extractor, in particular, 

MobileFaceNet. The main purpose of that experiment is to investigate the aggregation 

results on features with a lower representational capacity.   

Single-identity aggregation 
 

Given a set of ordered frames  (face track)  and their 

corresponding features , aggregation should be performed to 

produce a single vector representation r . To represent a face track from different 

perspectives and assign weight to a particular frame with respect to its context, we resort 

to multi-head self-attention mechanism  

At first, K, V, Q projections are computed by learnable transformation matrices on  

(F+P), where F is an extracted embedding matrix, and P is a positional encoding matrix. 

Later, reweighted embeddings computed as: 

where d - is the dimensionality of a feature vector, RHead - reweighted representation 

received from single attention head,  RMultiHead - final reweighted representation  from 
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multiple heads  and W_o - output transformation matrix. Each reweighted projection is 

assigned an element-wise or component-wise score (as in [55] or [17] ).  

According to those scores, aggregation is done on the original features in the following 

way: 

where s is a vector of unnormalized quality scores, q is a vector of softmax normalized 

scores,  and  W_q is a learnable matrix to retrieve the quality score of given projection. 
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Multi-identity aggregation 
The formulation of the task is similar to the previous section with the output being a set of 

vectors      where k is the number of unique identities within a video sequence. 

Given a set of n features, multiple identities aggregation could be decomposed into two 

parts: 

1. finding k face tracks within a set. 

2. aggregating features within each face track. 

Proposed multi-identity architecture. n - specifies the number of embeddings in a video, d 

- dimensionality of the embedding, k - number of unique identities within a video 
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By representing relation to the face tracks as a (n,n) binary matrix, our goal is to find a set 

of cliques. First, to create a binary mask, we need to classify all possible feature pairs 

within a video (that is  ). After that, to remove any ambiguity and create a face track, 

we need to separate them into strongly connected components. To do that we implement a 

greedy post-processing. According to [39] norm of the embedding could be considered as 

a proxy to the quality of face embedding. Assignment of components is performed in the 

descending order specified by the Euclidian norm of the embeddings:  

, where X is a matrix of extracted embeddings. All elements which 

lie in a class relation with a given example i  are retreived , 

where R is a class relation,  assigned to the component and zeroed out in the initial binary 

matrix. The code snippet on Python is below. 

Starting from the embedding with the highest norm, cliques are greedily assigned, until no 

elements are left unassigned. The resulting matrix is converted to the batch of zero-

padded face tracks and then aggregated using a single identity aggregation network.  
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Experiments 

Datasets and protocols 

To train our aggregator, we use the UMDFaces [1]  dataset. Additionally, we append a 

dataset with short GIFs of different identities parsed from publicly available API through 

giphy.com. Collected and preprocessed dataset will be made publicly available. For GIFs 

collection, we used their public API to get the most relevant GIFs for approximately 2300 

celebrities. From each GIF, we sampled 5 frames evenly distributed in time. As a result, on 

average, we obtained about 150 GIFs for each indentity, in total, almost 3M frames. 

Sampled face tracks and overall training datasets statistics could observed in the following 

figures: 
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IJB-C [35]  dataset is used for  benchmarking. IJB-C has 3,531 indentities with 31.3K still 

images and 117.5K frames from 11, 779 videos.  

Preprocessing 

In the UMDFaces dataset, faces are detected using publicly available MTCNN model [58] . 

Using 5 facial keypoints, the similarity transform is applied to align faces. To match all 

detected faces with UMDFaces annotations, an IOU of 0.4 is chosen as a threshold. All 

other faces that were not matched are ignored. We use the same detector for GIFs 

dataset. It is important to note, that since GIF may contain multiple faces and not just the 

ones of desired celebrity, we used pretrained ArcFace model to get feature vectors for 

detected faces, computed mean vectors for each class and filtered out faces whose 

vectors do not lie within specified cosine distance threshold of 0.7 from the corresponding 

class center. 

Training details 

Single identity training 

The aggregator is trained on the UMDFaces+GIFs dataset using an additive angular 

margin loss [49] . The radius of the hypersphere and additive margin are set to 16.0 and 

0.35, respectively. The paramaters are trained using a RAdam optimizer [29]  

with default values. For the encoder, the official implementation of  Transformer on 

Tensorflow is used (https://github.com/tensorflow/models/blob/master/official/transformer/

model/transformer.py), with a single modification (removing the trainable embedding 

block). The depth of the encoder is set to 4, the number of heads for the aggregator on top 

of ResNet and MobileNet is set to 8 and 4, respectively. Attention and ReLU dropout rates 

are specified as 0.3 and 0.4. All other hyperparameters are populated with the default 

values.  
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For validation, we employ an identity-based split. Due to the fact that identities in the 

validation are not present in the training set, we define a metric for the early stopping - 

intra-class proximity gain, defined as: 

 

where X - is the set of templates for aggregation, SA and AVE are self-attention pooling 

and average pooling respectively, Intra(Y) - is a set of distances between the aggregated 

elements of Y which belong to the same class. Specifically, each mini-batch includes 256 

templates 

that are randomly sampled from 128 identities, 32 images per template.  

Multi-identity training 

There are no multi-identity annotated video datasets that we are aware of, so we 

synthetically create one (combining UMDFaces and GIFs). We sample a random number 

of identities (from 2 to 64) and take a single session for each identity. These sessions are 

concatenated into a single one, which is then used for sampling 256 frames. These frames 

form a multi-identity video. The order of frames is preserved and used later in a single face 

track creation.  

For the binary mask generation, there could be a trainable classifier, but we have found 

that simple thresholding based on the cosine distance results in higher recall and 

precision. To train the identity aggregator on top of the post-processed mask, we employ a 

teacher forcing with a scheduled sampling [3] . For the first 5000 iterations, cosine decay 

scheduler is used to specify the probability of mixing ground truth masks with the post-

processed one. After that, only a predicted mask is used for the aggregation.   
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Results for single-identity aggregator 
 
UMD+GIFs validation set  

On the validation set, we report ICPG for  

the aggregators on top of different feature 

extractors as show in Table 2.  Additionally, 

we attach visualization of attention 

extremums on the given set in Figure 4. 

 

It was found that there are some face tracks in the UMDFaces which contain erroneously 

assigned elements. Also, it is demonstrated in Figure 5. that by resorting to the general 

context, the self-attention mechanism helps to downweight such frames during final 

aggregation (despite their high visual quality). 
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IJB-C 
1:1 Verification on mixed set and 1:N end-to-end video probes are tested. AVE (average) 

and SA (self-attention) poolings are compared and results shown in the Table 3 and  

Figure 5. 

The proposed approach results in a higher AUC, TAR, top-1 accuracy for both aggregators 

based on MobileNet and ResNet feature extractors. Notably, we observe that there is a 

more significant gap between aggregation and averaging based on the MobileNet feature 

extractor. It shows that the aggregation is more beneficial on the networks with the lower 

representational capacity.  

	 17



 

	 18



Results for multi-identity 

UMD+GIFs validation set 

The number of regressed identities is calculated on the proposed multi-identity videos. 

Above mentioned binary mask producer results in MPE (mean percentage error) of 4.2%. 

We presume that using different post-processing techniques for masks, such as transitive 

closure, could be used to lower that value. 

IJB-C 

Having only a single identity within a session, we introduce two component selection 

strategies (in order to select a single representation for reference in the session where 

multiple identities were detected). Component with largest amount of frames and 

component which contains the embedding of the highest quality are tested. Results are 

reported in Table 4 and ROC curve is displayed on Figure 7. 
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Conclusions 

In this coursework, the self-attention aggregation network was proposed for learning face 

representation for any number of identities from a video stream. It is shown that SAAN 

outperforms average pooling in general for a single identity. Especially, the usage of SAAN 

network could be beneficial if vector representation quality degrades, e.g. when using 

lightweight embeddings from MobileNet. Moreover, the further investigation indicates that 

SAAN model is robust to erroneous face tracks. The future work will explore the different 

mask postprocessing approaches and ways to improve the aggregation model for multi-

indentity video streams. 
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