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LIST OF ABBREVIATIONS 

 

 

GAN                — Generative Adversarial Network 

CNN                — Convolutional Neural Network 

ALPR               — Automatic License Plate Recognition 

LP                    — License Plate 

CycleGAN         — Cycle-Consistent Adversarial Network 

Pix2Pix           —  
Image-to-Image Translation using Conditional Adversarial 

Networks 

CUT                — Contrastive Unpaired Translation 

MLP                — Multilayer Perceptron 

PatchNCE        — Patch-based Noise Contrastive Estimation 

FastCUT          — Fast Contrastive Unpaired Translation 

GPU                — Graphics Processing Unit 

FID                  — Fréchet Inception Distance 
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INTRODUCTION 

 

 

License plates play a crucial role in vehicle identification and tracking. They provide 

important information about the vehicle's registration and ownership. In recent years, the 

development of software products and technologies, such as deep learning, has 

revolutionized the field of computer vision and image processing. One promising 

application of deep learning is the generation of license plates using unpaired image-to-

image translation techniques. 

The traditional approach to license plate generation involves manually designing 

templates and labels, which can be time-consuming and resource-intensive. Additionally, 

gathering and labeling a large dataset of license plate images can be challenging and costly. 

Therefore, there is a need for an automated and efficient method to generate license plate 

images without relying on paired training data. 

The main objective of this thesis is to develop a software application that utilizes the 

method of unpaired image-to-image translation for generating Ukrainian license plate 

images. To achieve this objective, the following research questions will be addressed: 

• How can the method of unpaired image-to-image translation be adapted for 

generating Ukrainian license plates? 

• What deep learning architecture and training procedure should be employed to 

achieve high-quality and realistic license plate generation? 

• How does the generated output compare to real Ukrainian license plates in 

terms of visual quality and similarity? 

• What are the limitations and potential challenges of the proposed approach? 

The development of a software application that can automatically generate Ukrainian 

license plate images using unpaired image-to-image translation has several significant 

implications. Firstly, it eliminates the need for manual design and labeling of license plates, 

thereby saving valuable time and resources. Secondly, it opens up possibilities for various 

applications, including license plate synthesis for training machine learning models, data 
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augmentation for computer vision tasks, and the creation of realistic virtual environments. 

Lastly, the use of unpaired image-to-image translation for license plate generation 

specifically for Ukrainian plates is a novel and unexplored area of research, providing an 

opportunity for pioneering contributions to the field. 

By addressing these objectives and research questions, this thesis aims to contribute 

to the advancement of license plate generation techniques and demonstrate the potential of 

unpaired image-to-image translation in the context of Ukrainian license plates.  
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CHAPTER 1 

LITERATURE REVIEW 

 

 

1.1. Conditional generation 

 

GAN-based methods have demonstrated remarkable results in generating high-

fidelity images [1, 2]. However, the challenge of fully controlling the generated images 

through structured data is relatively under-explored. Historically, GANs have been 

primarily used in unsupervised settings, where the goal is to generate real and natural 

images. In its basic form, GANs consist of a generator that synthesizes images and a 

discriminator that classifies images as real or fake. Several approaches have enhanced GANs 

to incorporate supervised information. 

One such approach is Conditional GAN (CGAN) [3], which extends traditional GANs 

to generate better images by including conditions on both the generator and the discriminator 

based on additional information, denoted as 𝑦𝑦. By conditioning on this additional 

information, CGAN can generate images that align with specific desired attributes or 

characteristics. 

Another approach is AC-GAN [4], which expands the original goal of GANs to 

perform two tasks: classifying images as real or fake and predicting true attribute 

information represented by 𝑦𝑦. Unlike modeling the joint distribution as in CGAN, AC-GAN 

models the conditional distribution of the attribute 𝑦𝑦 given the image 𝑥𝑥. This allows for more 

fine-grained control over the generated images based on specific attribute information. 

Inspired by this strategy, conditional generation has been applied with various 

additional information types, including classes [5], text [6], bounding boxes [7], and pose 

estimations [8]. These additional inputs enable the generator to generate images that satisfy 

specific conditions or constraints. 

One challenge encountered in conditional GANs is the topology mismatch between 

the latent space (input to the generator) and the output space (generated images). To address 

this issue, a proposed method [9] encourages a bi-Lipschitz mapping between the latent and 
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output manifolds. This improvement enhances the quality of synthetic images in terms of 

image diversity and realism. 

Numerous complex architectures have applied conditional generation and 

demonstrated good results in various domains, such as anime generation [10], brain 

metastases synthesis [11], 3D brain images at different stages of Alzheimer's disease [12], 

or gastritis image generation [13]. However, these previous works typically operate in a 

single-label setting, where the input consists of a label vector 𝑦𝑦 and a random noise vector 

𝑧𝑧. The discriminator produces two outputs: the probability of 𝑥𝑥 being real or fake and the 

estimated conditional probability 𝑝𝑝(𝑥𝑥|𝑦𝑦). While the use of the label vector 𝑦𝑦 shows great 

potential for controlling the generated output, to the best of our knowledge, no existing work 

explores the possibility of gaining further control within a multi-label context. 

 

1.2. License plate generation 

 

In recent years, CNN-based Automatic License Plate Recognition (ALPR) methods 

[14] have achieved significant success. However, these methods often require a large 

amount of labeled data, which can be costly and time-consuming to collect. Additionally, 

existing ALPR systems may suffer from overfitting on over-represented characters or 

underperform on under-represented characters. 

To address these limitations and improve ALPR systems, license plate (LP) image 

synthesis methods have been proposed to generate new examples of labeled training data 

[15]. These synthesized images can enhance the diversity and quantity of available data, 

leading to better performance. 

One notable approach by Wang et al. [16] improves upon the CycleGAN-based model 

[17], which learns the mapping between synthetic (generated by a script) and real license 

plate images. This method leverages the power of generative adversarial networks to 

generate realistic LP images and enhance the training data for ALPR systems. 

Similarly, Wu et al. [18] adopt a similar approach by improving the image-to-image 

based Pix2Pix generative architecture [19]. By training the model on pairs of synthetic and 
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real LP images, they enhance the ability to generate realistic and diverse license plate 

images. 

Although these methods have demonstrated good results, they have specific 

limitations. For example, the generated images may suffer from poor quality or lack 

variation, as they are often limited to single-image generation for a given license plate text 

input. 

In contrast, Silvano et al. [20] propose a method to generate large volumes of accurate 

license plate images adhering to the Mercosur standard using a template-based synthesis 

approach. They incorporate data augmentation techniques that mimic real-life conditions 

such as artificial shading and sloping. This approach allows for the generation of license 

plate images with any desired text. However, this method heavily relies on a specific 

template and data augmentation, making it difficult to extend to other license plate standards 

or variations. 

 

1.3. Contrastive Unpaired Translation 

 

A significant advantage of Contrastive Unpaired Translation (CUT), compared to its 

competitors, lies in its ability to train and perform well even when both the input and output 

domains consist of only a single image [21]. This characteristic sets it apart from previous 

methods in the field. Furthermore, CUT introduces a novel approach by utilizing image 

patches instead of entire images during the translation process. 

In CUT, the training procedure involves sampling negative patches, which are 

required to calculate the loss, from the same image rather than from other images in the 

dataset. Surprisingly, this sampling strategy yields superior results compared to scenarios 

where negatives are sampled from different images. This approach encourages the mapping 

of corresponding patches to the same location in relation to other patches (negatives), 

leading to improved output image quality. Additionally, this technique brings about notable 

advantages in terms of memory usage and the time required to train the model, resulting in 

more efficient training compared to the baseline method, which in this case is CycleGAN. 
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By focusing on image patches rather than entire images, CUT exploits the local 

characteristics and relationships within the input and output domains, enabling finer control 

over the translation process. This approach allows for more precise mapping of features and 

textures between the input and output images, leading to enhanced results. 

The utilization of CUT in the context of Ukrainian license plate generation has several 

implications. It enables the model to learn and capture intricate details specific to license 

plates, such as characters, fonts, colors, and patterns, while maintaining the ability to 

generate high-quality and realistic images. Moreover, the use of image patches and the 

sampling strategy from the same image facilitate the preservation of spatial relationships 

and consistent mappings, resulting in visually coherent and accurate license plate images. 

Overall, the employment of Contrastive Unpaired Translation for Ukrainian license 

plate generation brings notable advantages in terms of its ability to handle single-image 

domains, its focus on image patches for enhanced control, improved output image quality, 

reduced memory usage, and efficient training compared to the baseline method. These 

characteristics make CUT a promising approach for generating Ukrainian license plate 

images using unpaired image-to-image translation.  
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CHAPTER 2 

METHODOLOGY 

 

 

2.1. Explanation of the "Contrastive Unpaired Translation" method 

 

Image-to-image translation aims to transform images from one domain to another 

while preserving the content of the original image. The goal is to change the style or specific 

characteristics of the images while maintaining the underlying information. This process 

can be seen as a disentanglement problem, where the content, which needs to be preserved, 

is separated from the appearance, which should be altered. Figure 2.1 provides an example 

of successful translation, showcasing a network trained on photographs of Parisian streets 

as the input domain and images depicting the canals of Burano as the output domain. 

 

 
Fig. 2.1. Example of Image-to-Image Translation achieved by 

the CUT model - Parisian streets translated to depict the 

canals of Burano in Venice. Source: [21] 
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The model, known as "Contrastive Unpaired Translation" (CUT), is specifically 

designed to handle unpaired image translation tasks efficiently and effectively. 

CUT introduces a novel methodology that leverages the power of deep learning to 

learn the mapping between two image domains without relying on paired training data. 

Instead, it takes advantage of unpaired datasets, where corresponding images between the 

input and output domains are not explicitly aligned. This flexibility allows for greater 

scalability and eliminates the need for labor-intensive manual annotation or data collection 

efforts. 

The core principle behind CUT is to encourage the mapping of corresponding patches 

from the input and output domains to the same location in relation to other patches, while 

also optimizing the overall quality of the generated images. By focusing on image patches 

rather than entire images, CUT enables finer control over the translation process, preserving 

local characteristics and relationships between the domains. 

Throughout the upcoming chapters, we will delve into the architectural details of CUT 

and the specific techniques it employs to achieve successful unpaired image translation. 

These discussions will encompass various components, such as the network architecture, 

loss functions, and training strategies employed by CUT to achieve high-quality and 

coherent translations between the Ukrainian license plate input domain and the synthesized 

output domain. 

 

2.2. Architecture of the deep learning model used 

 

The Contrastive Unpaired Translation model is employed to achieve the translation 

between the input domain 𝑋𝑋 and the output domain 𝑌𝑌, where 𝑋𝑋 represents the set of unpaired 

input instances {𝑥𝑥 ∈  𝑋𝑋 }, and 𝑌𝑌 represents the set of unpaired output instances {𝑦𝑦 ∈  𝑌𝑌 }. 

The objective is to transform images from the input domain 𝑋𝑋, which is a subset of 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 , 

to resemble images from the output domain 𝑌𝑌, which is a subset of 𝑅𝑅𝐻𝐻×𝑊𝑊×3, while 

preserving the content of the input domain. 

Unlike other methods that employ inverse auxiliary generators and discriminators, the 

CUT model simplifies the training process, resulting in reduced training times. The 
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generator function 𝐺𝐺 is composed of two components: an encoder 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 followed by a 

decoder 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑. Together, they produce the output image ŷ =  G(x)  =  𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒(x)) .  

The adversarial loss [22] is utilized to encourage the output image to visually 

resemble the images from the target domain. The adversarial loss is defined as follows: 

 

ℒGAN(G, D, X, Y) = 𝔼𝔼𝐲𝐲∼Ylog (D(𝐲𝐲)) + 𝔼𝔼𝐱𝐱∼Xlog (1 − D(G(𝐱𝐱)))          (2.1) 

 

To achieve mutual information maximization, noise contrastive estimation [23] is 

employed. An embedding is learned to associate a "query" with its corresponding "positive" 

while disassociating the "query" from other points in the dataset referred to as "negatives". 

The query, positive, and 𝑁𝑁 negatives are mapped to 𝐾𝐾-dimensional vectors 𝒗𝒗,𝒗𝒗+ ∈ ℝ𝐾𝐾, and 

𝒗𝒗− ∈ ℝ𝑁𝑁×𝐾𝐾, respectively. These vectors are normalized onto a unit sphere to prevent the 

space from collapsing or expanding. An (𝑁𝑁 + 1)-way classification problem is set up, where 

the distances between the query and other examples (positive and negatives) are scaled by 

a temperature 𝜏𝜏 =  0.07 and passed as logits. The loss function is calculated using cross-

entropy loss, as represented in the original CUT model [21]: 

 

ℓ(𝑣𝑣, 𝑣𝑣+,𝑣𝑣−) =  −log � exp (𝑣𝑣⋅𝑣𝑣+/τ)
exp (𝑣𝑣⋅𝑣𝑣+/τ)+∑  N

n=1  exp (𝑣𝑣⋅𝑣𝑣𝑛𝑛−/τ)�          (2.2) 

 

The ultimate goal is to establish associations between the input and output data. The 

"query" corresponds to the output, while the positives and negatives represent the 

corresponding and non-corresponding inputs, respectively.  

Notably, the objective is to achieve shared content not only between the entire images 

but also between corresponding patches within the image. This multi-layer, patch-based 

objective is accomplished using the encoder 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒. The feature stack generated by 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 

provides access to layers and spatial locations representing patches within the input image. 

A two-layer MLP (Multilayer Perceptron) network 𝐻𝐻𝑙𝑙 is applied to the feature maps of 

selected layers, resulting in a stack of features {𝑧𝑧𝑙𝑙}𝐿𝐿 = {𝐻𝐻𝑙𝑙(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 (𝑥𝑥))}𝐿𝐿, where 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙  denotes 

the output of the l-th chosen layer. These layers are indexed by 𝑙𝑙 ∈ {1,2, … ,𝐿𝐿}, and a spatial 
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location is denoted by 𝑠𝑠 ∈ {1, … , 𝑆𝑆𝑙𝑙}, where 𝑠𝑠 represents a specific spatial location and 𝑆𝑆𝑙𝑙 

represents the number of spatial locations in each layer. The corresponding feature is 

denoted as 𝑧𝑧𝑙𝑙𝑠𝑠 ∈ ℝ𝐶𝐶𝑙𝑙 , while 𝑧𝑧𝑙𝑙
𝑆𝑆∖𝑠𝑠 ∈ ℝ(𝑆𝑆𝑙𝑙−1)×𝐶𝐶𝑙𝑙  represents the remaining features, where 𝐶𝐶𝑙𝑙 is 

the number of channels in each layer. A similar encoding process is applied to the output 

image ŷ, resulting in {𝑧̂𝑧𝑙𝑙}𝐿𝐿 = �𝐻𝐻𝑙𝑙 �𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 �𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙))���
𝐿𝐿
. 

The objective is to match corresponding input-output patches at specific locations, 

utilizing other patches from the input image as negatives. PatchNCE [21] loss is employed 

to achieve this goal: 

 

ℒPatchNCE (G, H, X) = 𝔼𝔼x∼X ∑  L
l=1  ∑  Sl

s=1  ℓ�ẑl
s, zl

s, zl
S∖s�          (2.3) 

 

 
Fig. 2.2. Visual representation of Patchwise Contrastive Loss. Source: [21] 

 

By combining the PatchNCE loss with the adversarial loss, the overall loss function 

is formulated as follows: 

 

ℒGAN(G, D, X, Y) + λXℒPatchNCE (G, H, X) + λYℒPatchNCE (G, H, Y)          (2.4) 



14 
 

 

where 𝜆𝜆𝑋𝑋 and 𝜆𝜆𝑌𝑌 represent the weights assigned to the PatchNCE loss for domains 𝑋𝑋 

and 𝑌𝑌, respectively.  

In the case of the CUT model, 𝜆𝜆𝑋𝑋 =  𝜆𝜆𝑦𝑦 = 1. This identity loss is applied to prevent 

the generator from making unnecessary changes by calculating the PatchNCE loss between 

a translated image and a real image from the target domain dataset. Additionally, a lighter 

and faster variant called FastCUT is introduced, where 𝜆𝜆𝑋𝑋 = 10 to compensate for the 

absence of the regularizer (i.e., 𝜆𝜆𝑦𝑦 = 0). The FastCUT model is designed for scenarios with 

limited training time or GPU memory limitations, as it achieves satisfactory results similar 

to CycleGAN [24] while requiring significantly less memory and training time. However, it 

should be noted that the absence of the regularizer in FastCUT may lead to significant 

oscillations in the model's performance during training and potentially result in subpar final 

results. 

 

2.3. Evaluation metric 

 

To assess the quality of the generated images, the Frechet Inception Distance (FID) 

metric [25], [26] is employed. The FID metric quantifies the dissimilarity between the 

distribution of real images and generated images in a deep network space. The FID score is 

calculated using the following formula: 

 

FID = ∥∥μX − μY∥∥
2 + tr �ΣX + ΣY − 2�(ΣXΣY)�,          (2.5) 

 

where μX and μY represent the means of the real and generated image distributions, 

respectively, ΣX and ΣY are their corresponding covariance matrices, tr denotes the trace 

operation, and �(ΣXΣY) represents the matrix square root of the product of ΣX and ΣY. 

In essence, the FID metric estimates the distance between the distributions of real and 

generated images. A lower FID score indicates a higher level of similarity between the 

generated images and real images, signifying more convincing and realistic results. 
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By using the FID metric, the performance of the Contrastive Unpaired Translation 

(CUT) model can be quantitatively evaluated, providing an objective measure of the quality 

of the generated images. The goal is to achieve the lowest possible FID score, indicating 

that the generated images closely resemble the real images from the target domain. 

 

2.4. Training details 

 

This chapter outlines the training details of the CUT and FastCUT models, comparing 

them to the CycleGAN model. The initial CUT model configuration follows the settings 

presented in the Contrastive Learning for Unpaired Image-to-Image Translation paper [21]. 

The model includes a ResNet-based generator [27] with 9 residual blocks, a PatchGAN 

discriminator [28], Least SquareGAN loss [29], a batch size of 1, and an Adam optimizer 

[30] with a learning rate of 0.0002. These parameters are chosen to align with the original 

settings of CycleGAN [24]. The key difference is that the cycle-consistency loss in 

CycleGAN is replaced with the contrastive loss in CUT. For the CUT model, 𝜆𝜆𝑋𝑋 =  𝜆𝜆𝑦𝑦 = 1 

is used in the loss function (equation 2.4), indicating equal weights for the PatchNCE loss 

on both domains. In the case of FastCUT, the loss function is modified to 𝜆𝜆𝑋𝑋 = 10 and 𝜆𝜆𝑦𝑦 =

1 to compensate for the absence of the regularizer. 

The training process involves training each CUT experiment for 400 epochs. During 

the first 200 epochs, the learning rate remains constant, and then it gradually decays to 0 

over the last 200 epochs. For the FastCUT model, training is conducted for 200 epochs, with 

the learning rate kept constant at 0.0002 for the first 150 epochs and then gradually decaying 

at a constant rate for the remaining 50 epochs. Additionally, the flip-equivariance 

augmentation, as described in the original paper [21], is applied during the training of the 

FastCUT model. 

To calculate the PatchNCE loss, features are extracted from five different layers of 

the Genc. These layers correspond to the RGB pixels, the first and second downsampling 

convolutions, and the first and fifth residual blocks. The receptive field sizes for these layers 

are 1 × 1, 9 × 9, 15 × 15, 35 × 35, and 99 × 99, respectively. For each layer's features, a two-
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layer MLP is applied to 256 randomly sampled locations, resulting in 256-dimensional final 

features. 

By training the models with these specific configurations and settings, the CUT and 

FastCUT models aim to achieve effective image translation performance while considering 

the limitations and computational efficiency compared to CycleGAN. 
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CHAPTER 3 

SYSTEM DESIGN AND IMPLEMENTATION 

 

 

3.1. Overview of the software application 

 

The software application presented in this thesis is a PyTorch implementation 

designed for the generation of real and synthetic Ukraine license plate (LP) registration 

numbers. The application leverages a Generative Adversarial Network (GAN) model to 

generate realistic LP numbers with a certain level of distortions, mimicking the 

characteristics of real-life license plates. 

The workflow of the application involves two main steps. First, synthetic Ukrainian 

LP numbers are generated using a predefined script. These synthetic LP numbers serve as 

input to the GAN model, which learns to generate realistic LP numbers that resemble the 

patterns and styles found on real license plates. The GAN model is trained using a 

combination of real and synthetic LP numbers, allowing it to learn the mapping between the 

synthetic and real images. 

After the training phase, the GAN model is used for inference. Given a synthetic LP 

number as input, the model generates a corresponding real-life license plate number with a 

certain level of distortions. The distortions aim to simulate real-life conditions and variations 

observed on license plates, such as slight variations in font, spacing, and positioning. 

To evaluate the performance of the generated license plates, an HTML file is 

generated as a result. This HTML file provides a visual comparison between the synthetic 

LP number, the generated real-life license plate, and an actual photograph of a real license 

plate. This comparison allows for a qualitative assessment of the realism and accuracy of 

the generated license plates.  
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3.2. System requirements and specifications 

 

The software application has certain system requirements and specifications to ensure 

proper functionality. These requirements are outlined below: 

• prerequisites: the application requires a Linux or macOS operating system. It 

is compatible with Python 3. Additionally, if GPU acceleration is desired, an NVIDIA 

GPU with CUDA CuDNN support is required; 

• framework and dependencies: the application is built using PyTorch 1.1, a 

popular deep learning framework. Several dependencies are required for the 

application to run smoothly, including torchvision, visdom, dominate, and gputil. All 

the necessary dependencies are listed in the requirements.txt file, which can be used 

to install them; 

• hardware acceleration: the software application has been tested and launched 

on Google Colab, utilizing hardware acceleration provided by an NVIDIA Tesla T4 

GPU. This GPU acceleration significantly speeds up the computations, improving the 

overall performance of the application; 

• tensorflow compatibility: although the software application primarily relies 

on PyTorch, it is compatible with Tensorflow as well. This compatibility allows users 

to take advantage of Tensorflow's GPU speedup over CPU, which can provide a speed 

boost of up to 35 times compared to CPU-only processing [31]. 

By meeting these system requirements and specifications, users can ensure a smooth 

and efficient operation of the software application. The compatibility with different 

operating systems, the utilization of GPU acceleration, and the inclusion of necessary 

dependencies contribute to the overall usability and performance of the application. 

 

3.3. Description of the dataset used for training and evaluation 

 

The software application utilizes a dataset consisting of both synthetic and real license 

plates for training and evaluation purposes. The dataset is described in detail below: 
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• Synthetic license plates: the synthetic license plates are generated using a 

Python script that reads registration numbers from a pre-defined CSV file. The 

generation process ensures that the synthetic license plates resemble real license 

plates, and it specifically uses the "Road UA" font [32] to achieve similarity with the 

fonts used on real license plates. 

• Real-life images: the real license plate images are sourced from the online car 

market AUTO.RIA [33]. These images are downloaded and then processed by 

cropping them to focus on the license plate registration characters. Additionally, some 

transformations may be applied to the images, such as tilting, perspective warping, or 

darkening, to introduce variability and mimic real-world conditions. 

• License plate dimensions: both the synthetic and real license plates in the 

dataset adhere to the dimensions of a regular single-line license plate [34], measuring 

520 mm by 112 mm. This consistency ensures that the generated license plates match 

the physical dimensions of actual license plates. 

• Dataset split: the dataset consists of a total of 100 images for training and 14 

images for evaluation. The training images are divided into two folders: trainA and 

trainB. The trainA folder contains the synthetic license plates, while the trainB folder 

contains the corresponding real license plates. For evaluation purposes, the dataset 

includes two additional folders: testA and testB, which contain the synthetic and real 

license plates, respectively. 

By combining synthetic and real-life license plates in the dataset, the software 

application can train and evaluate the GAN model effectively. The use of the Road UA font 

for synthetic plates, along with the inclusion of real-life license plate images, ensures that 

the generated license plates closely resemble real ones and exhibit the necessary variability 

for accurate evaluation and comparison.  
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3.4. Design principles and architecture 

 

The software application follows a modular design with several scripts that serve 

specific functions. The design principles and architecture of the application are described as 

follows: 

• generate.py: this script is responsible for generating synthetic license plates 

based on the information provided in a pre-defined CSV file; 

• make_dataset.py: the purpose of this script is to organize the dataset for 

training. It copies the generated synthetic license plate images and the corresponding 

real license plate images into the training folders trainA and trainB, respectively. This 

organization enables the training process to access the necessary data for both 

synthetic and real license plates; 

• train.py: this script is used to train the models, specifically CUT and FastCUT 

models. The training is performed based on the specified arguments, such as the 

CUT_mode argument, which determines the mode (CUT or FastCUT) for the training 

process. The script takes the training dataset from the specified dataroot (a root folder 

that contains trainA and trainB folders) and saves the outputs of the trained model 

under the specified --name; 

• test.py: this script is used for conducting inference with the pretrained model. 

It allows the user to choose the pretrained model based on the --name argument and 

specify the mode (--CUT_mode) for the inference process (CUT or FastCUT). The 

script takes the test dataset from the specified test_dataroot (a root folder that contains 

testA and testB folders) and generates an HTML comparison file in the result folder. 

This HTML file provides a visual comparison between synthetic, generated, and real-

life license plates. 

The architecture of the software application follows a pipeline-like approach. The 

generation of synthetic license plates is separated from the training and testing processes. 

The training phase utilizes the generated synthetic license plates and the corresponding real-

life license plates to train the CUT and FastCUT models. The testing phase then employs 
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the trained models to generate results and create a visual comparison in the form of an 

HTML file. 

By following this design architecture, the software application enables the generation, 

training, and evaluation of synthetic and real-life license plates, allowing for the comparison 

of their visual quality and resemblance.  
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CHAPTER 4 

RESULTS AND EVALUATION 

 

 

4.1. Presentation of the generated license plates 

 

The visual comparisons between synthetic, generated, and real license plates for both 

the CUT and FastCUT models are presented in the table below: 

 

Synthetic Generated FastCUT Generated CUT Real 
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Table 4.1. Visual presentation of the generated license plates 

 

Upon examining the generated license plates, it can be observed that there are 

differences between the results obtained from the CUT and FastCUT models. The generated 

license plates from the FastCUT model exhibit a less clear background and a more blurry 

font compared to those generated by the CUT model. This difference suggests that the 

FastCUT model may introduce more distortions in the generated license plates. 

Furthermore, it is worth noting that the generated license plates from the CUT model 

exhibit an artifact in the form of a strip located above the characters. Unfortunately, no 

specific explanation is provided for this artifact, and further investigation is required to 

understand its origin and potential mitigation strategies. 

The presented visual comparisons provide a comprehensive overview of the 

generated license plates, allowing for a visual assessment of their quality and resemblance 

to real license plates. 

 

4.2. Qualitative evaluation of the generated plates 

 

To evaluate the quality of the generated license plates, qualitative assessment was 

conducted. 

The Frechet Inception Distance (FID) metric, as described in chapter 2.3, was used to 

evaluate the generated license plates. For the FastCUT model, the FID value obtained was 

163.70, while for the CUT model, the FID value was 93.00. Because the FID scores can 

range from 0 to positive infinity, the license plates generated by the CUT model are 1.76 

times more accurate in terms of resembling the real license plates compared to the FastCUT 

model. 
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The calculation speed of the FID metric was also measured for both the FastCUT and 

CUT models. The FastCUT model achieved a speed of 4.29 iterations per second, while the 

CUT model achieved a speed of 5.45 iterations per second. It should be noted that the 

calculation speed is dependent on the power of the GPU used for the evaluation. 

 

Method FID Sec/iter 

CUT 93.00 5.45 

FastCUT 163.70 4.29 

Table 4.2. Metric values for CUT and FastCUT models 

 

Overall, the quantitative evaluation using FID scores indicates that the CUT model 

performs better in terms of generating license plates that closely resemble the real ones. 

 

4.3. Discussion of limitations and challenges 

 

Despite the promising results obtained in generating license plates using the CUT and 

FastCUT models, there are certain limitations and challenges that need to be addressed. 

1. Difficulty in capturing fine details: one limitation is the difficulty in capturing 

fine details in the generated license plates. While the models are able to generate 

plates that bear a resemblance to real ones, they may struggle to reproduce intricate 

details accurately. Fine details such as small symbols, specific fonts, or subtle 

variations in color may not be captured with high fidelity. This limitation may affect 

the overall realism and authenticity of the generated license plates. 

2. Limited control over style transfer: another challenge is the limited control 

over the style transfer process. The models aim to generate license plates that mimic 

the style of real plates while incorporating certain distortions. However, the level of 

control over the specific style elements and distortions may be limited. As a result, 

the generated plates may not precisely match the desired style or level of distortion. 

Improving the fine-grained control over the style transfer process could enhance the 

flexibility and customization options of the models. 
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3. Dependency on training data quality and quantity: the performance of the 

models is heavily dependent on the quality and quantity of the training data. The 

accuracy and diversity of the generated license plates are directly influenced by the 

characteristics of the training dataset. Insufficient or biased training data may lead to 

suboptimal performance and a limited range of generated plate variations. 

Additionally, the models may struggle to generalize well to unseen data if the training 

dataset does not adequately cover the full range of license plate styles and variations. 

Addressing these limitations and challenges could involve exploring alternative 

model architectures, incorporating additional training techniques, or augmenting the 

training dataset with a wider variety of license plate styles and distortions. Furthermore, 

incorporating user feedback and iteratively refining the models based on real-world 

evaluations could help enhance their performance and address specific limitations.  
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CONCLUSION AND FUTURE WORK 

 

 

In this thesis, we have explored the generation of license plates using the CUT and 

FastCUT models. The key findings and contributions of our research can be summarized as 

follows: 

• We successfully developed a software application that generates synthetic 

license plate numbers and uses a Generative Adversarial Network model to create 

realistic license plates with distortions. 

• The generated license plates were compared visually, and the results were 

presented in a table for both the CUT and FastCUT models. We observed that the 

FastCUT model produced license plates with a less clear background and more blurry 

font compared to the CUT model. 

• The quality of the generated license plates was evaluated quantitatively using 

the Frechet Inception Distance metric. The FID scores for FastCUT and CUT were 

found to be 163.70 and 93.00, respectively. Based on these scores, the plates 

generated by CUT were found to be 1.76 times more accurate. 

Considering the limitations and challenges discussed in chapter 4.3, there are several 

avenues for future research: 

1. Improving the capture of fine details: further investigation and development 

of the models to enhance their ability to capture intricate details of license plates, such 

as small symbols and specific fonts, could lead to more realistic and accurate 

generated plates. 

2. Enhancing control over style transfer: exploring techniques to provide users 

with more control over the style transfer process, allowing for finer adjustments to 

the desired style and level of distortion, would increase the flexibility and 

customization options of the models. 

3. Augmenting the training dataset: expanding the training dataset to include a 

wider variety of license plate styles, distortions, and variations would help the models 

generalize better to unseen data and produce a more diverse range of generated plates. 



27 
 

 

The practical applications of the developed software application are numerous. It can 

be used for various purposes, such as generating synthetic license plates for testing and 

evaluation of Automatic License Plate Recognition systems, creating training data for 

computer vision models, or generating license plates for virtual environments in video 

games or simulations. 

To further improve the system, potential enhancements include incorporating 

advanced image generation techniques, exploring alternative GAN architectures, and 

refining the training process by utilizing larger and more diverse datasets. 

In conclusion, our research has demonstrated the feasibility of generating license 

plates using CUT and FastCUT models. Despite certain limitations, the models have shown 

promising results in generating realistic license plates. Future research and improvements 

in addressing the identified limitations will contribute to the advancement of license plate 

generation and its practical applications in various domains.  
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