

Міністерство освіти і науки України

Національний університет «Києво-Могилянська академія»

Факультет інформатики

Кафедра математики

Магістерська робота

освітній ступінь – магістр

на тему: «ГЕНЕРУВАННЯ ЗОБРАЖЕНЬ НОМЕРНИХ ЗНАКІВ МЕТОДАМИ
ГЛИБИННОГО НАВЧАННЯ»

Виконав: студент 2-го року навчання,
Освітньої програми «Прикладна
математика», 113

Марчук Владислав Сергійович

Керівник Швай Н.О,_________
кандидат фіз.-мат. наук, доцент

Рецензент _______________________
(прізвище та ініціали)

Магістерська робота захищена
з оцінкою _______________________

Секретар ЕК _____________________
«____» _________________ 20____ р.

Київ – 2023

2

CONTENTS
Page

INTRODUCTION

4
CHAPTER 1: LITERATURE REVIEW
 1.1. Conditional generation . 6
 1.2. License plate generation . 7
 1.3. Contrastive Unpaired Translation . 8

CHAPTER 2: METHODOLOGY
 2.1. Explanation of the "Contrastive Unpaired Translation" method 10
 2.2. Architecture of the deep learning model used . 11
 2.3. Evaluation Metric . 14
 2.4. Training Details . 15

CHAPTER 3: SYSTEM DESIGN AND IMPLEMENTATION
 3.1. Overview of the software application . 17
 3.2. System requirements and specifications . 18
 3.3. Description of the dataset used for training and evaluation 18
 3.4. Design principles and architecture 20

CHAPTER 4: RESULTS AND EVALUATION
 4.1. Presentation of the generated license plates . 22
 4.2. Qualitative evaluation of the generated plates . 23
 4.3. Discussion of limitations and challenges. 24

CONCLUSION AND FUTURE WORK. 26
BIBLIOGRAPHY . 28

3

LIST OF ABBREVIATIONS

GAN — Generative Adversarial Network

CNN — Convolutional Neural Network

ALPR — Automatic License Plate Recognition

LP — License Plate

CycleGAN — Cycle-Consistent Adversarial Network

Pix2Pix —
Image-to-Image Translation using Conditional Adversarial

Networks

CUT — Contrastive Unpaired Translation

MLP — Multilayer Perceptron

PatchNCE — Patch-based Noise Contrastive Estimation

FastCUT — Fast Contrastive Unpaired Translation

GPU — Graphics Processing Unit

FID — Fréchet Inception Distance

CSV — Comma-Separated Values

4

INTRODUCTION

License plates play a crucial role in vehicle identification and tracking. They provide

important information about the vehicle's registration and ownership. In recent years, the

development of software products and technologies, such as deep learning, has

revolutionized the field of computer vision and image processing. One promising

application of deep learning is the generation of license plates using unpaired image-to-

image translation techniques.

The traditional approach to license plate generation involves manually designing

templates and labels, which can be time-consuming and resource-intensive. Additionally,

gathering and labeling a large dataset of license plate images can be challenging and costly.

Therefore, there is a need for an automated and efficient method to generate license plate

images without relying on paired training data.

The main objective of this thesis is to develop a software application that utilizes the

method of unpaired image-to-image translation for generating Ukrainian license plate

images. To achieve this objective, the following research questions will be addressed:

• How can the method of unpaired image-to-image translation be adapted for

generating Ukrainian license plates?

• What deep learning architecture and training procedure should be employed to

achieve high-quality and realistic license plate generation?

• How does the generated output compare to real Ukrainian license plates in

terms of visual quality and similarity?

• What are the limitations and potential challenges of the proposed approach?

The development of a software application that can automatically generate Ukrainian

license plate images using unpaired image-to-image translation has several significant

implications. Firstly, it eliminates the need for manual design and labeling of license plates,

thereby saving valuable time and resources. Secondly, it opens up possibilities for various

applications, including license plate synthesis for training machine learning models, data

5

augmentation for computer vision tasks, and the creation of realistic virtual environments.

Lastly, the use of unpaired image-to-image translation for license plate generation

specifically for Ukrainian plates is a novel and unexplored area of research, providing an

opportunity for pioneering contributions to the field.

By addressing these objectives and research questions, this thesis aims to contribute

to the advancement of license plate generation techniques and demonstrate the potential of

unpaired image-to-image translation in the context of Ukrainian license plates.

6

CHAPTER 1

LITERATURE REVIEW

1.1. Conditional generation

GAN-based methods have demonstrated remarkable results in generating high-

fidelity images [1, 2]. However, the challenge of fully controlling the generated images

through structured data is relatively under-explored. Historically, GANs have been

primarily used in unsupervised settings, where the goal is to generate real and natural

images. In its basic form, GANs consist of a generator that synthesizes images and a

discriminator that classifies images as real or fake. Several approaches have enhanced GANs

to incorporate supervised information.

One such approach is Conditional GAN (CGAN) [3], which extends traditional GANs

to generate better images by including conditions on both the generator and the discriminator

based on additional information, denoted as 𝑦𝑦. By conditioning on this additional

information, CGAN can generate images that align with specific desired attributes or

characteristics.

Another approach is AC-GAN [4], which expands the original goal of GANs to

perform two tasks: classifying images as real or fake and predicting true attribute

information represented by 𝑦𝑦. Unlike modeling the joint distribution as in CGAN, AC-GAN

models the conditional distribution of the attribute 𝑦𝑦 given the image 𝑥𝑥. This allows for more

fine-grained control over the generated images based on specific attribute information.

Inspired by this strategy, conditional generation has been applied with various

additional information types, including classes [5], text [6], bounding boxes [7], and pose

estimations [8]. These additional inputs enable the generator to generate images that satisfy

specific conditions or constraints.

One challenge encountered in conditional GANs is the topology mismatch between

the latent space (input to the generator) and the output space (generated images). To address

this issue, a proposed method [9] encourages a bi-Lipschitz mapping between the latent and

7

output manifolds. This improvement enhances the quality of synthetic images in terms of

image diversity and realism.

Numerous complex architectures have applied conditional generation and

demonstrated good results in various domains, such as anime generation [10], brain

metastases synthesis [11], 3D brain images at different stages of Alzheimer's disease [12],

or gastritis image generation [13]. However, these previous works typically operate in a

single-label setting, where the input consists of a label vector 𝑦𝑦 and a random noise vector

𝑧𝑧. The discriminator produces two outputs: the probability of 𝑥𝑥 being real or fake and the

estimated conditional probability 𝑝𝑝(𝑥𝑥|𝑦𝑦). While the use of the label vector 𝑦𝑦 shows great

potential for controlling the generated output, to the best of our knowledge, no existing work

explores the possibility of gaining further control within a multi-label context.

1.2. License plate generation

In recent years, CNN-based Automatic License Plate Recognition (ALPR) methods

[14] have achieved significant success. However, these methods often require a large

amount of labeled data, which can be costly and time-consuming to collect. Additionally,

existing ALPR systems may suffer from overfitting on over-represented characters or

underperform on under-represented characters.

To address these limitations and improve ALPR systems, license plate (LP) image

synthesis methods have been proposed to generate new examples of labeled training data

[15]. These synthesized images can enhance the diversity and quantity of available data,

leading to better performance.

One notable approach by Wang et al. [16] improves upon the CycleGAN-based model

[17], which learns the mapping between synthetic (generated by a script) and real license

plate images. This method leverages the power of generative adversarial networks to

generate realistic LP images and enhance the training data for ALPR systems.

Similarly, Wu et al. [18] adopt a similar approach by improving the image-to-image

based Pix2Pix generative architecture [19]. By training the model on pairs of synthetic and

8

real LP images, they enhance the ability to generate realistic and diverse license plate

images.

Although these methods have demonstrated good results, they have specific

limitations. For example, the generated images may suffer from poor quality or lack

variation, as they are often limited to single-image generation for a given license plate text

input.

In contrast, Silvano et al. [20] propose a method to generate large volumes of accurate

license plate images adhering to the Mercosur standard using a template-based synthesis

approach. They incorporate data augmentation techniques that mimic real-life conditions

such as artificial shading and sloping. This approach allows for the generation of license

plate images with any desired text. However, this method heavily relies on a specific

template and data augmentation, making it difficult to extend to other license plate standards

or variations.

1.3. Contrastive Unpaired Translation

A significant advantage of Contrastive Unpaired Translation (CUT), compared to its

competitors, lies in its ability to train and perform well even when both the input and output

domains consist of only a single image [21]. This characteristic sets it apart from previous

methods in the field. Furthermore, CUT introduces a novel approach by utilizing image

patches instead of entire images during the translation process.

In CUT, the training procedure involves sampling negative patches, which are

required to calculate the loss, from the same image rather than from other images in the

dataset. Surprisingly, this sampling strategy yields superior results compared to scenarios

where negatives are sampled from different images. This approach encourages the mapping

of corresponding patches to the same location in relation to other patches (negatives),

leading to improved output image quality. Additionally, this technique brings about notable

advantages in terms of memory usage and the time required to train the model, resulting in

more efficient training compared to the baseline method, which in this case is CycleGAN.

9

By focusing on image patches rather than entire images, CUT exploits the local

characteristics and relationships within the input and output domains, enabling finer control

over the translation process. This approach allows for more precise mapping of features and

textures between the input and output images, leading to enhanced results.

The utilization of CUT in the context of Ukrainian license plate generation has several

implications. It enables the model to learn and capture intricate details specific to license

plates, such as characters, fonts, colors, and patterns, while maintaining the ability to

generate high-quality and realistic images. Moreover, the use of image patches and the

sampling strategy from the same image facilitate the preservation of spatial relationships

and consistent mappings, resulting in visually coherent and accurate license plate images.

Overall, the employment of Contrastive Unpaired Translation for Ukrainian license

plate generation brings notable advantages in terms of its ability to handle single-image

domains, its focus on image patches for enhanced control, improved output image quality,

reduced memory usage, and efficient training compared to the baseline method. These

characteristics make CUT a promising approach for generating Ukrainian license plate

images using unpaired image-to-image translation.

10

CHAPTER 2

METHODOLOGY

2.1. Explanation of the "Contrastive Unpaired Translation" method

Image-to-image translation aims to transform images from one domain to another

while preserving the content of the original image. The goal is to change the style or specific

characteristics of the images while maintaining the underlying information. This process

can be seen as a disentanglement problem, where the content, which needs to be preserved,

is separated from the appearance, which should be altered. Figure 2.1 provides an example

of successful translation, showcasing a network trained on photographs of Parisian streets

as the input domain and images depicting the canals of Burano as the output domain.

Fig. 2.1. Example of Image-to-Image Translation achieved by

the CUT model - Parisian streets translated to depict the

canals of Burano in Venice. Source: [21]

11

The model, known as "Contrastive Unpaired Translation" (CUT), is specifically

designed to handle unpaired image translation tasks efficiently and effectively.

CUT introduces a novel methodology that leverages the power of deep learning to

learn the mapping between two image domains without relying on paired training data.

Instead, it takes advantage of unpaired datasets, where corresponding images between the

input and output domains are not explicitly aligned. This flexibility allows for greater

scalability and eliminates the need for labor-intensive manual annotation or data collection

efforts.

The core principle behind CUT is to encourage the mapping of corresponding patches

from the input and output domains to the same location in relation to other patches, while

also optimizing the overall quality of the generated images. By focusing on image patches

rather than entire images, CUT enables finer control over the translation process, preserving

local characteristics and relationships between the domains.

Throughout the upcoming chapters, we will delve into the architectural details of CUT

and the specific techniques it employs to achieve successful unpaired image translation.

These discussions will encompass various components, such as the network architecture,

loss functions, and training strategies employed by CUT to achieve high-quality and

coherent translations between the Ukrainian license plate input domain and the synthesized

output domain.

2.2. Architecture of the deep learning model used

The Contrastive Unpaired Translation model is employed to achieve the translation

between the input domain 𝑋𝑋 and the output domain 𝑌𝑌, where 𝑋𝑋 represents the set of unpaired

input instances {𝑥𝑥 ∈ 𝑋𝑋 }, and 𝑌𝑌 represents the set of unpaired output instances {𝑦𝑦 ∈ 𝑌𝑌 }.

The objective is to transform images from the input domain 𝑋𝑋, which is a subset of 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 ,

to resemble images from the output domain 𝑌𝑌, which is a subset of 𝑅𝑅𝐻𝐻×𝑊𝑊×3, while

preserving the content of the input domain.

Unlike other methods that employ inverse auxiliary generators and discriminators, the

CUT model simplifies the training process, resulting in reduced training times. The

12

generator function 𝐺𝐺 is composed of two components: an encoder 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 followed by a

decoder 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑. Together, they produce the output image ŷ = G(x) = 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒(x)) .

The adversarial loss [22] is utilized to encourage the output image to visually

resemble the images from the target domain. The adversarial loss is defined as follows:

ℒGAN(G, D, X, Y) = 𝔼𝔼𝐲𝐲∼Ylog (D(𝐲𝐲)) + 𝔼𝔼𝐱𝐱∼Xlog (1 − D(G(𝐱𝐱))) (2.1)

To achieve mutual information maximization, noise contrastive estimation [23] is

employed. An embedding is learned to associate a "query" with its corresponding "positive"

while disassociating the "query" from other points in the dataset referred to as "negatives".

The query, positive, and 𝑁𝑁 negatives are mapped to 𝐾𝐾-dimensional vectors 𝒗𝒗,𝒗𝒗+ ∈ ℝ𝐾𝐾, and

𝒗𝒗− ∈ ℝ𝑁𝑁×𝐾𝐾, respectively. These vectors are normalized onto a unit sphere to prevent the

space from collapsing or expanding. An (𝑁𝑁 + 1)-way classification problem is set up, where

the distances between the query and other examples (positive and negatives) are scaled by

a temperature 𝜏𝜏 = 0.07 and passed as logits. The loss function is calculated using cross-

entropy loss, as represented in the original CUT model [21]:

ℓ(𝑣𝑣, 𝑣𝑣+,𝑣𝑣−) = −log � exp (𝑣𝑣⋅𝑣𝑣+/τ)
exp (𝑣𝑣⋅𝑣𝑣+/τ)+∑  N

n=1  exp (𝑣𝑣⋅𝑣𝑣𝑛𝑛−/τ)� (2.2)

The ultimate goal is to establish associations between the input and output data. The

"query" corresponds to the output, while the positives and negatives represent the

corresponding and non-corresponding inputs, respectively.

Notably, the objective is to achieve shared content not only between the entire images

but also between corresponding patches within the image. This multi-layer, patch-based

objective is accomplished using the encoder 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒. The feature stack generated by 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒

provides access to layers and spatial locations representing patches within the input image.

A two-layer MLP (Multilayer Perceptron) network 𝐻𝐻𝑙𝑙 is applied to the feature maps of

selected layers, resulting in a stack of features {𝑧𝑧𝑙𝑙}𝐿𝐿 = {𝐻𝐻𝑙𝑙(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 (𝑥𝑥))}𝐿𝐿, where 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 denotes

the output of the l-th chosen layer. These layers are indexed by 𝑙𝑙 ∈ {1,2, … ,𝐿𝐿}, and a spatial

13

location is denoted by 𝑠𝑠 ∈ {1, … , 𝑆𝑆𝑙𝑙}, where 𝑠𝑠 represents a specific spatial location and 𝑆𝑆𝑙𝑙

represents the number of spatial locations in each layer. The corresponding feature is

denoted as 𝑧𝑧𝑙𝑙𝑠𝑠 ∈ ℝ𝐶𝐶𝑙𝑙 , while 𝑧𝑧𝑙𝑙
𝑆𝑆∖𝑠𝑠 ∈ ℝ(𝑆𝑆𝑙𝑙−1)×𝐶𝐶𝑙𝑙 represents the remaining features, where 𝐶𝐶𝑙𝑙 is

the number of channels in each layer. A similar encoding process is applied to the output

image ŷ, resulting in {𝑧̂𝑧𝑙𝑙}𝐿𝐿 = �𝐻𝐻𝑙𝑙 �𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 �𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙))���
𝐿𝐿
.

The objective is to match corresponding input-output patches at specific locations,

utilizing other patches from the input image as negatives. PatchNCE [21] loss is employed

to achieve this goal:

ℒPatchNCE (G, H, X) = 𝔼𝔼x∼X ∑  L
l=1  ∑  Sl

s=1  ℓ�ẑl
s, zl

s, zl
S∖s� (2.3)

Fig. 2.2. Visual representation of Patchwise Contrastive Loss. Source: [21]

By combining the PatchNCE loss with the adversarial loss, the overall loss function

is formulated as follows:

ℒGAN(G, D, X, Y) + λXℒPatchNCE (G, H, X) + λYℒPatchNCE (G, H, Y) (2.4)

14

where 𝜆𝜆𝑋𝑋 and 𝜆𝜆𝑌𝑌 represent the weights assigned to the PatchNCE loss for domains 𝑋𝑋

and 𝑌𝑌, respectively.

In the case of the CUT model, 𝜆𝜆𝑋𝑋 = 𝜆𝜆𝑦𝑦 = 1. This identity loss is applied to prevent

the generator from making unnecessary changes by calculating the PatchNCE loss between

a translated image and a real image from the target domain dataset. Additionally, a lighter

and faster variant called FastCUT is introduced, where 𝜆𝜆𝑋𝑋 = 10 to compensate for the

absence of the regularizer (i.e., 𝜆𝜆𝑦𝑦 = 0). The FastCUT model is designed for scenarios with

limited training time or GPU memory limitations, as it achieves satisfactory results similar

to CycleGAN [24] while requiring significantly less memory and training time. However, it

should be noted that the absence of the regularizer in FastCUT may lead to significant

oscillations in the model's performance during training and potentially result in subpar final

results.

2.3. Evaluation metric

To assess the quality of the generated images, the Frechet Inception Distance (FID)

metric [25], [26] is employed. The FID metric quantifies the dissimilarity between the

distribution of real images and generated images in a deep network space. The FID score is

calculated using the following formula:

FID = ∥∥μX − μY∥∥
2 + tr �ΣX + ΣY − 2�(ΣXΣY)�, (2.5)

where μX and μY represent the means of the real and generated image distributions,

respectively, ΣX and ΣY are their corresponding covariance matrices, tr denotes the trace

operation, and �(ΣXΣY) represents the matrix square root of the product of ΣX and ΣY.

In essence, the FID metric estimates the distance between the distributions of real and

generated images. A lower FID score indicates a higher level of similarity between the

generated images and real images, signifying more convincing and realistic results.

15

By using the FID metric, the performance of the Contrastive Unpaired Translation

(CUT) model can be quantitatively evaluated, providing an objective measure of the quality

of the generated images. The goal is to achieve the lowest possible FID score, indicating

that the generated images closely resemble the real images from the target domain.

2.4. Training details

This chapter outlines the training details of the CUT and FastCUT models, comparing

them to the CycleGAN model. The initial CUT model configuration follows the settings

presented in the Contrastive Learning for Unpaired Image-to-Image Translation paper [21].

The model includes a ResNet-based generator [27] with 9 residual blocks, a PatchGAN

discriminator [28], Least SquareGAN loss [29], a batch size of 1, and an Adam optimizer

[30] with a learning rate of 0.0002. These parameters are chosen to align with the original

settings of CycleGAN [24]. The key difference is that the cycle-consistency loss in

CycleGAN is replaced with the contrastive loss in CUT. For the CUT model, 𝜆𝜆𝑋𝑋 = 𝜆𝜆𝑦𝑦 = 1

is used in the loss function (equation 2.4), indicating equal weights for the PatchNCE loss

on both domains. In the case of FastCUT, the loss function is modified to 𝜆𝜆𝑋𝑋 = 10 and 𝜆𝜆𝑦𝑦 =

1 to compensate for the absence of the regularizer.

The training process involves training each CUT experiment for 400 epochs. During

the first 200 epochs, the learning rate remains constant, and then it gradually decays to 0

over the last 200 epochs. For the FastCUT model, training is conducted for 200 epochs, with

the learning rate kept constant at 0.0002 for the first 150 epochs and then gradually decaying

at a constant rate for the remaining 50 epochs. Additionally, the flip-equivariance

augmentation, as described in the original paper [21], is applied during the training of the

FastCUT model.

To calculate the PatchNCE loss, features are extracted from five different layers of

the Genc. These layers correspond to the RGB pixels, the first and second downsampling

convolutions, and the first and fifth residual blocks. The receptive field sizes for these layers

are 1 × 1, 9 × 9, 15 × 15, 35 × 35, and 99 × 99, respectively. For each layer's features, a two-

16

layer MLP is applied to 256 randomly sampled locations, resulting in 256-dimensional final

features.

By training the models with these specific configurations and settings, the CUT and

FastCUT models aim to achieve effective image translation performance while considering

the limitations and computational efficiency compared to CycleGAN.

17

CHAPTER 3

SYSTEM DESIGN AND IMPLEMENTATION

3.1. Overview of the software application

The software application presented in this thesis is a PyTorch implementation

designed for the generation of real and synthetic Ukraine license plate (LP) registration

numbers. The application leverages a Generative Adversarial Network (GAN) model to

generate realistic LP numbers with a certain level of distortions, mimicking the

characteristics of real-life license plates.

The workflow of the application involves two main steps. First, synthetic Ukrainian

LP numbers are generated using a predefined script. These synthetic LP numbers serve as

input to the GAN model, which learns to generate realistic LP numbers that resemble the

patterns and styles found on real license plates. The GAN model is trained using a

combination of real and synthetic LP numbers, allowing it to learn the mapping between the

synthetic and real images.

After the training phase, the GAN model is used for inference. Given a synthetic LP

number as input, the model generates a corresponding real-life license plate number with a

certain level of distortions. The distortions aim to simulate real-life conditions and variations

observed on license plates, such as slight variations in font, spacing, and positioning.

To evaluate the performance of the generated license plates, an HTML file is

generated as a result. This HTML file provides a visual comparison between the synthetic

LP number, the generated real-life license plate, and an actual photograph of a real license

plate. This comparison allows for a qualitative assessment of the realism and accuracy of

the generated license plates.

18

3.2. System requirements and specifications

The software application has certain system requirements and specifications to ensure

proper functionality. These requirements are outlined below:

• prerequisites: the application requires a Linux or macOS operating system. It

is compatible with Python 3. Additionally, if GPU acceleration is desired, an NVIDIA

GPU with CUDA CuDNN support is required;

• framework and dependencies: the application is built using PyTorch 1.1, a

popular deep learning framework. Several dependencies are required for the

application to run smoothly, including torchvision, visdom, dominate, and gputil. All

the necessary dependencies are listed in the requirements.txt file, which can be used

to install them;

• hardware acceleration: the software application has been tested and launched

on Google Colab, utilizing hardware acceleration provided by an NVIDIA Tesla T4

GPU. This GPU acceleration significantly speeds up the computations, improving the

overall performance of the application;

• tensorflow compatibility: although the software application primarily relies

on PyTorch, it is compatible with Tensorflow as well. This compatibility allows users

to take advantage of Tensorflow's GPU speedup over CPU, which can provide a speed

boost of up to 35 times compared to CPU-only processing [31].

By meeting these system requirements and specifications, users can ensure a smooth

and efficient operation of the software application. The compatibility with different

operating systems, the utilization of GPU acceleration, and the inclusion of necessary

dependencies contribute to the overall usability and performance of the application.

3.3. Description of the dataset used for training and evaluation

The software application utilizes a dataset consisting of both synthetic and real license

plates for training and evaluation purposes. The dataset is described in detail below:

19

• Synthetic license plates: the synthetic license plates are generated using a

Python script that reads registration numbers from a pre-defined CSV file. The

generation process ensures that the synthetic license plates resemble real license

plates, and it specifically uses the "Road UA" font [32] to achieve similarity with the

fonts used on real license plates.

• Real-life images: the real license plate images are sourced from the online car

market AUTO.RIA [33]. These images are downloaded and then processed by

cropping them to focus on the license plate registration characters. Additionally, some

transformations may be applied to the images, such as tilting, perspective warping, or

darkening, to introduce variability and mimic real-world conditions.

• License plate dimensions: both the synthetic and real license plates in the

dataset adhere to the dimensions of a regular single-line license plate [34], measuring

520 mm by 112 mm. This consistency ensures that the generated license plates match

the physical dimensions of actual license plates.

• Dataset split: the dataset consists of a total of 100 images for training and 14

images for evaluation. The training images are divided into two folders: trainA and

trainB. The trainA folder contains the synthetic license plates, while the trainB folder

contains the corresponding real license plates. For evaluation purposes, the dataset

includes two additional folders: testA and testB, which contain the synthetic and real

license plates, respectively.

By combining synthetic and real-life license plates in the dataset, the software

application can train and evaluate the GAN model effectively. The use of the Road UA font

for synthetic plates, along with the inclusion of real-life license plate images, ensures that

the generated license plates closely resemble real ones and exhibit the necessary variability

for accurate evaluation and comparison.

20

3.4. Design principles and architecture

The software application follows a modular design with several scripts that serve

specific functions. The design principles and architecture of the application are described as

follows:

• generate.py: this script is responsible for generating synthetic license plates

based on the information provided in a pre-defined CSV file;

• make_dataset.py: the purpose of this script is to organize the dataset for

training. It copies the generated synthetic license plate images and the corresponding

real license plate images into the training folders trainA and trainB, respectively. This

organization enables the training process to access the necessary data for both

synthetic and real license plates;

• train.py: this script is used to train the models, specifically CUT and FastCUT

models. The training is performed based on the specified arguments, such as the

CUT_mode argument, which determines the mode (CUT or FastCUT) for the training

process. The script takes the training dataset from the specified dataroot (a root folder

that contains trainA and trainB folders) and saves the outputs of the trained model

under the specified --name;

• test.py: this script is used for conducting inference with the pretrained model.

It allows the user to choose the pretrained model based on the --name argument and

specify the mode (--CUT_mode) for the inference process (CUT or FastCUT). The

script takes the test dataset from the specified test_dataroot (a root folder that contains

testA and testB folders) and generates an HTML comparison file in the result folder.

This HTML file provides a visual comparison between synthetic, generated, and real-

life license plates.

The architecture of the software application follows a pipeline-like approach. The

generation of synthetic license plates is separated from the training and testing processes.

The training phase utilizes the generated synthetic license plates and the corresponding real-

life license plates to train the CUT and FastCUT models. The testing phase then employs

21

the trained models to generate results and create a visual comparison in the form of an

HTML file.

By following this design architecture, the software application enables the generation,

training, and evaluation of synthetic and real-life license plates, allowing for the comparison

of their visual quality and resemblance.

22

CHAPTER 4

RESULTS AND EVALUATION

4.1. Presentation of the generated license plates

The visual comparisons between synthetic, generated, and real license plates for both

the CUT and FastCUT models are presented in the table below:

Synthetic Generated FastCUT Generated CUT Real

23

Table 4.1. Visual presentation of the generated license plates

Upon examining the generated license plates, it can be observed that there are

differences between the results obtained from the CUT and FastCUT models. The generated

license plates from the FastCUT model exhibit a less clear background and a more blurry

font compared to those generated by the CUT model. This difference suggests that the

FastCUT model may introduce more distortions in the generated license plates.

Furthermore, it is worth noting that the generated license plates from the CUT model

exhibit an artifact in the form of a strip located above the characters. Unfortunately, no

specific explanation is provided for this artifact, and further investigation is required to

understand its origin and potential mitigation strategies.

The presented visual comparisons provide a comprehensive overview of the

generated license plates, allowing for a visual assessment of their quality and resemblance

to real license plates.

4.2. Qualitative evaluation of the generated plates

To evaluate the quality of the generated license plates, qualitative assessment was

conducted.

The Frechet Inception Distance (FID) metric, as described in chapter 2.3, was used to

evaluate the generated license plates. For the FastCUT model, the FID value obtained was

163.70, while for the CUT model, the FID value was 93.00. Because the FID scores can

range from 0 to positive infinity, the license plates generated by the CUT model are 1.76

times more accurate in terms of resembling the real license plates compared to the FastCUT

model.

24

The calculation speed of the FID metric was also measured for both the FastCUT and

CUT models. The FastCUT model achieved a speed of 4.29 iterations per second, while the

CUT model achieved a speed of 5.45 iterations per second. It should be noted that the

calculation speed is dependent on the power of the GPU used for the evaluation.

Method FID Sec/iter

CUT 93.00 5.45

FastCUT 163.70 4.29

Table 4.2. Metric values for CUT and FastCUT models

Overall, the quantitative evaluation using FID scores indicates that the CUT model

performs better in terms of generating license plates that closely resemble the real ones.

4.3. Discussion of limitations and challenges

Despite the promising results obtained in generating license plates using the CUT and

FastCUT models, there are certain limitations and challenges that need to be addressed.

1. Difficulty in capturing fine details: one limitation is the difficulty in capturing

fine details in the generated license plates. While the models are able to generate

plates that bear a resemblance to real ones, they may struggle to reproduce intricate

details accurately. Fine details such as small symbols, specific fonts, or subtle

variations in color may not be captured with high fidelity. This limitation may affect

the overall realism and authenticity of the generated license plates.

2. Limited control over style transfer: another challenge is the limited control

over the style transfer process. The models aim to generate license plates that mimic

the style of real plates while incorporating certain distortions. However, the level of

control over the specific style elements and distortions may be limited. As a result,

the generated plates may not precisely match the desired style or level of distortion.

Improving the fine-grained control over the style transfer process could enhance the

flexibility and customization options of the models.

25

3. Dependency on training data quality and quantity: the performance of the

models is heavily dependent on the quality and quantity of the training data. The

accuracy and diversity of the generated license plates are directly influenced by the

characteristics of the training dataset. Insufficient or biased training data may lead to

suboptimal performance and a limited range of generated plate variations.

Additionally, the models may struggle to generalize well to unseen data if the training

dataset does not adequately cover the full range of license plate styles and variations.

Addressing these limitations and challenges could involve exploring alternative

model architectures, incorporating additional training techniques, or augmenting the

training dataset with a wider variety of license plate styles and distortions. Furthermore,

incorporating user feedback and iteratively refining the models based on real-world

evaluations could help enhance their performance and address specific limitations.

26

CONCLUSION AND FUTURE WORK

In this thesis, we have explored the generation of license plates using the CUT and

FastCUT models. The key findings and contributions of our research can be summarized as

follows:

• We successfully developed a software application that generates synthetic

license plate numbers and uses a Generative Adversarial Network model to create

realistic license plates with distortions.

• The generated license plates were compared visually, and the results were

presented in a table for both the CUT and FastCUT models. We observed that the

FastCUT model produced license plates with a less clear background and more blurry

font compared to the CUT model.

• The quality of the generated license plates was evaluated quantitatively using

the Frechet Inception Distance metric. The FID scores for FastCUT and CUT were

found to be 163.70 and 93.00, respectively. Based on these scores, the plates

generated by CUT were found to be 1.76 times more accurate.

Considering the limitations and challenges discussed in chapter 4.3, there are several

avenues for future research:

1. Improving the capture of fine details: further investigation and development

of the models to enhance their ability to capture intricate details of license plates, such

as small symbols and specific fonts, could lead to more realistic and accurate

generated plates.

2. Enhancing control over style transfer: exploring techniques to provide users

with more control over the style transfer process, allowing for finer adjustments to

the desired style and level of distortion, would increase the flexibility and

customization options of the models.

3. Augmenting the training dataset: expanding the training dataset to include a

wider variety of license plate styles, distortions, and variations would help the models

generalize better to unseen data and produce a more diverse range of generated plates.

27

The practical applications of the developed software application are numerous. It can

be used for various purposes, such as generating synthetic license plates for testing and

evaluation of Automatic License Plate Recognition systems, creating training data for

computer vision models, or generating license plates for virtual environments in video

games or simulations.

To further improve the system, potential enhancements include incorporating

advanced image generation techniques, exploring alternative GAN architectures, and

refining the training process by utilizing larger and more diverse datasets.

In conclusion, our research has demonstrated the feasibility of generating license

plates using CUT and FastCUT models. Despite certain limitations, the models have shown

promising results in generating realistic license plates. Future research and improvements

in addressing the identified limitations will contribute to the advancement of license plate

generation and its practical applications in various domains.

28

BIBLIOGRAPHY

1. Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for

high fidelity natural image synthesis. In Int. Conference on Learning Representations

(ICLR).

2. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2019).

Analyzing and improving the image quality of StyleGAN. arXiv preprint arXiv:1912.04958.

3. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784.

4. Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with

auxiliary classifier GANs. In Proc. of the 34th International Conference on Machine

Learning-Volume 70 (pp. 2642–2651). JMLR.org.

5. Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., & Yosinski, J. (2017). Plug

& play generative networks: Conditional iterative generation of images in latent space. In

Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4467–

4477).

6. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N.

(2017). StackGAN: Text to photo-realistic image synthesis with stacked generative

adversarial networks. In Proc. of the IEEE International Conference on Computer Vision

(pp. 5907–5915).

7. Reed, S. E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., & Lee, H. (2016).

Learning what and where to draw. In Advances in neural information processing systems

(pp. 217–225).

8. Tang, W., Li, T., Nian, F., & Wang, M. (2018). MSCGAN: Multi-scale

conditional generative adversarial networks for person image generation. arXiv preprint

arXiv:1810.08534.

9. Ramasinghe, S., Farazi, M., Khan, S. H., Barnes, N., & Gould, S. (2021).

Rethinking conditional GAN training: An approach using geometrically structured latent

manifolds. Advances in Neural Information Processing Systems, 34.

29

10. Hamada, K., Tachibana, K., Li, T., Honda, H., & Uchida, Y. (2018). Full-body

high-resolution anime generation with progressive structure-conditional generative

adversarial networks. In Proc. of the European Conference on Computer Vision (ECCV)

(pp. 0–0).

11. Han, C., Murao, K., Noguchi, T., Kawata, Y., Uchiyama, F., Rundo, L.,

Nakayama, H., & Satoh, S. (2019). Learning more with less: conditional pggan-based data

augmentation for brain metastases detection using highly-rough annotation on MR

images. arXiv preprint arXiv:1902.09856.

12. Jung, E., Luna, M., & Park, S. H. (2021). Conditional GAN with an attention-

based generator and a 3D discriminator for 3D medical image generation. In International

Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 318–

328). Springer.

13. Togo, R., Ogawa, T., & Haseyama, M. (2019). Synthetic gastritis image

generation via loss function-based conditional pggan. IEEE Access, 7, 87448–87457.

14. Španhel, J., Sochor, J., Juránek, R., Herout, A., Maršík, L., & Zemčík, P.

(2017). Holistic recognition of low quality license plates by CNN using track annotated data.

In IEEE International Conference on Advanced Video and Signal Based Surveillance

(AVSS) (pp. 1–6). IEEE.

15. Wu, C., Xu, S., Song, G., & Zhang, S. (2018). How many labeled license plates

are needed? In Chinese Conference on Pattern Recognition and Computer Vision (PRCV)

(pp. 334–346). Springer.

16. Wang, X., Man, Z., You, M., & Shen, C. (2017). Adversarial generation of

training examples: applications to moving vehicle license plate recognition. arXiv preprint

arXiv:1707.03124.

17. Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proc. of the IEEE international

conference on computer vision (pp. 2223–2232).

18. Wu, S., Zhai, W., & Cao, Y. (2019). Pixtextgan: structure aware text image

synthesis for license plate recognition. IET Image Processing, 13(14), 2744–2752.

30

19. Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image

translation with conditional adversarial networks. In Proc. of the IEEE conference on

computer vision and pattern recognition (pp. 1125–1134).

20. Silvano, G., Ribeiro, V., Greati, V., Bezerra, A., Silva, I., Endo, P. T., & Lynn,

T. (2021). Synthetic image generation for training deep learning-based automated license

plate recognition systems on the Brazilian Mercosur standard. Design Automation for

Embedded Systems, 25(2), 113–133.

21. Park, T., Efros, A. A., Zhang, R., & Zhu, J. (2020). Contrastive learning for

unpaired image-to-image translation. CoRR, abs/2007.15651. Retrieved from

https://arxiv.org/abs/2007.15651

22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M.

Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural

Information Processing Systems (Vol. 27). Curran Associates, Inc. Retrieved from

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-

Paper.pdf

23. van den Oord, A., Li, Y., & Vinyals, O. (2018). Representation learning with

contrastive predictive coding. CoRR, abs/1807.03748. Retrieved from

http://arxiv.org/abs/1807.03748

24. Zhu, J., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image

translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593. Retrieved

from http://arxiv.org/abs/1703.10593

25. Seitzer, M. (2020). pytorch-fid: FID Score for PyTorch. Retrieved from

https://github.com/mseitzer/pytorch-fid

26. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S.

(2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R.

Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran

Associates, Inc. Retrieved from

31

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-

Paper.pdf

27. Johnson, J., Alahi, A., & Li, F. (2016). Perceptual losses for real-time style

transfer and super-resolution. CoRR, abs/1603.08155. Retrieved from

http://arxiv.org/abs/1603.08155

28. Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. (2017). Image-to-image translation

with conditional adversarial networks. Retrieved from https://arxiv.org/pdf/1611.07004.pdf

29. Mao, X., Li, Q., Xie, H., Lau, R. Y. K., & Wang, Z. (2016). Multi-class

generative adversarial networks with the L2 loss function. CoRR, abs/1611.04076.

Retrieved from http://arxiv.org/abs/1611.04076

30. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings. Retrieved from

http://arxiv.org/abs/1412.6980

31. Google Colab. GPU Notebooks. Retrieved from

https://colab.research.google.com/notebooks/gpu.ipynb

32. Road UA Font. Retrieved from https://agentyzmin.github.io/Road-UA-Font/

33. Auto.RIA.com. Retrieved from https://auto.ria.com

34. Vehicle registration plates of Ukraine. In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Vehicle_registration_plates_of_Ukraine

