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We study graph-theoretic properties of eccentric digraphs of unique eccentric point graphs 
(shortly, uep-graphs). The latter are the connected graphs in which every vertex has a 
unique eccentric vertex. In particular, we characterize uep-graphs and the corresponding 
eccentric digraphs in the following classes: self-centered graphs having the number of 
vertices twice as diameter, block graphs, and graphs with diameter three. Also, we obtain 
non-trivial properties of weak components in eccentric digraphs of uep-graphs with 
diameter four and pose several open questions in this direction.
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1. Introduction

The eccentricity of a given vertex u in a connected graph G is the maximum distance from it to the other vertices in 
G . Any vertex v which attains this distance is called an eccentric vertex for u in G . Since the relation “being an eccentric 
vertex for” is not necessarily symmetric, it is naturally encoded by a directed graph on the same vertex set – the eccentric 
digraph ED(G) (see [1–3,11]).

One of the main problems in studying eccentric digraphs is to describe the structure of ED(G) for some concrete graph 
classes (this is referred to as “Open problem 1” in [1]). Moving in the opposite direction, the following question arises: 
if instead we pose some conditions on ED(G), can we extract some properties of the corresponding graphs G? In this 
paper, we address these two broad problems for the unique eccentric point graphs (or simply, uep-graphs). These are the 
connected graphs in which every vertex has a unique eccentric vertex [10]. It is clear that G is a uep-graph if and only if 
each vertex in ED(G) has an out-degree one (these are the so-called functional digraphs). The structure of (finite) functional 
digraphs is well-known [7, Theorem 16.5]: each of their weak components is an orientation of some unicyclic pseudograph 
H with the edges on the unique cycle C (which as well can be a loop at some vertex or a pair of parallel edges between two 
vertices) of H being oriented cyclically and other edges being oriented towards C . However, not every functional digraph is 
an eccentric digraph of some uep-graph. Moreover, describing eccentric digraphs of uep-graphs up to isomorphism seems 
to be a hard problem.

In this work, we study the structural properties of eccentric digraphs for general uep-graphs. In particular, we completely 
characterize uep-graphs and their respective eccentric digraphs in several graph classes.

The paper is organized as follows. In Section 2, we give main definitions and assemble all the preliminary results about 
uep-graphs from [10], which will be used throughout this paper. In Section 3.1, we present our results starting with basic 
properties of eccentric digraphs of uep-graphs (including the characterization of self-centered uep-graphs having the number 
of vertices twice as its diameter, see Proposition 3.5). Section 3.2 deals with uep block graphs. In particular, we extend the 
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characterization of uep trees from [10] to uep block graphs (Theorem 3.8) and, as a corollary, completely describe the 
structure of their eccentric digraphs (Proposition 3.9). In Section 3.3, we provide a characterization of uep-graphs with 
diameter three (Theorem 3.10) and describe their eccentric digraphs as well (Proposition 3.13). Section 3.4 contains results 
about the eccentric digraphs of uep-graphs with diameter four (Theorem 3.14). In Section 4, we pose several open questions 
concerning the structure of weak components in eccentric digraphs of uep-graphs.

We note that several results of this paper (namely, Proposition 3.1, Theorem 3.8 and Proposition 3.9) were announced at 
Xth All-Ukrainian Conference of Young Scientists in Physics and Mathematics [5].

2. Main definitions and preliminary results

2.1. Undirected graphs

An undirected graph or just a graph is an ordered pair G = (V , E), where V = V (G) is the set of its vertices and E = E(G)

is the set of its edges (which are some 2-element subsets of V ). In this paper, all the considered graphs are finite. Also, for 
a pair of vertices u, v ∈ V the edge {u, v} will be shortly denoted as uv .

As usual, by Kn , Km,n , and Cn we denote the n-vertex complete graph, the complete bipartite graph having parts of 
cardinalities m, n, and the n-cycle, respectively.

Two graphs G and H are called isomorphic if there is an isomorphism between them, i.e. a bijection f : V (G) → V (H)

such that uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). If G and H are isomorphic, then we write G � H .
The complement of a graph G is the graph G having V (G) = V (G) and E(G) = {uv : u �= v and uv /∈ E(G)}. The union of 

graphs G, H is the graph G ∪ H with V (G ∪ H) = V (G) � V (H) and E(G ∪ H) = E(G) ∪ E(H). For a graph G and a number 
m ∈ N , we write mG for the union of m isomorphic copies of G . For a set of vertices A ⊂ V (G), by G[A] we denote the 
subgraph of G induced by A. Also, we put G − A = G[V (G)\A] and G − u = G − {u} for any vertex u ∈ V (G).

The neighborhood of a vertex u in a graph G is the set NG (u) = {v ∈ V (G) : uv ∈ E(G)}. The closed neighborhood of u in 
G is the set NG [u] = NG(u) ∪ {u}. The degree of u is the number dG (u) = |NG(u)|. A vertex u ∈ V (G) is called a leaf vertex
provided dG (u) = 1.

A set of vertices A ⊂ V (G) is dominating provided for every u ∈ V (G)\A there is a ∈ A with au ∈ E(G).
A graph is called connected if there is a path between each pair of its vertices (otherwise, it is disconnected). A connected 

component of a graph is its maximal connected subgraph. The vertex set of a connected graph G is equipped with the 
standard metric dG , where dG (u, v) equals the length (i.e. the number of edges) of a shortest path between u and v in G . 
For a vertex u ∈ V (G) and a set A ⊂ V (G) in a connected graph G , we put dG (u, A) = min{dG(u, a) : a ∈ A}.

For a pair of vertices u, v ∈ V (G) in a connected graph G , we define the metric interval between them as the set [u, v]G =
{x ∈ V (G) : dG(u, x) + dG (x, v) = dG(u, v)}.

The eccentricity of a vertex u in a connected graph G is the number eccG(u) = max{dG(u, v) : v ∈ V (G)}. A vertex 
v ∈ V (G) is called an eccentric vertex for u in G provided eccG(u) = dG(u, v). A vertex v is an eccentric vertex in G if it 
is an eccentric vertex for some u ∈ V (G). The radius of a graph G is the value rad(G) = min{eccG(u) : u ∈ V (G)} and the 
diameter of G is diam(G) = max{eccG(u) : u ∈ V (G)}. It is clear that diam(G) = max{dG(u, v) : u, v ∈ V (G)}. A pair of vertices 
is diametral in G provided dG (u, v) = diam(G).

The center of a connected graph G is the set of its vertices whose eccentricities equal rad(G). The periphery of G is the 
set of vertices having their eccentricities equal diam(G). A graph G is called self-centered provided its center (equivalently, 
periphery) equals the whole vertex set V (G).

A connected graph without cycles is called a tree. A path Pn is a tree with n vertices that has at most two leaf vertices. 
A star K1,n−1 is a tree with n vertices that has at most one non-leaf vertex. A bi-star is a tree that has exactly two non-leaf 
vertices.

A vertex in a (finite) graph is called a cut vertex if its deletion increases the number of connected components. Hence, 
for a connected graph G , a vertex u ∈ V (G) is a cut vertex in G if and only if G − u is disconnected. A connected graph is 
called 2-connected provided it has no cut vertices. A block in a graph is its maximal 2-connected subgraph. A graph is called 
a block graph if every its block is a complete subgraph. For example, any tree is a block graph.

The next fundamental result about the center of a graph will be used in the characterization of uep block graphs (see 
Theorem 3.8).

Proposition 2.1. [6] The center of a connected graph lies in a block.

2.2. Directed graphs

A directed graph or, shortly, a digraph is an ordered pair D = (V , A), where V = V (D) is the set of its vertices and A =
A(D) ⊂ V × V is the set of its arcs. The existence of an arc (u, v) ∈ A(D) will be also denoted as u → v in D . An arc of the 
form (u, u) is called a loop at vertex u. The out-degree d+

D (u) of a vertex u ∈ V (D) is the number of arcs of the form u → v , 
v ∈ V (D). Similarly, the in-degree d−

D (u) of u is the number of arcs of the form v → u, v ∈ V (D). The out-neighborhood of 
u is the set of vertices N+(u) = {v ∈ V (D) : u → v}. And the in-neighborhood of u is the set N−(u) = {v ∈ V (D) : v → u}. 
D D

2
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Fig. 1. The functional digraph Dm,k .

Clearly, d+
D (u) = |N+

D (u)| and d−
D (u) = |N−

D (u)| for all u ∈ V (D). Two vertices u, v ∈ V (D) are called adjacent provided u → v
or v → u in D .

Two digraphs D1 and D2 are called isomorphic if there is an isomorphism between them, i.e. a bijection f : V (D1) →
V (D2) such that u → v in D1 if and only if f (u) → f (v) in D2. The latter will be denoted by D1 � D2.

A digraph D is called weakly connected provided the corresponding undirected graph (which is obtained from D by 
ignoring orientations, multiple edges and loops) is connected. A maximal weakly connected subgraph of D is called its weak 
component.

A path in a digraph D is the ordered set of vertices u1, . . . , um such that ui → ui+1 for all 1 ≤ i ≤ m − 1. A path is 
called simple provided its vertices (and hence, arcs) are pairwise different. A simple path u1, . . . , um is called induced if the 
ui → u j in D implies j = i + 1.

An m-cycle in a digraph D is an ordered set of m different vertices u1, . . . , um , where ui → ui+1 and um → u1 in D . It is 
clear that a 1-cycle is just a loop. A 2-cycle frequently will be denoted just as u1 ↔ u2.

A digraph D is called functional provided d+
D (u) = 1 for every u ∈ V (D). It is clear that functional digraphs having vertex 

set V are in one-to-one correspondence with functions of the form f : V → V . To describe the structure of functional 
digraphs, we need one more definition. An in-tree is a digraph D obtained from an (undirected) tree X by orienting each 
edge in X towards some fixed vertex u (more formally, V (T ) = V (X) and A(T ) = {(x, y) : xy ∈ E(X) and y ∈ [x, u]X }). The 
corresponding vertex u is the root of an in-tree T . Graph-theoretic structure of finite functional digraphs can be described 
pretty easily. Namely, every weak component D ′ of a functional digraph D contains a unique cycle C such that each weak 
component in D ′ − A(C) is an in-tree T , and V (C) contains the set of roots of these in-trees T .

Another type of functional digraphs, which will appear many times in this paper, is constructed as follows. For a pair of 
non-negative integers m, k ∈Z+ , we define the digraph Dm,k to have the vertex set V (Dm,k) = {x, y, u1, . . . , um, v1, . . . , vk}
and the arc set

A(Dm,k) = {(x, y), (y, x)} ∪ {(ui, x), (v j, y) : 1 ≤ i ≤ m,1 ≤ j ≤ k}
(see Fig. 1). For example, D0,0 is just a 2-cycle.

Let G be a connected graph. The eccentric digraph [2] of G is the digraph ED(G) with V (ED(G)) = V (G) and

A(ED(G)) = {(u, v) : v is an eccentric vertex for u in G}.
More on eccentric digraphs of general connected graphs (and even disconnected digraphs) as well as several of their 

classes can be found in [1,3].

2.3. Unique eccentric point graphs

A connected graph G is called a unique eccentric point or just a uep-graph provided its eccentric digraph ED(G) is func-
tional. In other words, G is a uep-graph if each of its vertices has a unique eccentric vertex in G . It is clear that the only 
uep-graph G with diam(G) = 1 is K2. Uep-graphs with diameter two also can be easily characterized.

Theorem 2.2. [10] A connected graph G is a uep-graph with diam(G) = 2 if and only if G � mK2 .

It was also proved in [10] that each uep-graph G with diam(G) = 3 is either self-centered or upper-diameter critical
(these are connected graphs with the property that the addition of any new edge decreases the diameter). In this paper, we 
generalize the latter result by giving a complete characterization of non-self-centered uep-graphs G with diam(G) = 3 (see 
Theorem 3.10).

We note that the class of uep-graphs is a highly non-trivial one. For example, even the self-centered uep-graphs (which 
are also known as even graphs [4] or diametral graphs [9]) are very interesting in themselves. This class of uep-graphs 
contains several natural subclasses such as balanced, harmonic, and symmetric even graphs (again, see [4]). However, in 
some restricted graph classes uep-graphs can be nicely characterized.

Theorem 2.3. [10] A tree T with n ≥ 2 vertices is a uep-graph if and only if T has exactly two central and two peripheral vertices.
3
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The next lemma is a simple technical result that will be used extensively throughout this paper.

Lemma 2.4. [10] Let uv ∈ E(G) be an edge in a uep-graph G. If eccG(u) �= eccG(v), then u and v have the same eccentric vertex in G.

The following characterization of self-centered uep-graphs was obtained also in [10].

Theorem 2.5. [10] A uep-graph is self-centered if and only if each its vertex is eccentric.

In the next section, we show that self-centered uep-graphs can be also characterized in terms of their eccentric digraphs 
(see Corollary 3.2).

It also can be easily shown that a uep-graph cannot have a diameter twice its radius. This simple result will be used in 
our characterization of uep block graphs (see Theorem 3.8).

Proposition 2.6. [10] For any uep-graph G, it holds diam(G) ≤ 2 rad(G) − 1.

3. Main results

3.1. Eccentric digraphs of general uep-graphs

As we know from the structure of functional digraphs, for a uep-graph G , each weak component in ED(G) consists of 
a unique cycle C and some in-trees directed to C . The following observation is the starting point in the study of eccentric 
digraphs of uep-graphs.

Proposition 3.1. The eccentric digraph of a uep-graph with n ≥ 2 vertices has cycles only of length two.

Proof. Let G be a uep-graph with n ≥ 2 vertices and u1 → ·· · → um → u1 be a cycle in ED(G). Then eccG(u1) =
dG (u1, u2) ≤ eccG(u2) = dG(u2, u3) ≤ · · · ≤ eccG(um) = dG (um, u1) ≤ eccG(u1). Hence, eccG(u1) = · · · = eccG(um). In par-
ticular, eccG(u1) = dG(u1, u2) = dG (um, u1) implying that u2 = um . Thus m ≤ 2. But since n ≥ 2, we have m = 2. �

Proposition 3.1 asserts the following criterion for self-centered uep-graphs in terms of their eccentric digraphs.

Corollary 3.2. Let G be a uep-graph with n ≥ 2 vertices. Then G is self-centered if and only if each weak component in ED(G) is 
isomorphic to D0,0 .

Proof. Necessity. In a self-centered graph, if a vertex u is an eccentric vertex of a vertex v , then v must also be an eccentric 
vertex of u. Now, if G is a self-centered uep-graph, then both vertices of every diametral pair in G must have out-degree 
1 and in-degree 1 in ED(G). Thus, each weak component D ′ in ED(G) is a cycle. From Proposition 3.1 we obtain that each 
such D ′ is a 2-cycle. Hence, D ′ � D0,0.

Sufficiency. If each weak component in ED(G) is isomorphic to D0,0, then clearly every vertex from G is eccentric. Thus, 
by Theorem 2.5, G is self-centered. �

In what follows, we will consider three types of weak components in eccentric digraphs. Namely, a weak component D ′
in E D(G) for a uep-graph G is called

• bald, if D ′ � D0,0;
• half-bald, if exactly one of the two vertices on a 2-cycle in D ′ has in-degree one;
• full, if D ′ is neither bald nor half-bald.

Proposition 3.3. If an eccentric digraph of a uep-graph with n ≥ 3 vertices has a non-full weak component, then it has at least two 
weak components.

Proof. Let G be a uep-graph with n ≥ 3 vertices and x, y be a diametral pair in G . Since n ≥ 3, G is not complete implying 
that diam(G) ≥ 2. Denote by D ′ the weak component in ED(G), which contains x, y. Now fix a vertex u ∈ [x, y]G ∩ NG(x). 
We have eccG(u) ≥ dG (u, y) = dG (x, y) − 1 = diam(G) − 1. If eccG(u) = diam(G), then u /∈ V (D ′) (as peripheral vertices lie 
on cycles in the eccentric digraph and there is exactly one 2-cycle per weak component in ED(G)), hence E D(G) has at 
least two weak components. Otherwise, eccG(u) = diam(G) − 1 and there is an arc u → y in E D(G). Similarly, consider a 
vertex v ∈ [x, y]G ∩ NG(y). If eccG(v) = diam(G), then E D(G) has at least two weak components. If eccG(v) = diam(G) − 1, 
then v → x in E D(G). In the latter case, D ′ is a full weak component in E D(G). Therefore, if E D(G) has a non-full weak 
component, then it has at least two weak components. �
4
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Fig. 2. Uep-graph G .
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Fig. 3. The eccentric digraph ED(G) for the uep-graph G from Fig. 2.

Note that full weak components in the eccentric digraph of a uep-graph can contain induced paths of lengths larger 
than one. Indeed, Fig. 2 depicts a uep-graph G whose eccentric digraph ED(G) has induced paths of length two (see Fig. 3). 
However, the lengths of such induced paths are bounded in terms of the diameter of a graph.

Proposition 3.4. Let G be a uep-graph with diam(G) ≥ 4. Then the length of a longest induced path in ED(G) is at most 
⌊

diam(G)
2

⌋
−1.

Proof. Let u0 → u1 → ·· · → um be any longest induced path in ED(G). Then (ui+1, ui) /∈ A(ED(G)) for all 0 ≤ i ≤ m − 1. 
Also, by Proposition 3.1, the last vertex um on the path lies on a 2-cycle in ED(G), say um ↔ v . Since G is a uep-graph, 
eccG(ui+1) > eccG(ui) for all 0 ≤ i ≤ m − 1. Hence, eccG(u0) ≤ eccG(um) − m.

For m = 1 the statement clearly holds. Suppose that m ≥ 2. In this case, we have eccG (um) = dG (um, v) ≤ dG(um, u0) +
dG (u0, v) ≤ 2 eccG(u0) − 2 ≤ 2(eccG(um) − m) − 2 implying that m ≤

⌊
eccG (um)

2

⌋
− 1 ≤

⌊
diam(G)

2

⌋
− 1. �

We also note that the bound from Proposition 3.4 is tight. Indeed, the graph G from Fig. 2 has diam(G) = 6 and the 
lengths of two largest induced paths in ED(G) are equal 

⌊
diam(G)

2

⌋
− 1 = 2. Trivially, for uep-graphs G with diam(G) = 3 the 

length of a longest induced path in ED(G) is at most one.
As we know from Corollary 3.2, a uep-graph G is self-centered if and only if each weak component in ED(G) is bald. It 

is clear that such a graph G has an even number of vertices. Moreover, we have the following result.

Proposition 3.5. Every self-centered uep-graph G has at least 2 diam(G) vertices. Moreover, the equality |V (G)| = 2 diam(G) holds if 
and only if G � K2 or G � Cm for an even m ≥ 4.
5
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Proof. Fix an arbitrary diametral pair x, y ∈ V (G) and some shortest path x − u1 − · · · − udiam(G)−1 − y between x and y in 
G . For every 1 ≤ i ≤ diam(G) −1 fix an eccentric vertex vi for ui in G . It is clear that, vi �= x, y, u j for all 1 ≤ j ≤ diam(G) −1
(as each vertex in a self-centered graph is peripheral). Hence, |V (G)| ≥ 2 diam(G).

Now let us prove the second statement of the proposition.
Sufficiency. If G � K2, then the assertion clearly holds. Similarly, if G � Cm for an even m ≥ 4, then G is a symmetric 

even graph (and hence, a self-centered uep-graph) with diam(G) = m
2 .

Necessity. If diam(G) = 1, then G is complete and hence, G � K2. Further, assume d = diam(G) ≥ 2. From Corollary 3.2
it follows that ED(G) has exactly d weak components each being bald. We want to show that every vertex in G has degree 
two. To the contrary, assume that there is a vertex a1 ∈ V (G) with dG(a1) �= 2. Let a1 ↔ b1 be the corresponding weak 
component in ED(G). Fix a shortest path a1 − a2 − · · · − ad − b1 between a1 and b1 in G . For any 1 ≤ i ≤ d by bi denote the 
eccentric vertex for ai in G (hence, ai ↔ bi , 1 ≤ i ≤ d are the weak components in ED(G)).

If dG (a1) = 1, then eccG(a1) = eccG(a2) + 1 as d ≥ 2. Hence, in this case G cannot be self-centered.
Now let dG(a1) ≥ 3. In this case, fix two different neighbors bi, b j ∈ NG(a1)\{a2}. Let i < j. Then there is a path bi − a1 −

· · · − ai between bi and ai of length 1 + i − 1 = i < j ≤ d, which is a contradiction.
Therefore, G is a (finite) connected graph with dG (u) = 2 for all u ∈ V (G). Hence, G � Cm for the even number m =

2 diam(G). �
We note that there are 2 self-centered uep-graphs with 6 vertices (namely, K6 − 3K2 and C6), and exactly 3 such graphs 

having 8 vertices (namely, K8 − 4K2, C8, K4,4 − 4K2). A computer search showed that the number of these graphs with 10
vertices is 24.

3.2. Uep block graphs

The similarity between block graphs and trees in the context of uep-graphs shows up directly in the criterion of uep 
trees from [10]. Moreover, it turns out that the statement of Theorem 2.3 can be extended to connected block graphs. To 
present this result, we need the next useful metric characterization of block graphs as well as one technical lemma that 
follows after.

Theorem 3.6. [8] A connected graph G is a block graph if and only if its metric dG satisfies the “4-point condition”: for any x, y, z, t ∈
V (G) it holds

dG(x, y) + dG(z, t) ≤ max{dG(x, z) + dG(y, t),dG (x, t) + dG(y, z)}.

We note that trees are precisely triangle-free graphs that satisfy the 4-point condition.

Lemma 3.7. In a connected block graph each eccentric vertex is peripheral.

Proof. Let G be a connected block graph and v be an eccentric vertex for some vertex u in G . Fix a diametral pair x, y in 
G and use Theorem 3.6 for the vertices u, v, x, y:

eccG(u) + diam(G) = dG(u, v) + dG(x, y)

≤ max{dG(u, x) + dG(v, y),dG(u, y) + dG(v, x)}.
If dG (u, x) + dG (v, y) ≤ dG (u, y) + dG (v, x), then

eccG(u) + diam(G) ≤ dG(u, y) + dG(v, x) ≤ eccG(u) + diam(G)

implying that eccG(u) = dG(u, y) and dG (v, x) = diam(G). The case dG (u, x) + dG (v, y) ≥ dG(u, y) + dG(v, x) is considered 
similarly (here dG(v, y) = diam(G)). Hence, v is a peripheral vertex in G . �

Now we are ready to present the main result of this subsection.

Theorem 3.8. A connected block graph with n ≥ 2 vertices is a uep-graph if and only if it has exactly two central and two peripheral 
vertices.

Proof. Necessity. Let G be a uep block graph with n ≥ 2 vertices. If rad(G) = 1, then by Proposition 2.6, diam(G) ≤ 1. In 
this case, G is a complete uep-graph, hence G � K2. Hence, let rad(G) ≥ 2. To show that G contains exactly two peripheral 
vertices, we assume that x, y and a, b are two different diametral pairs in G . Since G is a uep-graph, we have {x, y} ∩{a, b} =
∅. Using Theorem 3.6 for the vertices a, b, x, y, we obtain
6
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v

w

u

x y

Fig. 4. Three central vertices u, v, w lie in a common block.

2 diam(G) = dG(a,b) + dG(x, y) ≤ max{dG(a, x) + dG(b, y),dG(a, y) + dG(b, x)}.
If dG (a, x) + dG(b, y) ≥ dG(a, y) + dG(b, x), then 2 diam(G) ≤ dG(a, x) + dG(b, y). Hence, dG(a, x) = diam(G). Therefore, a and 
y are two different eccentric vertices for x in G . Similarly, the inequality dG (a, x) +dG (b, y) ≤ dG (a, y) +dG(b, x) would imply 
dG (b, x) = diam(G). The obtained contradiction shows that G has exactly two peripheral vertices, say x, y. By Lemma 3.7, x
and y are the only eccentric vertices in G .

Further, consider a central vertex u ∈ V (G). Without loss of generality, let x be its eccentric vertex in G . Also, fix some 
vertex v ∈ [u, x]G ∩ NG(u). We have dG (x, u) = rad(G) and dG (x, v) = rad(G) − 1. Hence, y is the eccentric vertex for v in 
G , implying dG (y, v) = eccG(v) ≥ rad(G). On the other hand, dG (y, v) ≤ dG(y, u) + 1 ≤ rad(G) − 1 + 1 = rad(G). Therefore, 
dG (y, v) = rad(G). Similarly, dG (y, u) = rad(G) − 1. Thus, G contains at least two central vertices, namely u, v .

Assume that there exists another central vertex w ∈ V (G)\{u, v}. Combining Proposition 2.1 with the definition of a 
block graph, we conclude that wu, w v ∈ E(G) (see Fig. 4). Without loss of generality, suppose that x is the eccentric vertex 
for w in G . Then dG (w, x) = rad(G) and dG (w, y) = rad(G) − 1 (as w is adjacent to the vertex v having dG (v, y) = rad(G)).

Fix a vertex t ∈ [w, y]G ∩ NG(w). We have dG (t, y) = rad(G) − 2. Clearly, t �= u, v as dG (u, y) = rad(G) − 1 and dG (v, y) =
rad(G). If ut ∈ E(G), then the vertices u, v, w, t induce a 2-connected subgraph in G , implying that v and t lie in a common 
block in G . In this case, vt ∈ E(G) and, therefore, dG(v, y) ≤ dG(v, t) + dG (t, y) = 1 + rad(G) − 2 = rad(G) − 1, which is a 
contradiction. Thus, dG (u, t) = 2 (as there is a path u − w − t in G). Now we use Theorem 3.6 for the vertices u, t, w, y in 
order to obtain a contradiction:

1 + rad(G) = dG(u, t) + dG(w, y)

≤ max{dG(u, w) + dG(t, y),dG(u, y) + dG(t, w)}
= max{1 + rad(G) − 2, rad(G) − 1 + 1} = rad(G).

This means that G contains exactly two central vertices.
Sufficiency. Let x, y be the two peripheral vertices and u be some central vertex in G . Using Lemma 3.7, we can assume 

that x is an eccentric vertex for u in G . As in the proof of Necessity, fix a vertex v ∈ [u, x]G ∩ NG(u). In a similar way, we 
can prove that v is a central vertex and y is the unique eccentric vertex for v in G . Further, we use Theorem 3.6 for the 
vertices x, u, y, v:

2 rad(G) = dG(x, u) + dG(y, v) ≤ max{dG(x, y) + dG(u, v),dG(x, v) + dG(u, y)}
= max{diam(G) + 1, rad(G) − 1 + dG(u, y)}
≤ max{diam(G) + 1,2 rad(G) − 1}.

Hence, 2 rad(G) ≤ diam(G) + 1. Combining this inequality with Proposition 2.6, we obtain diam(G) = 2 rad(G) − 1. Further, 
fixing the vertex w ∈ [v, y]G ∩ NG(v), we can prove that w is a central vertex in G implying that w = u.

Now let z ∈ V (G) be an arbitrary vertex in G . By Lemma 3.7, x and y are the only candidates for the eccentric vertices of 
z in G . We want to prove that dG (z, x) �= dG(z, y) (thus proving that z has a unique eccentric vertex in G). To the contrary, 
suppose dG (z, x) = dG(z, y). Let z0 be such a vertex z with minimal distance dG (z, {u, v}). It is clear that dG (z0, {u, v}) ≥
1 (as dG (z0, {u, v}) = 0 would imply z0 = u or z0 = v , and this case is already covered). Fix a vertex t ∈ NG(z0) with 
dG (t, {u, v}) = dG (z0, {u, v}) − 1. The minimality of dG (z0, {u, v}) asserts dG (t, x) �= dG(t, y). Without loss of generality, we 
can assume that dG (t, x) > dG(t, y). Use Theorem 3.6 for the vertices z, y, t, x:

dG(z0, y) + dG(t, x) ≤ max{dG(z0, t) + dG(x, y),dG(z0, x) + dG(t, y)}
= max{1 + diam(G),dG(z0, y) + dG(t, y)}
= max{2 rad(G),dG(z0, y) + dG(t, y)},

implying that dG (z0, y) + dG (t, x) ≤ 2 rad(G). Hence, dG (z0, y) ≤ 2 rad(G) − dG (t, x) ≤ 2 rad(G) − rad(G) = rad(G). Hence, 
dG (z0, y) = dG(z0, x) = rad(G). However, G has exactly two central vertices, u and v . Since z0 �= u, v , we obtain a contradic-
tion. This means that G is a uep-graph. �
7
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x u u′

z

y

Fig. 5. Non-complete 2-connected subgraph G[{u, u′, y, z}].

x1 x2 x3 x4 x5 x6

u1 um−2

. . .
v1 vk−2

. . .

Fig. 6. The tree T with ED(T ) � Dm,k for m,k ≥ 2.

Using Theorem 3.8, we can completely describe eccentric digraphs of uep block graphs.

Proposition 3.9. Let G be a uep block graph with n ≥ 2 vertices. Then ED(G) � Dm,k for m = k = 0 or m = k = 1 or m, k ≥ 2. 
Conversely, for every such a pair of integers m, k there exists a uep block graph (even a tree) with ED(G) � Dm,k.

Proof. Combining Lemma 3.7 and Theorem 3.8, we can conclude that G has exactly two peripheral vertices which are the 
only eccentric vertices in G . Hence, ED(G) � Dm,k for some m, k ≥ 0. If G has two vertices, then G � K2 and ED(G) � D0,0. 
Now let n ≥ 3. Then m + k �= 0 and G is not complete, implying diam(G) ≥ 2. Let x, y ∈ V (G) be a diametral pair in G . Fix 
two vertices u ∈ [x, y]G ∩ NG(x) and v ∈ [x, y]G ∩ NG(y). It is clear that eccG(u) = eccG(v) = diam(G) − 1 and u → y, v → x
in ED(G). This means that m, k ≥ 1.

Finally, assume that d−
ED(G)(y) = 2 (similarly, we can consider the case d−

ED(G)(x) = 2). Again, fix a vertex u ∈ [x, y]G ∩
NG(x) and a vertex u′ ∈ [x, y]G with dG(x, u′) = 2. If u′ = y, then diam(G) = 2 and eccG(u) = 1 = dG(u, x) = dG(u, y), 
which is a contradiction. Thus, u′ �= y. Since x → y, u → y in ED(G) and d−

ED(G)(y) = 2, it holds u′ → x (because we already 
proved that x, y are the only eccentric vertices in G). Hence, dG(u′, y) < eccG(u′) = dG(u′, x) = 2 which asserts dG (u′, y) = 1. 
Therefore, diam(G) = dG(x, y) = 3. If n = 4, then G � P4 and ED(G) � D1,1. Otherwise, there is z ∈ V (G)\{x, u, u′, y}. Using 
the connectedness of G , we can assume that NG (z) ∩ {x, u, u′, y} �= ∅. It is clear that eccG(z) = 2. Without loss of generality, 
assume that x is the eccentric vertex for z in G . Then NG (z) = V (G)\{x}. But in this case the vertices u, u′, y, z induce a 
non-complete 2-connected subgraph in G (see Fig. 5). The obtained contradiction shows that m = k = 0 or m = k = 1 or 
m, k ≥ 2.

Now let the pair of non-negative integers m, k satisfy one of the three conditions above. If m = k = 0, then clearly 
ED(P2) � D0,0. Similarly, for m = k = 1 we have ED(P4) � D1,1. Finally, let m, k ≥ 2. Put

V (T ) = {x1, . . . , x6} ∪ {u1, . . . , um−2} ∪ {v1, . . . , vk−2},
E(T ) = {xi xi+1 : 1 ≤ i ≤ 5} ∪ {u jx3 : 1 ≤ j ≤ m − 2} ∪ {vlx4 : 1 ≤ l ≤ k − 2}.

It is easy to see that T is a tree with diam(T ) = 5 having a unique diametral pair x1, x6 (see Fig. 6). Further, eccT (x3) =
eccT (x4) = 3 and eccT (w) = 4 for all w ∈ V (T )\{x1, x3, x4, x6}. Moreover, x is the eccentric vertex for vertices x4, x5, x6 and 
v1, . . . , vk−2. Similarly, y is the eccentric vertex for vertices x1, x2, x3 and u1, . . . , um−2. Hence, ED(T ) � Dm,k . �
3.3. Uep-graphs with diameter three

Recall that uep-graphs G having diam(G) = 2 are exactly the complete graphs minus a perfect matching (see Theo-
rem 2.2). It turns out that non-self-centered uep-graphs with diameter three also admit nice characterization.

Theorem 3.10. Let G be a connected graph, which is not self-centered. Then G is a uep-graph with diam(G) = 3 if and only if its 
complement G is a bi-star.

Proof. Necessity. Let x, y be a diametral pair in G . It is clear that NG [x] ∩ NG [y] = ∅. Since G is not self-centered, there 
exists a vertex u ∈ V (G) with eccG(u) = 2. If x, y ∈ NG(u), then dG (x, y) ≤ 2, which is a contradiction. Without loss of 
8
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generality, assume uy /∈ E(G). Then dG (u, y) ≥ 2 = eccG(u) implying dG (u, y) = 2. Thus, y is the eccentric vertex for u in G . 
This means that NG (u) = V (G)\{y}.

Now fix a vertex v ∈ NG(u) ∩ NG(y). Since NG(u) = V (G)\{y}, it holds eccG(v) ≤ 2. However, dG(v, x) = 2, which means 
that eccG(v) = 2 and hence x is the eccentric vertex for v in G . Therefore, NG(v) = V (G)\{x}. Further, since for any z ∈
V (G)\{x, u, v, y} we have uz, vz ∈ E(G), then eccG(z) ≤ 2. However, diam(G) = 3 again implies that eccG(z) = 2 for all 
z ∈ V (G)\{x, u, v, y}. If z /∈ NG(x) ∪ NG(y), then dG(z, x) = dG(z, y) = 2 = eccG(z) contradicting the fact that G is a uep-
graph. Hence, the set {x, y} is dominating in G .

Finally, for all z ∈ V (G)\{x, y} we have z ∈ NG(x)�NG (y) (as z ∈ NG(x) ∩ NG(y) would imply dG (x, y) ≤ 2). Hence, 
the eccentric vertex for any such z is either x or y. This asserts that V (G)\{x, y} ⊂ NG(z). In other words, the subgraph 
G −{x, y} is complete in G . Therefore, the complement G is a bi-star having two central vertices x, y, the set of leaf vertices 
NG(x) ∪ NG(y), and NG(x) = NG [y], NG(y) = NG [x].

Sufficiency. Let G be a bi-star with two central vertices x and y. Then NG [x] ∩ NG [y] = ∅, {x, y} is a dominating set in 
G , and the subgraph G − {x, y} is complete in G .

Since NG [x] ∩NG [y] = ∅, it holds dG(x, y) ≥ 3. However, G −{x, y} is a complete subgraph in G implying that dG (x, y) = 3. 
Further, fix two vertices u ∈ NG(x) and v ∈ NG(y). Clearly, u, v ∈ V (G)\{x, y}. For any z ∈ V (G)\{x, y} it holds dG (x, z) ≤
dG (x, u) + dG (u, z) ≤ 2. Similarly, dG (y, z) ≤ 2 as well. Therefore, diam(G) = 3 and x, y is the unique diametral pair in G . 
Obviously, eccG(z) = 2 for all z ∈ V (G)\{x, y}. Hence, for all such z either x or y is the eccentric vertex for z in G . Finally, 
x, y cannot be eccentric vertices for some z simultaneously as {x, y} is a dominating set in G . Thus, G is a uep-graph. �
Corollary 3.11. [10] A uep-graph of diameter three is either self-centered or upper-diameter critical.

Proof. If G is a non-self-centered uep-graph with diam(G) = 3, then Theorem 3.10 asserts that G is a bi-star. Hence, any 
new edge e /∈ E(G) is incident to at least one of the peripheral vertices of G . Clearly, for any e /∈ E(G) the graph G + e has 
diameter of two. �
Corollary 3.12. The number of non-isomorphic non-self-centered n-vertex uep-graphs G with diam(G) = 3 equals 

⌊ n
2

⌋ − 1.

Proof. We can calculate the number of non-isomorphic complements of such graphs G instead. By Theorem 3.10, the 
complement G is a bi-star. And the number of non-isomorphic n-vertex bi-stars equals 

⌊ n
2

⌋− 1 (as any such bi-star is given 
by a non-trivial partition of (n − 2)-element set into two parts). �

Using Corollary 3.2 and Theorem 3.10, we can completely characterize eccentric digraphs of uep-graphs with diameter 
three. To do so, we define an auxiliary unary graph operation named eccentric cloning. Let H be a connected graph. Take an 
isomorphic copy H ′ of H with V (H ′) = {u′ : u ∈ V (H)} and E(H ′) = {u′v ′ : uv ∈ E(H)}. Now consider the graph G which is 
obtained from the union H ∪ H ′ by adding new edges of the form uv ′ provided there is an arc between u and v in ED(H). 
The graph G is called eccentric clone of H . For example, the eccentric clone of Kn is isomorphic to K2n − nK2 (the 2n-vertex 
complete graph minus a perfect matching) and the eccentric clone of C4 is isomorphic to the 3-cube Q 3.

Proposition 3.13. For a digraph D there exists a uep-graph G with diam(G) = 3 having ED(G) � D if and only if D consists of l ≥ 3
bald components, or D � Dm,k for m, k ≥ 1.

Proof. Necessity. If G is self-centered, then Corollary 3.2 asserts that each weak component in ED(G) is bald. Also, it is clear 
that ED(G) has |V (G)|

2 ≥ diam(G) = 3 weak components. Now let G be non-self-centered. From the proof of Theorem 3.10 it 
follows that G has a unique diametral pair of vertices x, y, which are the only eccentric vertices in G . Hence, ED(G) � Dm,k
for m, k ≥ 0 and m + k > 0. Combining this fact with Proposition 3.3 (as the condition diam(G) = 3 implies |V (G)| ≥ 3), we 
conclude that m, k ≥ 1.

Sufficiency. At first, assume that D consists of l ≥ 3 bald components. If l = 3, then ED(C6) � D . Further, suppose l ≥ 4. 
Consider the graph H � K2,l−2 having V (H) = {x, y} ∪ {ai : 1 ≤ i ≤ l − 2} and E(H) = {xai, yai : 1 ≤ i ≤ l − 2}. Let G be 
the eccentric clone of H (see Fig. 7 for the eccentric clone of K2,3). It is easy to observe that eccG(x) = dG(x, x′) = 3. 
Indeed, dG (x, ai) = dG (x, y′) = 1, dG(x, y) = 2, dG(x, a′

i) = 2 (as there are paths x − y′ − a′
i and ai /∈ NG(x)), 1 ≤ i ≤ l −

2, and dG (x, x′) = 3 (as there is a path x − y′ − a′
1 − x′ between x and x′ in G; and NG(x) ∩ NG(x′) = ({ai : 1 ≤ i ≤ l −

2} ∪ {y′}) ∩ ({a′
i : 1 ≤ i ≤ l − 2} ∪ {y}) = ∅). Similarly, eccG(x′) = eccG(y) = eccG(y′) = 3. Further, for any 1 ≤ i ≤ l − 2 we 

have eccG(ai) = dG(ai, a′
i) = 3 also. Indeed, dG (ai, x) = dG(ai, y) = dG(ai, a′

j) = 1 for all 1 ≤ j ≤ l − 2, j �= i. Furthermore, 
dG (ai, a j) = dG (ai, x′) = dG(ai, y′) = 2 for all 1 ≤ j ≤ l − 2, j �= i. Finally, dG (ai, a′

i) = 3. The same arguments show that 
eccG(a′

i) = 3 for all 1 ≤ i ≤ l −2. Hence, G is self-centered. Moreover, G is a uep-graph as ED(G) is the union of the following 
2-cycles: x ↔ x′ , y ↔ y′ , and ai ↔ a′

i for 1 ≤ i ≤ l − 2. Clearly, ED(G) � D as it has exactly l bald weak components.
Now let D � Dm,k for m, k ≥ 1. Consider the complete graph H � Km+k . Fix a partition of V (H) = A � B with |A| = m, 

|B| = k. Now add to H two new vertices x, y with the new edges xa for all a ∈ A and yb for all b ∈ B (see Fig. 8). Denote 
the obtained graph by G . It is clear that G is a bi-star. By Theorem 3.10, G is a uep-graph with diam(G) = 3. From the 
construction of G it follows that ED(G) � Dm,k . �
9
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Fig. 7. The eccentric clone of K2,3.
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Fig. 8. Non-self-centered uep graph G with diam(G) = 3.

3.4. Uep-graphs with diameter four

The problems of characterizing non-self-centered uep-graphs G having diam(G) = 4 or even obtaining criteria for their 
eccentric digraphs are considerably harder. The following theorem contains several important results in the direction of 
tackling the second problem.

Theorem 3.14. Let G be a non-self-centered uep-graph with diam(G) = 4. Then the next statements hold:

(i) each eccentric vertex in G lies on a cycle in ED(G);
(ii) if ED(G) contains a 2-cycle x ↔ y, then x, y induce a bald weak component in ED(G) if and only if dG(x, y) = 3;

(iii) ED(G) does not have half-bald weak components.
10
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x u a y

z

v

Fig. 9. Two shortest paths between x, y and a, v in G from Case 1.

Proof. (i) The first statement directly follows from Proposition 3.4. Indeed, diam(G) = 4 implies that ED(G) does not have 
induced paths of length of at least two. Hence, each eccentric vertex in G lies on a cycle in ED(G).

Before proving the second and the third statements, we note that eccG(u) ∈ {3, 4} for all vertices u ∈ V (G). Indeed, 
Proposition 2.6 implies rad(G) ≥ diam(G)+1

2 = 4+1
2 = 5

2 .
Now we are ready to prove the second statement.
(ii) Necessity. Assume that x, y induce a bald weak component in ED(G). To the contrary, suppose x, y is a diametral 

pair in G . Since G is not self-centered, there exists a vertex u ∈ V (G) with eccG(u) = 3. Let a be the eccentric vertex for u in 
G . Clearly, a �= x, y. We have dG(u, x) ≤ 2 and dG (u, y) ≤ 2. However, if min{dG(u, x), dG(u, y)} = 1, then using the triangle 
inequality, we can deduce dG (x, y) ≤ 3. The obtained contradiction shows that dG (u, x) = dG(u, y) = 2. Now fix a vertex 
z ∈ NG(x) ∩ NG(u). If eccG(z) = 3, then using Lemma 2.4 for the edge zx, we can conclude that y is the eccentric vertex for 
z in G . However, this contradicts the fact that x, y induce a bald weak component in ED(G). Hence, eccG(z) = 4. Similarly, 
we use Lemma 2.4 for the edge zu to conclude that z, a is a diametral pair in G . Further, we fix a vertex t ∈ NG(y) ∩ NG(u). 
Clearly, z �= t . We apply the same argument for t . In other words, if eccG(t) = 3, then x is the eccentric vertex for t in G , 
which is a contradiction. And if eccG(t) = 4, then a, t is a diametral pair in G . This contradicts the fact that G is a uep-graph 
(as the vertex a has two eccentric vertices z and t).

Sufficiency. The fact that a 2-cycle x ↔ y with dG (x, y) = 3 induces a weak bald component in ED(G) directly follows 
from the observation that in such a uep-graph G for all vertices u ∈ V (G) we have eccG(u) ∈ {3, 4}. Thus, x can be an 
eccentric vertex only for y and vice versa.

Now we prove the third (and the hardest) statement.
(iii) Aiming for a contradiction, assume that there exists a half-bald weak component in ED(G). Let x ↔ y be the 2-

cycle in it. From the second statement it follows that x, y is a diametral pair in G . Without loss of generality, assume that 
d−

ED(G)
(y) = 1. Hence, d−

ED(G)
(x) ≥ 2. Fix a vertex a ∈ N−

ED(G)
(x)\{y}. It is clear that eccG(a) = 3. Furthermore, we can assume 

that a ∈ [x, y]G . Indeed, if ay /∈ E(G), then dG(a, y) = 2. Consider any vertex a′ ∈ NG(a) ∩ NG(y). If eccG(a′) = 4, then using 
Lemma 2.4 for the edge aa′ , we obtain that x is the eccentric vertex for a′ and y in G , which is a contradiction. Hence, 
eccG(a′) = 3 and, applying Lemma 2.4 for the edge ay, we again obtain that x is the eccentric vertex for a′ in G . In the latter 
case, a′ ∈ [x, y]G . Therefore, let a ∈ [x, y]G and fix a vertex u ∈ [x, y]G ∩ NG(x) with dG (u, a) = 2. It is clear that eccG(u) = 4. 
Let v be the eccentric vertex for u in G . Thus, u ↔ v is another 2-cycle in ED(G). We have dG (a, v) = 2 (indeed, the 
existence of an edge av ∈ E(G) would imply dG (u, v) ≤ dG(u, a) + dG (a, v) = 3). Fix a vertex z ∈ NG(a) ∩ NG(v). Further, we 
split the proof into two cases.

Case 1: z �= y (see Fig. 9).
If eccG(z) = 4, then applying Lemma 2.4 for the edge az, we obtain that z ↔ x in ED(G), which is a contradiction. Thus, 

in this case, eccG(z) = 3. Again, applying Lemma 2.4 for the edge zv , we obtain z → u in ED(G). Hence, dG (z, x) = 2 (if 
zx ∈ E(G), then x − z − a − y is the path of length 3 between x and y in G). Further, fix a vertex w ∈ NG(z) ∩ NG(x). 
If w = v , then we obtain a shorter path u − x − w = v of length 2 between u and v in G . Hence, w �= v (see Fig. 10). 
If eccG(w) = 3, then applying Lemma 2.4 for the edge xw , we obtain w → y in ED(G). This contradiction asserts that 
eccG(w) = 4. But in this case, apply Lemma 2.4 for the edge wz in order to ensure the existence of the 2-cycle u ↔ w in 
ED(G). Since w �= v , this is a contradiction again.

Case 2: z = y.
We have dG (x, v) ≤ 3. If dG (x, v) ≤ 2, then dG(u, v) ≤ dG(u, x) + dG (x, v) ≤ 3. This means that dG (x, v) = 3. Fix a shortest 

path x − p −q −v between x and v in G . Since N−
ED(G)

(y) = {x}, we can conclude that eccG(p) = 4. Similarly, using Lemma 2.4
for the edges pq and qv , we obtain that eccG(q) = 4. Let q ↔ q′ in ED(G).

Further, since eccG(a) = 3 and a → x in ED(G), it holds dG (a, q) ≤ 2. If aq ∈ E(G), then by Lemma 2.4, there is an arc 
q → x in ED(G), which is clearly not the case as dG (x, q) = 2. Therefore, dG(a, q) = 2. As usual, fix a vertex t ∈ NG(a) ∩ NG(q). 
Clearly, t �= y (otherwise, we obtain a contradiction: dG (x, y) ≤ dG(x, q) + dG (q, y) = 3), see Fig. 11.

Again, since eccG(a) = 3, the equality eccG(t) = 4 would lead us to the following contradiction: there would exist the 
2-cycle t ↔ x in ED(G) with t �= y. Hence, eccG(t) = 3. Therefore, t → q′ in ED(G). Moreover, dG(t, x) ≤ 2. If tx ∈ E(G), 
then dG (x, y) ≤ dG (x, t) + dG (t, y) = 3, which is a standard contradiction. Thus, dG (t, x) = 2 and we can fix a vertex w ∈
NG(x) ∩ NG(t) (see Fig. 12).
11
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Fig. 10. The existence of a vertex w ∈ NG (z) ∩ NG (x) from Case 1.
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Fig. 11. The existence of a vertex t ∈ NG (a) ∩ NG (q) from Case 2.
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y
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qp v

w

Fig. 12. The existence of a vertex w ∈ NG (x) ∩ NG (t) from Case 2.

Again, since N−
ED(G)(y) = {x}, it holds eccG(w) = 4. Therefore, using Lemma 2.4 for the edge wt , we obtain that w ↔ q′

in ED(G). However, w �= q as wx ∈ E(G) and qx /∈ E(G). This final contradiction proves the theorem. �
From Theorem 3.14 we can conclude the following facts about the structure of ED(G) for uep-graphs G with diam(G) = 4:

1. each its weak component is isomorphic to Dm,k for m = k = 0 or m, k ≥ 1;
2. the distance in G between two vertices in its bald weak component equals three;
3. the distance in G between two vertices in its full weak component equals four.

Example 3.15. Consider the graph G shown in Fig. 13. One can check that G is a uep-graph with diam(G) = 4. Fig. 14
depicts its eccentric digraph ED(G), which has two weak full components and one bald weak component.

A direct computer search showed that there are no n-vertex uep-graphs with diameter four for n ≤ 7. For n = 8 there 
are 4 such graphs, for n = 9 the number of these graphs is 16, for n = 10 we have 261 such graphs. Finally, for n = 11 we 
have found exactly 4829 of these graphs.

We conclude this section by presenting a uep-graph with diameter five whose eccentric digraph has a half-bald weak 
component (see Fig. 15 and Fig. 16).

4. Open questions

In this section we present several open questions about the structure of eccentric digraphs for uep-graphs based on the 
obtained results.
12
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Fig. 13. The uep-graph G with diam(G) = 4 from Example 3.15.
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Fig. 14. The eccentric digraph ED(G) for the graph G from Fig. 13.

Question 1. Can we characterize weakly connected eccentric digraphs of uep-graphs?

This question is not trivial since such eccentric digraphs can contain induced paths of length of at least two (see Fig. 3). 
Also, note that by Proposition 3.3, any such eccentric digraph is a bald or a full weak component in itself.

The next series of questions concerns the existence and the structure of half-bald weak components.

Question 2. Could there be an induced path of length of at least two in a half-bald weak component in ED(G) for a uep-
graph G?
13
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Fig. 15. Uep-graph G with diam(G) = 5 whose eccentric digraph ED(G) has a half-bald weak component.
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Fig. 16. The eccentric digraph ED(G) of the uep-graph G from Fig. 15.

Question 3. Does there exist a uep-graph G such that each weak component in ED(G) is half-bald?

Question 4. Does there exist a non-self-centered uep-graph G without full weak components in ED(G)?
14
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It is clear that if such a graph G exists, then ED(G) necessarily contains a half-bald weak component (and hence, has 
another weak component by Proposition 3.3).

Question 5. Can a bald and a half-bald weak components coexist in ED(G) for a uep-graph G?

Theorem 3.14 implies that if such a graph G exists, then diam(G) ≥ 5. Also, note that negative answers to Questions 3, 5
imply negative answer to Question 4.
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