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TWO APPROACHES FOR OPTION PRICING UNDER 
ILLIQUIDITY1

The paper focuses on option pricing under unusual behaviour of the market, when the price may not 
be changed for some time what is quite a common situation on the modern financial markets. There are 
some patterns that can cause permanent price gaps to form and lead to illiquidity. For example, global 
changes that have a negative impact on financial activity, or a small number of market participants, or 
the market is quite young and is just in the process of developing, etc.

In the paper discrete and continuous time approaches for modelling market with illiquidity and eval­
uation option pricing were considered.

Trinomial discrete time model improves upon the binomial model by allowing a stock price not only 
to move up, down but stay the same with certain probabilities, what is a desirable feature for the illiquid 
modelling. In the paper parameters for real financial data were identified and the backward induction 
algorithm for building call option price trinomial tree was applied.

Subdiffusive continuous time model allows successfully apply the physical models for describing the 
trapping events to model financial data stagnation’s periods. In this paper the Inverse Gaussian pro­
cess IG  was proposed as a subordinator for the subdiffusive modelling of illiquidity and option pricing. 
The simulation of the trajectories for subordinator, inverse subordinator and subdiffusive GBM were 
performed. The Monte Carlo method for option evaluation was applied.

Our aim was not only to compare these two models each with other, but also to show that both models 
adequately describe the illiquid market and can be used for option pricing on this market. For this 
purpose absolute relative percentage (ARPE) and root mean squared error (RMSE) for both models were 
computed and analysed.

Thanks to the proposed approaches, the investor gets a tools, which allows him to take into account 
the illiquidity.

Keywords: subdiffusion models, subordinator, inverse subordinator, hitting time, trinomial tree 
model.

Intoduction the stagnation periods. In benchmark B-S model
Brownian motions is perpetually moving and we

* i ■ r ± n - i  i i can not use it for modeling periods with motion-Anaiysis ol different financial markets shows , °, i , j -  I . .  . 1 . 1  . ■ ■ less stock returns too.that during global crises that have a negative im­
pact on financial activity we can observe some In order to overcome this difficulty for discrete-
kinds of risky assets which have the periods in their time approach was considered the trinomial tree
dynamic without change. Such behavior is typical model. This model improves upon the binomial
for emerging markets with low number of transac- model by allowing a stock price not only to move
tions, for interest rate markets and for commod- up or down, but stay the same with certain proba-
ity markets. So for these markets the problem of bilities, what is a desirable properties for the illiq-
evaluating fair price of derivative instruments on uid modelling.
stocks have become extremely important. ^ u ̂ tor contmuous-time approach one can notice,

The classical diffusion models for continuous that the constant periods of stagnation in financial
time like Black-Scholes-Merton (B-S) and its dis- processes are analogous in nature to the trapping
crete variant - binomial tree model of Cox-Ross- events of the subdiffusive particle. Therefore, the
Rubinstein (C-R-R) [2] are incapable of adequately physical models of subdiffusion can be successfully
modelling illiquidity for real-life asset dynamic and applied to describe financial data. See for exam-
evaluate derivatives. This happens because classi- pie paper [6], where option pricing was proposed in
cal binomial C-R-R model allows a stock price only fractional jumpBlfdiffusion model, papers [7] for
to move up or down and do not take into account Black-Scholes formula and [8], [14] for Bachelier
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model in subdifFusive regime.
The aim of the work was to consider two dif­

ferent approaches for modelling market with stag­
nation periods: to apply trinomial tree model and 
propose IQ  prosess as a subordinator for subdifFu­
sive model.

The paper is organized as follows. In the next 
section we remind what is trinomial tree model and 
how we can apply it to find fair option price for real 
historical data. This section is based on the papers 
[1], [3], [4], [5], where different types of trinomial 
tree models are presented. We show how model 
parameters for real financial data can be identified 
and the backward induction algorithm for building 
call option price trinomial tree can be applied.

IQ
subordinator of subdifFusive GBM and its proper­
ties. The simulation of the trajectories for subordi­
nator, inverse subordinator and subdifFusive GBM 
were performed. Also we describe Monte Carlo op­
tion pricing techniques for this case.

Forth section contents some numerical results 
for real financial data, absolute relative percentage 
(ARPE) and root mean squared errors (RMSE) for 
both models and its comparison.

Trinomial tree for m odelling o f  illiquidity

Trinomial tree param eters setting. As we
mentioned above, Ross-Cox-Rubinstein binomial 
tree model [2] is incapable of adequately modelling 
illiquidity for real-life asset dynamic and for evalu­
ating derivatives because this model allows a stock 
price only to move up or down. A more advanced 
model that can be used for describing of the stag­
nation’s periods is the trinomial tree model. This 
model based on the principle that the stock price 
may move up, down, or stay the same with a cer­
tain probability. This rule is important for mod­
elling of the stagnation’s periods.

The general form of the tree is as shown in the 
Figure below.

Various types of trinomial trees have been pro­
posed in the literature for pricing financial deriva­
tives. See for examples, [3], [4], [5]. As with bi­
nomial trees, there is freedom to choose the pa­
rameters of a trinomial tree, depending upon what 
characteristics one wishes to emphasize. For exam­
ple, one can attempt to match higher moments, or 
attempt to obtain smooth convergence. The de­
scription of the trinomial model in this subsection 
mostly is based on paper [3]. A trinomial tree is 
characterized by the following parameters: 

u - coefficient of price increase 
d - coefficient of price reduction 
m - coefficient of price stagnation 
pu- the probability of an increase in the stock 

price
pd- the probability of a decrease in the stock

price
pm- the probability of a staying the same in the

stock price
We choose the parameters u, d, m to match the 

volatility a of the stock price. The step is of length 
At. According to the assumption from [3]:

u =  e<xV2Ât
m = 1
d =  e-<rV2^

( 1)

Also one can match the first two moments of 
our models distribution according to the no arbi­
trage condition. In a risk-neutral world, the ex­
pected return on all assets is equal to the risk-free 
interest rate (this means that all expected gains 
are discounted at the rate) and the variance can 
be expressed as follow [3]:

E (St) =  Soe

var(St) =  S2e2rÂt(ea Ât -  1)

(2)

(3)
We equate two values for mathematical expecta­
tion (2) and variation (3) to form two equations of 
the system. Also, using the property that the sum 
of the probabilities equal to unity, we write down 
the third equation. So, we got a system of three 
equations and three unknown variables:

Pu +  Pm +  Pd =  1 
upu +  mpm +  dpd =  erAt
u2pu +  m2pm +  d2pd -  (erAt)2 =  e2rAt(e ^ At -  1)

(4)
From this system the probability values for the 

trinomial model are:
e^rÂt e<?2 Ât — e2rÂt(d +  1 )+  d

Figure 1. Trinomial tree

pu

pd
,2 r Ât ̂ a2 Ât

(u — d)(u — 1)
2rÂte e -  e (u +  1) +  u (5 )

(d — u)(d — 1) 
I Pm =  1 — Pu — Pd
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The above setting (1) for parameters and (5) for 
probabilities we use in the next, sections for option 
pricing numerical result.

Option pricing f o r  trinom ial model . The 
methodology when pricing options using a trino­
mial tree is exactly the same as when using a bino­
mial tree. To determine the option price f  based 
on the trinomial tree, the following algorithm is 
used:

1. Declare and initialize S(0)
2. Calculate the jump sizes u, d, m
3. Calculate the transition probabilities

pu, Pd, Pm

4. Build the share price tree
5. Calculate the option payoffs at maturity 

time T, i.e node N:
for the call option

|S -  K| + =

for the put option

|K -  S| + =

S -  K, S > K  
0, S < K,

K  -  S, 
0,

K > S  
K  S,

(6 )

(7)

u =  1.02, m =  1, d =  0.98, ( 10)

pu =  0.4166
pd =  0.4169 (11)
pm =  0.1663

and build the share price trinomial tree. The first 
5 steps of this tree is demonstrated in the Graph 
below.
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Figure 2. Trinomial tree for 5 steps

After that we apply the backward induction al­
gorithm and build call option price trinomial tree. 
See Graph for T =  5.

2 7 .0 8 9 3 6 1  
1 3 .0 3 2 2 2 7  1 5 .8 1 3 9 4 5

8 .2 0 5 6 7 3

3 9 .3 1 0 8 1 4  
2 4 .6 3 1 4 6 3  
1 3 .8 0 0 4 1 6  

6 .1 1 1 2 5 2  
2 .2 1 6 1 2 4

5 4 .7 9 1 0 8 1  
3 6 .9 6 0 8 2 9  
2 2 .4 9 1 5 4 3  
1 0 .9 7 8 1 3 4  

4 .4 1 2 4 1 3  
0 .8 0 8 8 5 8  

0 . 0
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0 . 0
0

6. Apply the following backward induction algo­
rithm. where u represents the time position and j 
the space position

f u , j  =  e  ( p u f u + 1 , j + 1  +  p m f u + 1  , j+ 1  +  p d f u + 1 , j  +  1 ) ( 8 )

f
option is

f  =  fo,o (9)
We apply this algorithm for option pricing for get­
ting numerical results for real financial data with 
stagnation’s periods.

N um erical results f o r  trinom ial model. 
We consider Airbnb company spot price S0 =  
=  103.51 for June 24, 2022. The strike price is 
K  =  100 for call options with maturity T is given 
for ten different dates. The yearly volatility for 
returns of the underlying asset is computed as a =  
=  0.5758, the yearly riskless interest rate is set as 
r =  0.16.

For these input parameters we compute jump 
sizes and the transition probabilities

Figure 3. Tree of pay-off function for 5 steps

The fair price for this call option is C  =  6.1957. 
The results for different times of maturity are 

demonstrated in the figure 4.

Figure 4. Simulated prices for the binomial and 
trinomial option pricing models

Subdiffusion for m odelling o f  illiquidity

Subdiffusion processes with IG  subordi- 
nator and its simulation. For modelling of 
illiquidity in continuous case it is useful to apply 
the subdiffusion process, which is used in statis­
tical physics for describing the trapping events of 
the subdiffusive particle. In physics, this process 
usually is described by Fokker-Planck fractal equa­
tions.

Equivalent description of subdiffusion there ex­
ists in terms of subordination, where the stan­
dard diffusion process is time-changed by the so- 
called inverse subordinator. In this section we con­
sider B-S model and the standard diffusion process
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GBM for describing underlying risky asset in sub- 
diffusive regime. For it we replace the calendar 
time t in classical GBM [71

dX(t) =  ^  +  —  J X (t)dt +  aX(t)dBt, t > 0.

( 12)
with some stochastic process H(t) and obtain sub- 
diffusive GBM

The tail probability for G(5t, y ) is studied in [9]
and equals

P(G(t) >  x)^aZ2 -^2ej5tx —3/2e~(l x ̂  <x>.
V n y 2

The q-th order moments of the G(5t,Y) are given
by

dXH(t) =  ( p  +  y )  XH(t)dHt +  a X H(t)dBH{t) . EGq(t) =  ^ 5 ^  " ‘  tq+1/2eSYtK q_ 1/2(5Yt)

(13) 
H(t)

nator and it definded as

H(t) =  in f  (t > 0 : G(t) > t ) ) .

H(t)
ting time1' and is interpreted as the time of first 
reaching a certain price, which may not change for 
some time. By construction, the inverted process 
may be constant. Therefore, any process subordi- 

H(t)
The difinition (3.1) of the inverse subordinator 

is based on the use of some other random process 
G(t)
G( t)

a non-decreasing stochastic process with station­
ary independent increments with right continuous 
left limits sample paths.

Many types of subordinators such as a-stable, 
tempered-stable. Gamma, Poisson and other have 
been already applied for different sub diffusive 
models of illiquidity (see for example [6], [7], [8],
[14])-

In this paper we propose to take the Inverse 
Gaussian process IG a sa  subordinator for the sub-

G( t)
decreasing Levy process (i.e., process with sta­
tionary independent increments), where the incre­
ments G(t +  s) — G(s) follow the inverse Gaus­
sian G(5t,Y) distribution with probabilities den-

y 5
for example [9]):

g(x,-t,Y,5) =
5t

V2-
x > 0

■nx°

f  (x,t) =
V2

: exp
nx3

(x — t )  
2x

x > 0,

where Kq (u) is the modified Bessel function of 
the third kind with index q, defined in [9].

The algorithm of the simulation of the IG  pro­
cess G(t) ior time points ti =  n =  n,...,tn =  1
can be presented into the following steps [9]:
1. For i =  1,2, ...,n  and dt =  1/n we generate n 
independent identically distributed inverse Gaus­
sian variables Fi assuming y =  A  =  1
a) Generate a standard normal random variable 
N .
b) Assign X  =  N 2.
c) Assign Y =  dt +  XX +  2 * ^/4dt.
d) Generate a uniform [0,1] random variable U.
e) If U < dt Y (dt)2

dt+Y  ̂ 5 uulu,UOV/ iV'tUi11 Y
2. Assign G(to) =  0 and G(ti) =  X j= i  Fj, i =  
=  1, 2,...,n
3. G(ti), G(t2 ) , ..., G(tn) are n simulated values of 
the IG  process at times t i , t 2 ,...,tn respectively.

G(t)
strated below on Figure 6.

IG  y =  5 =  1
the PDF will be

Figure 5. Simulation of the IG process trajectories

H(t)
hitting time or stochastic clock defined by (3.1) is 

IG  I IG
was studied in [9], where were found as q-th order 

IIG(5t, y))
In order to simulate the approximate trajectory 

inverse subordinator H(t) , we define H(At)  with 
the step length A  as follows [9]:

2

5Yt—(5 t /x+y x)/2e

t

Then for any moment t we have E (G(t)) =  t, H&(t) =  [min{n £ N : G(An)  > t }  —1]A, n =  1, 2,
var(G(t)) =  t. (14)
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where A  is the step length and G(An) is the 
value of the Inverse Gaussian process G(t) evalu- 

n
The simulation of the trajectory H (t) is demon­

strated on Figure 7.
For simulation of the trajectory subdiffusive 

GBM X (t) we remind that the Ito equation al­
lows modeling the time dynamics of an arbi­
trary stochastic process by means of the iterative 
scheme[ 15]:

Xk+ 1  =  x k +  a (xkXk) △  t +  b(xk,tk)\TXt£k. (15)

In paper [16] were considered iterative schemes 
for fractal activity time processes with inverted 
gamma subordinator. For modeling stochastic 
subdiffusive GBM we propose the next iterative 
scheme

Xk+1 =  Xk +  fkX k AH(t) +  A H  , (16)

where £ is white noise with normal standard dis­
tribution, A H  (t) have IIG  distribution.

The simulation of the trajectory X  (t) according
(16) is demonstrated on the Figure 6.

fair price of the European call option in the non 
fractional B-S model (12) is given by:

C(S, K , T, r, a) =  N (di)S -  N (d2)Ke~rT (17) 

with

di —
rVT

do —
log — Т rT — 2а2Т

(18)

(19)
G\fr

are both functions of five parameters: 
T, K, So, r, ^ ^ d  N (•) is a standard normal cumu­
lative distribution function, T  is time to maturity 
(in years), r is interest rate and a is volatility.

Consider a time-changed version of the B-S 
model, where the underlying risky assets follow 
(13). Then, as were shown in [7] the market 
model is arbitrage-free and incomplete and the cor­
responding fair price of the European call option 
in subdiffusive regime [7] is

Csub (S, K, T, а) — (C (S, K, H (T),а))  

— C  (S ,K ,x ^ )  g(x ,T )dx (2Ü)

Figure 6. Simulation of the inverse to the IG process 
trajectories

Meanwhile, the trajectory for the subdiffusion 
GBM with the inverse to the IG  process is demon­
strated on the Figure 7.

Figure 7. Simulation of the subdiffused Geometric 
Brownian motion with inversed IG subordinator

M onte Carlo method fo r  option  pricing  
in subdiffusion Black - S choies model. The

Here, g(x ,T ) is the PDF of H(T ) and 
C (S, K , T, a) is given by (17).

It is worth to mention, that the proof of for­
mula (20) for fair price is based on the common 
ideas for changed time models, see for examples 
proof in [11] for Student model with FAT or for 
Student-like FAT in [10] and their applications in 
[13], [12].

There are two ways of finding the values of the 
price C (•). One is to calculate C (•) by approxi­
mating the integral in (20). However, this can be

g (x, T )
C ( • )

Monte-Carlo method. One simulates the trajec­
tories for the inverse subordinator on the interval 
[0,T] by the approximation scheme (14). Then, 
one obtains the fair price as an estimation of the 
expected value for simulated prices where the in­

T
(20)

Csub(S, K, T, r, a) =  (C(S, K, H(T),a))

1 n
=  - y ]  C (S,K,Hi(T ),a),  (21)

n i=1
C ( S, K, T, a ) 

option pricing formula (17).
One can see the applying of the Monte-Carlo 

method for option pricing in subdiffusive models, 
for example, in the papers [7], [8], [14].

и
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N um erical results fo r  subdiffusive Black- 
-Scholes model . For the company "Airbnb" the 
input parameters are: S =  103.51 K  =  100, r =  
=  0.16, o&iff =  0.5758 for the diffusion model (see 
section 2.3 above).

First we simulate N  trajectories of subordina­
t e  G(t), that is a process of independent station­
ary increments having IG  distribution.

N
IG  subordinate H (T ) for every given time to ma­
turity T  and calculate N  option price values, using 
Black-Scholes option pricing formula (17).

N
ios, obtained in the previous step according (21).

The results are presented in the graphic shape 
in Fig. 8.

ljul 8 Jul 15 Jul 22 Jul 29 Jul 19 Aug 16 Sep 21 Oct 16 Dec 20 Jan

F igure 8. Simulated prices for the diffusive and 
subdiffusive B-S models

As we can see from graphics in Fig. 8., the 
diffusive option pricing model shows better results 
on the short-term period, while the subdiffusive 
model is more effective on the long-term perspec­
tive.

For more detail we need to compute and com­
pare the estimation errors.

Com parison o f  the two models

In this section we compare numerical results for 
AIRBNB company for two proposed models. It is 
a trinomial tree model and subdiffusive B-S model 

IG

Our aim is not only to compare these two mod­
els each with other, but also to show that both 
models adequately describe the illiquid market.

In Fig. 9 we compare the subdiffusive B-S for­
mula for European call options with the classical 
one and with option pricing using trinomial tree 
model. We estimated the values of subdiffusive B~ 
S formula using Monte Carlo methods based on 
the above described simulation procedure.

Figure 9. Comparison of the trinomial model and 
the B-S subdiffusive approach for the call option 

pricing

To compare numerical results we use abso­
lute relative percentage (ARPE) and root mean 
squared error (RMSE):

ARP E  =  |x(tk) -  Xexact(tk)| (22)
Xexact (tk )

RM SE  =  ^ 1 s t»=1( Xi -  Xexacti ) 2 (23)

It is worth to mention, in econometrics, the root 
mean squared error (RMSE) (22) is a key criterion 
for model selection. The mean squared error in­
dicates the mean squared deviation between the 
forecast and the outcome. It sums the squared 
bias and the variance of the estimator.

The advantage of the ARPE (23) relatively to 
the RMSE measure is that it gives a percentage 
value of the pricing error.

Therefore, if we use both these errors it pro­
vides more insight into the economic significance 
of performance differences.

RM SE
B-S 1.82

B-S SubdifFusion 1.85
Trinomial m odel 1.54

T able 1. The RMS errors for diffusion, subdiffusion 
and trinomial models regarding to the market price

Conclusion

In the paper two different approaches for mod­
elling market with stagnation periods were consid­
ered. We apply well-known trinomial tree model in 
discrete time case and propose subdiffusive model 
with IG  subordinate in continuous time case.

For the option pricing the backward induc­
tion algorithm trinomial tree model was used. In 
the continuous time case Monte-Carlo method was 
proposed.
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The programmed model can be used to valu- 
ate option price by several different methods and 
it can help to make decision.

To compare numerical results we used abso­
lute relative percentage (ARPE) and root mean 
squared errors (RMSE).

In the framework of the paper we compared op­
tion prising results in situation when strike price K  
was fixed (in the money), while time to maturity 
T were changing.

If we compare classical B-S model with subdif- 
fusive one, the results show that the diffusive op­
tion pricing B-S model shows better results on the 
short-term period, while the subdiffusive model is 
more effective on the long-term perspective. Mean- 
wile RMSE is bigger for proposed subdiffusive

model then for classical B-S one. Comparing sub­
diffusive B-S model with trinomial one we assume 
that trinomial model has the smallest RMS error.

In the future we are going to examine the ARP 
pricing errors of the proposed option pricing mod­
els in more detail (see paper (17]) and consider the 
pricing errors as a regression on the time to matu- 

T
a binary variable that is set to unity, if the option 
is a call and to zero in the case of a put. This can 
indicate a level of explanatory value of moneyness, 
maturity and the put-call dummy in the model.

Our next step is to apply the procedure of cal­
culating value-at-risk in the proposed model (with 
IG  subordinator) and analyze it for different types 
of investor portfolios like in the papers [17], [18].
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Паук В.М., Петренко О.I., Щестюк Н.Ю.

ДВА ПІДХОДИ ДО ЦІНОУТВОРЕННЯ ОПЦІОНІВ в  
УМ О В А Х НЕЛІКВІДНОСТІ

Статтю присвячено ціноутворенню опціонів в умовах неліквідності, коли ціна на ринку ма­
же не змінюватися протягом деякого часу, що є досить поширеною ситуацією на сучасних фі­
нансових ринках (наприклад, глобальні зміни, які негативно впливають на фінансову діяльність, 
або невелика кількість учасників ринку, або ринок, що тільки розвивається, тощо).

У статті розглянуто дискретний і неперервний підходи для моделювання та ціноутворення 
опціонів в умовах ринку з неліквідністю.
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Для, дискретного часу було обрано триноміальну модель, що вдосконалює біноміальну, до­
зволяючи ціні акцій не тільки рухатися вгору, вниз, але й залишатися, незмінною з певною 
ймовірністю, що с бажаною властивістю моделювання, в умовах неліквідності. У статті були 
визначені параметри трииоміальиої моделі для, реальних фінансових даних і застосовано алго­
ритм зворотної індукції для, оцінки ціни кол-опціону.

Для, неперервного часу для, моделювання періодів стагнації фінансових даних успішно застосо­
вується, субдифузійна модель, що з явилася, для, опису подій захоплення, фізичних частинок. У цій 
статті був запропонований обернений гаусівський процес як субордииатор для, субдифузійного 
моделювання, неліквідності та ціни опціонів. Виконано симуляцію траєкторій для, субордииато- 
ра, оберненого субординатора та субдифузійного ГБМ. Для, оцінки опціонів застосовано метод 
Монте-Карло.

Нашою метою було не тільки порівняти ці дві моделі, а й показати, що обидві моделі аде­
кватно описують неліквідний ринок і можуть бути використані для, ціноутворення, опціонів 
на цьому ринку. Для, цього було розраховано та проаналізовано абсолютні відносні (АІІРЕ) і 
середньоквадратичні помилки (ИМБЕ) для, обох моделей.

Завдяки запропонованим підходам, інвестор отримує інструментарій, який дає змогу враху­
вати неліквідність.

Ключові слова: субдифузійна модель, субордииатор. обернений субордииатор, час попадання, 
тршюміальиа модель.
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