
COMPLEXITY OF THE PROBLEM OF VERIFYING

THE COORDINATION MECHANISM IN A SYSTEM

OF SOFTWARE SUPPORT OF NETWORK

COLLABORATION

a† a‡

The problem of verifying the coordination mechanism in a system of software support of network

collaboration is considered. This problem is demonstrated to be similar to the agent verification

problem. It is proved that the problem of verifying the coordination mechanism is co-complete.
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We consider the problem of verification of the coordination mechanism (CM) in a collaboration system constructed

within the framework of a project that was first mentioned in [1] and is devoted to the creation of a model of a software

system for supporting a collaboration environment in the language of Petri nets. The network model proposed in [2] for a

collaboration system is based on the structure of a collaboration environment whose components are sessions, users, shared

resources, and levels. Using such levels, a protocol for accessing resources is realized. The scheme of a network model of

the system is presented in Fig. 1.

The collaboration system consists of N users, M sessions, L resources, and its coordination mechanism composed of a

collection of places and transitions of a Petri net that connect users U, sessions S , and resources R. In the model being considered,

the CM is a block consisting of controllers of levels (to each level corresponds one resource) and a mechanism for providing

mutual exclusion during creating a session. It includes the network model places described below.

1. Block for providing mutual exclusion in creating a session for each user and each session. Its structure

includes the following places: “A user Ui is not the leader of a session S j ,” “A user Ui is the leader of a session S j ,” and

“A userUi requests permission to create a session S j .” Transitions of the Petri net are as follows: “A userUi wants to begin

a session S j ,” “A userUi wants to complete a session S j ,” “A userUi is allowed to create a session S j ,” and “A userUi is

not allowed to create a session S j ” (in this case, i N����� and j M����� ).

2. Level controller. Its places are as follows: “A level Fk is unallocated,” “A level Fk processes a request,” “A level

Fk is in wait state,” “Allocate a resource Rk ,” “A resource Rk is allocated,” “Unallocate a resource Rk ,” “A resource Rk is

unallocated,” “Eliminate a resource Rk ,” and “A resource Rk is eliminated” (in this case, k L����� ).

3. Block for providing mutual exclusion of access of each user to each level. Its places are as follows: “A user Ui

is not the holder of a level Fk ,” “A user Ui requests access to a level Fk ,” “A user Ui is the holder of a level Fk ,” “A level

Fk is actively used by a user Ui ,” and “A level Fk is passively used by a user Ui .” Its transitions are as follows: “A user Ui

wants to access a level Fk ,” “Access of a user Ui to a level Fk is denied,” “Access of a user Ui to a level Fk is allowed,”

“A level Fk is occupied by a user Ui ,” “A user Ui suspends the use of a level Fk ,” “A user Ui resumes the use of a level

Fk ,” “A user Ui wants to eliminate a resource Rk ,” “A resource Rk is eliminated by a user Ui ,” “A user Ui wants to

unallocate a level Fk ,” and “A user Ui has unallocated a level Fk .”

In the general case, a Petri net modelling the operation of the coordination mechanism of the collaboration system

being considered has
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— 3� �N M places and 4 � �N M transitions regulating mutually exclusive creation of sessions;

— 9�L places corresponding to level controllers;

— 5� �N L places and 10 � �N L transitions corresponding to the connections between level controllers and users.

We will consider the problem of verification of the CM and determine its computational complexity. At an informal

level, the problem of verification of the CM consists of determining the suitability of using this CM in the collaboration

system or, in other words, in checking the CM for the correspondence to definite specifications regulating the principles and

results of operation of the system. Before proceeding to a formal statement of this problem, we introduce the definitions

listed below.

We call inadmissible the system states in which two or more users are simultaneously the leaders

1

of the same

session and/or the holders of the same level. We call all the other states admissible. Then, at a formal level, the problem of

verification of the CM can be stated as follows.

We have N users, L levels (to each level corresponds one resource), M sessions, and the coordination mechanism.

The solution is as follows: if, for each achievable variant of marking the Petri net corresponding to the CM, the

marking admissibility condition is satisfied (i.e., a marking corresponds to an admissible state), then the CM is suitable.

Otherwise, it is unsuitable.

In this statement, the problem of verification of the CM is similar to the problem of verification of agents that is

considered in [3] and in which the dependence of the problem complexity on the characteristics of the environment in which

an agent operates and on the complexity of the specification of a problem � stated in the form of a predicate over the set of

runs R of the agent in the system,

�: R � {true, false}.

The run of an agent in the system is a sequence of environment states and actions of the agent that lead to a change in

environment states. The CM can be associated with an agent that solves the support problem, i.e., retains one of admissible

environment states.

In a collaboration environment, there are infinitely many possible runs. But, to check the reliability of this

coordination mechanism, it suffices to successively determine the possibility of each user to get access to each available

resource as the leader of each possible session. In this case, it makes sense to introduce an additional condition according to

which only the leader of a session can access a resource since the attachment to an already activated session is not mutually

exclusive. Thus, the entire set of possible runs is reduced to one finite run (the termination condition is as follows: all users

as leaders of all possible sessions have used all the available resources). Such a run R� can be conveniently represented in the

form of a sequence of definite stages. To a run stage corresponds a system state in which the use of all environmental

components is maximally complete. This means that if, for example, we have N M L� � , then each user controls his unique

concrete session and holds one concrete level. In actual fact, all other variants in which the numbers of users, sessions, and

levels are different (N n� , M m� , L l� ; (n m	 ) 
 (l n	 ) 
 (m l	 )) cannot necessarily be separately considered since they

are reduced to the case when N M L n m l n� � � �min( , , ) (when n � 2 ). We explain this as follows.
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Fig. 1. Structure of a network model

for a collaboration environment.

U U N1

...

R RL1

...
S S M1

...

Coordination mechanism

1

The leader of a session is considered to be the user who has created or activated the session, i.e., who has switched

it from the state Idle to the state Active.



1. The competition between users for the control over redundant sessions and/or levels is absent and, hence, there is

no need to specially coordinate their use.

2. If the number of users exceeds that of sessions, then the operation of the CM at each stage is reduced to the

coordination of actions of m users (one user per session). The users who are still lacking sessions are outside of the system

since, according to the additional condition, resources are available only to the leaders of sessions and, hence, there is no

need to coordinate actions of these users.

3. The condition n � 2 should be satisfied since, otherwise, as a result of reduction, a degenerate case can be obtained

with one user, one session, and one level and, in this case, any competition and coordination cannot be considered. If there is

only one session and/or a level, then the number of users is equated to two (the least number that allows for a competition for

a resource).

To construct the specification �, we introduce the following auxiliary predicates:

— SL ( , )i j assumes the value “true” � there is a token at the place “A user Ui is the leader of a session S j ” in the

Petri net and, otherwise, “false;”

— LH ( , )i k assumes the value “true” � there is a token at the place “A user Ui is the holder of a level Fk ” in the

Petri net and, otherwise, “false;”

— CSME SL SL( ) ( ( ( , ) ( , ) ( )))j i i i j i j i i
 � � � � � 	
1 2 1 2 1 2

, where i i j
1 2

, , ����� n . “True” means that the

control of the corresponding session is mutually exclusive. We denote an expression without quantifiers by CSME � ( )j ;

— HLME LH LH( ) ( ( ( , ) ( , ) ( )))k i i i k i k i i
 � � � � � 	
1 2 1 2 2

, where i i
1 2

, , k n����� . “True” means that the holding of

a level is mutually exclusive. We denote an expression without quantifiers by HLME � ( )k ;

— Addit_ state CM) CSME HLME( ( ( ) ( ))
 � � � 
j k j k � �i i
1 2

� �j k ( ( ) ( ))CSME HLME� � �j k .

Then the predicate � ( )R� assumes the form

� ( )R� �

true if the predicate Addit_ state (CM)

is satisfied for all markings of the run;

false otherwise.

�

�

�

�

�

(1)

In what follows, it makes sense to pass from a predicate to a quantified Boolean formula (QBF) as follows:

— SL ( , )i j is replaced by the Boolean variable xi j,

;

— LH ( , )i k is replaced by the Boolean variable yi k, ;

— CSME ( )j is replaced by the formula

� � � � � � � � � �x x x x x x x x xn n n1 1 1 2 1 2 1 1 1 2 1 1 1 3, , , , , , , ,

[ ( ) (� �

,

) ]

1

� � ; (2)

— HLME ( )k is replaced by the formula

� � � � � � � � � �y y y y y y y y yn n n1 1 1 2 1 2 1 1 1 2 1 1 1 3, , , , , , , ,

[ ( ) (� �

,

) ]

1

� � ; (3)

— Addit_state (CM) is replaced by the formula

� � � � � � � � � �x x x x x y y y yn n n n1 1 1 2 1 2 1 1 1 1 2 1 2 1, , , , , , , , ,

� � � � y xn n, ,

[ (�
1 1

� � � � � � � � � � � �x x x y y y y
2 1 1 1 3 1 1 1 2 1 1 1 3 1, , , , , , ,

) ( ) ] [ ( ) ( )� � ] . (4)

For example, when n � 2 , the corresponding formulas are of the form

� � � � � � � � �x x x x x x x x
1 1 1 2 2 1 2 2 1 1 2 1 1 2 2 2, , , , , , , ,

[ ( ) ( )] ;

� � � � � � � � �y y y y y y y y
1 1 1 2 2 1 2 2 1 1 2 1 1 2 2 2, , , , , , , ,

[ ( ) ( )] ;

� � � � � � � � � �x x x x y y y y x x
1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 1 2, , , , , , , , ,

[ (

,

)

1

� � � � � � � � �( )] [ ( ) ( )]

, , , , , ,

x x y y y y
1 2 2 2 1 1 2 1 1 2 2 2

.

According to [3, pp. 120–121], the computational complexity of the problem of verification of agents for

��u

p
complete specifications of a problem is �

�
�u

p

1

complete. Worthy of mention are polynomial hierarchies of classes

u

p

� and .

u

p

� They cover an uncountable set of classes to each of which corresponds a definite value u N� (for u � 0 ,

479



u

p

� � �). It is assumed that the specification � can be represented by a Turing machine T
�

that accepts at its input only the

runs satisfying this specification. Any ��u

p
specification can be described by an alternating Turing machine that solves the

problem in polynomial time using no more than u places between existence and generality states (corresponding to existence

and generality quantifiers). Thus, we have

0

p
P� 
 and

1

p
NP� 
 .

Each complexity class O t n( ( )) is a set of languages that can be accepted in time O t n( ( )) by the corresponding

Turing machine. In particular, the class NP consists of languages that are accepted in polynomial time by nondeterministic

Turing machines. In the general case, we have 
�u

p
co - .

u

p

� However, the result from [3] cannot be directly applied to our

problem since the specification of this problem is co- NP-complete (or

1

p

� ) since it contains only generality quantifiers.

According to [4, Chapter 10], co-NP is the complexity class that includes problems with succinct disqualification in

contrast to the class NP uniting problems with succinct certificate. Since the Boolean validity problem is co-NP-complete,

our specification of problem (4) is also co-NP-complete. Therefore, to determine the complexity of the problem of

verification of the CM, the lemma formulated below should be proved.

LEMMA 1. The computational complexity of the problem of verification of agents for co-NP-complete

specifications is co-NP-complete.

Proof. Co-NP-complexity directly follows from the complexity of the problem specification. To prove its

co-NP-completeness, we reduce the problem of determination of the truth of a QBF containing only generality quantifiers to

the problem of verification of agents. As a result, we obtain

� � �x x x x xn n1 2 1

� �� ( , , ) , (5)

where each xi is a finite collection of Boolean variables and � ( , , )x xn1

� is a propositional logic formula over a set

of Boolean variables x xn1

, ,� .

The problem of verification of agents on the basis of formula (5) is constructed as follows. Let x x x x
m

1

1

1

1

2

1

� , , ,� be

the outermost collection of quantified variables. To each of these variables x
i

1

will correspond the following two possible

states of the environment: e
x

i

1

and e
x

i
�

1

that correspond to the values “true” and “false” of the variable x
i

1

. We denote the

initial environment state by e
0

. The environment allows an agent to execute only the action a
0

and responds to the ith

execution of this action by the transition to the state e
x

i

1

or e
x

i
�

1

. After the mth execution of the action a
0

, the corresponding

run terminates. Thus, each run assigns the corresponding value to each generally quantified variable from the set

x x x x
m

1

1

1

1

2

1

� , , ,� . In this case, the set of all possible runs corresponds to the set of all possible combinations of values of

these variables. For a given run r, � ( , , ) [ / ]x x r xn1 1

� is a Boolean formula obtained from the formula � ( , , )x xn1

� as a

result of the replacement of each variable x
i

1

by its value (“true” or “false”) assigned to this variable within the framework of

the run r. Then the specification of the problem � assumes the form

� ( )

( ,

r

NP

x x xn
�

� �

� �truth if the co complete formula

2 1

� �� , )[ / ]x r xn 1

assumes the value truth;

false otherwise.

�

�

�
�

�

�

�

(6)

Input formula (5) assumes the value “true” when all the runs of an agent satisfy specification (6). Since the reduction

is polynomial, the computational complexity of the problem of verification is co-NP-complete, which is what had to be

proved. �

Next, let us determine the complexity of the problem of verification of the CM.

THEOREM 1. The computational complexity of the problem of verifying the CM is co-NP-complete.

Proof. The computational complexity of the specification of the problem of verifying CM (1) is co-NP-complete.

According to Lemma 1, the computational complexity of the problem of verification of agents that is similar to the problem

of verification of the CM is co-NP-complete in the case of the co-NP-complete specification of the problem. Hence, the

computational complexity of the problem of verification of the CM is co-NP-complete, which is what had to be proved. �
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Thus, the obtained theoretical result allows one to range the problem of verifying the coordination mechanism of a

collaboration system in the already well-known and investigated class of co-NP-complete problems. This result is important

for investigations of a general model of software systems supporting collaboration networks with an arbitrary number of

users, sessions, and resources, in particular, cooperative collaboration in the Internet.
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