VIIK 502:004.45(075.8)

N. Sydorov, 1. Mendzebrovsky, N. Sydorova

ONTOLOGIES IN SOFTWARE ENGINEERING

Software engineering is a separate scientific and practical area with its own structure, terminology,
processes, and resources. The software product is a knowledge-based product, and it is the result of
knowledge-based actions.

Purpose: This research presents utilizing ontologies in software engineering. The focus with using
ontologies is to represent the world of software development in the form of domains. The ontologies are
involved in representing knowledge of three types of the software engineering domains. In the first one, the
application domain, the focus is on understanding the customer needs and what the software product must
do. In the second one, the implementation domain, the focus is on understanding how the software product
must behave and respond to the customer needs. In the third one, the problem domain, the attention is paid
to understanding their own software development problems that may occur when creating and maintaining

a software product.

The research goal is, on the base of domain types, to develop categorization of the software engineering

ontologies for supporting software processes.

Methods: ontological representation of software engineering knowledge; domain analysis, object-
oriented programming; ontology-driven utilizing of programming styles.

Results: categorization of the software engineering ontologies and software development approaches.
The paper presents the results of the case study, using ontologies by categorization.

Discussion: by means of development of categorization of ontologies it is possible to exactly define the
types of software engineering ontologies and its place into software processes. This is demonstrated on the

examples of the case studies.

Keywords: ontology, ontology-based development, domain, domain analysis, programming style,

coding standard, programming, software engineering.

Introduction

Software engineering is a separate scientific and
practical area with its own structure, terminology,
processes, and resources. The software product is a
knowledge-based product which is the result of the
knowledge-based actions. Therefore, the knowledge
is the main component of software engineering, and
representing, proceeding, and using different
knowledge play a great role in software engineering.
There are three types of domains in the software
engineering: the application domain, the problem
domain, and the implementation domain. The
knowledge from these domains is used in software
engineering during the software product life cycle.
Nowadays the ontologies are the best means for
representation and proceeding of the software
engineering knowledge.

1. Analysis of the latest research and
publications
Ontology is a model of a part of the world, which
is known in software engineering as a domain [12].
Typically, the model is represented by a set of
objects, properties that are associated with objects,

© N. Sydorov, 1. Mendzebrovsky, N. Sydorova, 2017

relations between objects, and regulations that
describe management. Nowadays ontologies are
widely used in software engineering for two reasons.
Firstly, the ontology is a means of representing the
knowledge that is used both in the development and
maintenance processes of the software, as well as in
its use [11]. Secondly, one can automate the use of
knowledge in software by representing the ontology
formally, with the help of languages or descriptive
logic [4; 6]. In software engineering, the application
of ontologies was first classified in 10 directions, in
“Software Engineering Body Knowledge”.
Understanding the role of ontologies in the context
of software engineering, development environments
and technologies, as well as cases of specific
application are given in [11]. The UML extension
and its application for graphic representation of
ontologies in software engineering are offered in
[16]. In view of only one type of the software
engineering domain (the application domain) and
the temporal dimension (the development time and
the run time [8]), one categorization of ontologies in
software engineering was developed and established
by utilizing the ontologies in software lifecycle
processes [8]. In this research, two additional types

N. Sydorov, I. Mendzebrovsky, N. Sydorova. Ontologies in Software Engineering 69

of the software engineering domains (the
implementation domain and the problem domain)
are added, and the additional temporal dimension —
pre-development time — is introduced.

2. Purpose and objectives of the research

This research presents utilizing ontologies in
software engineering. The focus in utilizing
ontologies is made on the representation of the
software engineering world in the form of domains.
The ontologies are involved in representing
knowledge of three types of domains. In the first
one, the application domain, the focus is on
understanding the customer needs and what the
software product must do. In the second one, the
implementation domain, the focus 1is on
understanding how the software product must
behave and respond to the customer needs. In the
third one, the problem domain, the attention is paid
to understanding their own software development
problems that may occur when creating and
maintaining a software product during the software
product life cycle. The research hypothesis is that
the domain view can assist in understanding the role
of ontology in the software engineering. The
research goal is to present utilizing ontologies in
software engineering in the whole and on the
examples of case studies of the authors.

3. Ontologies in the software engineering.
Categorization of ontologies and software
development approaches

The categorization of ontologies is introduced
on the base of two categories [8]: a domain and a
software process. In this research its categories are
also used. But our categorization is built on the
connection terms domain and the software process,
as in [5]: the essence of the software process is the
progression from the identification of the need in
some application domain to the creation of a
software product in the implementation domain that
responds to that need. Thus, the software process
involves two domains: the application domain
where the task is to be solved, and the implementation
domain where a software-based solution to that task
is to be executed. In this research, the third domain
is used. It is termed the problem domain, where the
software engineering problems are to be solved. For
example, the new method or (and) technology is
(are) the need for solving tasks from application or
(and) implementation domains. Considering the
added temporal dimension [7] and pre-development
time dimension, in this research the three temporal
dimensions are regarded: pre-development time,
development time, and run time. The main actions

during the pre-development time are the actions of
the domain analysis [9]. For the implementation
domain and the application domain, these actions
are fulfilled for the legacy software products. In
view of approaches of using ontologies in the
software engineering [8] and processes of the
software life cycle [12], the following categorization
of ontologies was proposed in this research. The
software engineering ontologies are divided into the
software engineering domain ontologies (application
ontologies, implementation ontologies, problem
ontologies) and the software engineering processes
ontologies (pre-development time ontologies,
development time ontologies, run time ontologies).
The software engineering domain ontologies that are
created during the pre-development time are called
pre-development-time ontologies and consist of
reusable components, and they are used in the
development-time and run-time software engineering
processes of the software life cycle.

4. Case study
This part of the article presents the results of a
case study, using ontologies by the introduced
categorization. In section 4.1, the examples of pre-
development time ontologies are presented.
Section 4.2 presents the examples of run time
ontologies for the developer and user.

4.1. Domain analysis ontologies

Software reuse can be improved by identifying
objects and operations for a class of similar software
products, i.e., for a certain domain. In the context of
software engineering, domains are application,
implementation and problem areas. Airline
reservation (application domain), education
software tools (implementation domain), green
software problems (problem domain) are examples
of such domains. The domain engineer captures and
organizes this information in a set of domain models
with the end of making it reusable when creating a
new software product. For the formal representation
of the results of the domain analysis, ontologies can
be utilized. In the case study, the domain model is a
description of objects, properties, and relations in
the domain, and it consists of the following [3]: the
domain language, the competencies and skills
repository, a software engineering education
template. The main problem of the domain analysis
is creating a set of tools for automatic utilizing of
the concrete domain analysis method [9]. The
method of domain analysis depends on the domain
characteristics and the domain analysis goals. Paper
[9] proposes an approach for automation creating
domain analysis tools on the base of the MS Office

70 HAVYKOBI 3AIIMCKN HaYKMA. 2017. Tom 198. Komm’1oTepHi Hayku

platform. Provision of domain analysis by using the
developed tools is considered on the example of an
educational application domain for specialty
“Software engineering”. The competencies of a
specialist are considered as reusable components.
The application domain includes, but is not limited
to, existing knowledge recommendations in the field
under consideration [1; 2], the existing education
system, and the legislation. The result of the domain
analysis is a list of competencies and disciplines, as
well as a reusable template for the “Software
engineering” education standard in Ukraine.

4.2. Ontology-driven using
of programming styles

Activities of a programmer will be more
effective, and the software will be more
understandable if within the process of software
development, the programming styles (standards)
are used, providing clarity of software texts.
Programming stylistics problems arose before the
structured programming period, but nowadays they
remain relevant [13]. Paper [15] proposes a new
method of programming styles application based on
the ontology. To apply the style, a programmer
should solve two tasks: study the description of the
style and use and control the style during the coding
stage. Thus, it requires two tools: one for studying
the style and the other one to control the use of this
style. Both tools are based on the presentation of the
style. That is why the form of this presentation
affects the efficiency of processes performed by a
programmer and the efficiency of the tools. It is
proposed to use the ontology as a form of knowledge
representation about a programming style [14].
Using an appropriate tool (e.g. Protégé [10]), a
formal representation of programming style — an

ontology is developed. A programmer uses the
ontology for coding. Therefore, two tools are
required: one for creating an ontology and assisting
the programmer, the second one to control the
implementation of the style during the coding stage.
For these tools two categories of ontologies are
needed. The first one, the run time ontology for the
ontology-enabled architecture is the result of the
ontology-driven pre-development and from this
position, it is the application domain ontology. The
second one, the run time ontology for the ontology-
based architecture is the result of combined utilizing
both the ontology-driven pre-development and the
ontology-based architecture, and from this position,
it is the application domain ontology. The first tool
creates the run time ontology template (a reusable
asset), which is defining general programming
standards properties. A style analyst uses Protégé
setup template on a particular programming
standard. Then the programmer uses an ontology in
the run time to study the programming standard (the
ontology-enabled architecture). The second tool is
the reasoner [6; 14]. In terms of descriptive logic,
the reasoner solves one major problem: verifies the
consistency of the ontology [4]. This problem has
certain features for the task of programming style
implementation [14].

Conclusion

This research proposes categorization of the
software engineering ontologies for supporting
software processes. Solutions on categorization
scheme are presented. Implementation details of
categorization are given on the examples of case
studies of the domain analysis and naming the styles
for Java convention.

References

1. bonnapenko M. Mopenb BunyckHuka Oakanaspary «IIpo-
rpamHa imkeHepis» / M. borunapenko, M. Cunopos, T. Mo-
po3oBa, I. Menn3zeopoBchkuii // Buma mkona. — 2009. —
Ne 4. - C. 50-61.

2. Cunoposa H. M. ®opMmyBaHHsI FOTOBHOCTI OaKaiaBpiB 3 iHKeHe-
pii mporpamHoro 3a0e3neueHHs 10 npodeciitHoi KoMyHiKari /
H. M. Cunoposa // Bicank HAY. —2012. — Ne 3. — C. 94-100.

3. Cunopos M. O. JlomeHHUI aHaI3 — IUIX 10Ka30Boi OOY10BH
ramy3eBux ocBiTHiX cranmaptiB / M. O. Cunopos, 1. b. Men-
n3e6poBeekuid, 1. B. Manin // Haykoemni Texxonorii. — Kuis :
HAY, 2009. - T. 4, Ne 4. — C. 59-63.

4. Baader F. The Description Logic Handbook: Theory, implementation,
and applications / F. Baader, D. Calvanese, D. McGuinness [et al.]. —
Cambridge University Press, 2003. — 320 p.

5. Blum B. I. A taxonomy of Software Development Methods /
B. I. Blum // Communication of the ACM. — 1994. — Vol. 37,
no. 11. — P. 82-94.

6. Dentler K. Comparison of Reasoners for large Ontologies in the
OWL 2 EL Profile [Electronic resource] / K. Dentler, R. Cornet,
A.Teije, N.Keizer. — Mode of access: http:/www.

semantic-web-journal.net/sites/default/files/swj120 2.pdf. —
Title from the screen.

7. Guarino N. Formal ontology in information systems /
N. Guarino // Proceedings of FOIS’98, Trento, Italy, 68 June
1998. — Amsterdam : IOS Press, 1998. — P. 3—15.

8. Happel H. Applications of ontologies in software engineering /
H. Happel, S. Seedorf // Proceedings of 2nd International
Workshop on Semantic Web Enabled Software Engineering
(SWESE 2006). — Athens, GA, U.S.A., 2006. — P. 1-14.

9. Medzebrovskiy 1. B. Domain analysis tool /
1. B. Medzebrovskiy // Marepiamu MixxHapoaHoi koH(pepeHmii
«ImxeHepis mporpamHoro 3abesmeueHHs 2017». — Kuis :
HAY, 2017. - P. 30.

10. Protégé [Enexrpomnmii pecypc]. — Pexum mocrymy: http:/
protege.stanford.edu. — Ha3ga 3 expana.

11. Ruiz F. Chapter 2. Using Ontologies in Software Engineering
and Technology / F. Ruiz, J. Hilera // Ontologies for Software
Engineering and Software Technology / Coral Calero,
Francisco Ruiz, Mario Piattini. — Berlin, Heidelberg : Springer,
2006. - P. 62-102.

N. Sydorov, I. Mendzebrovsky, N. Sydorova. Ontologies in Software Engineering 71

12. Sidorov M. O. Software engineering / M. O. Sidorov. — Kyiv : 15. Sidorova N. N. Ontology-driven method using programming

NAU, 2007. - 135 p. styles / N.N. Sidorova // Software engineering. — 2015. —
13. Sidorov N. A. Software stylistics / N. A. Sidorov // Proc. of the No. 2. —P. 19-29.

National Aviation University. — 2005. — No. 2. — P. 98-103. — 16. Wongthongtham P. Development of a Software Engineering

doi: 10.18372/2306-1472.24.1152. Ontology for Multi-site Software Development /
14. Sidorov N. A. Ontology-driven tool for utilizing programming P. Wongthongtham, E. Chang, T.Dillon, I. Sommerville //

styles / N. A. Sidorov, N. N. Sidorova, A. L. Pirog // Proc. of the IEEE Transactions on knowledge and data engineering. —

National Aviation University. — 2017. — No. 2. — P. 98-103. — 2009. — Vol. 21 (8). — P. 1205-1217.

doi: 10.18372/2306-1472.24.1152.

Cuoopos M. O., Cudoposa H. M., Menozebposcovkuii 1. b.

OHTOJIOI' B IHKEHEPII TIPOI'PAMHOI'O 3ABE3IEYEHHS

Pospobka npoepamnozo 3abesneuenns — ye oKpema HayKo8o-npaKmuyHa cgpepa 3 61aCHOI0 CMPYKYypoIo,
mepminonoziero, npoyecamu ma pecypcamu. Ilpoepamuuii npooykm € npooyKmom, wo IpYHMYEMbCs Ha
SHAHHAX, | Ye pe3yibmam Oill, 6a308aHUX HA 3HAHHSIX.

Ilpusnauennsa: y yiti pobomi npedcmagneno SUKOPUCMAHHA OHMONO2IU 6 iHJceHepii NpoepamHo20
3abesneuenns. POKyC 3 SUKOPUCMAHHAM OHMONOSIU POOUMbCS HA NPeOCMABNIeHHi Ceimy IHceHepil
npocpamnozo 3abesneyenns y euensoi 0omenie. Onmonocii 6epymo yuacmo y npeocmasienti 3HaHb Mpbox
munie OomeHis. Y nepuiomy, OOMeHi 3aCMOCYHKIB, OCHO8HA Y6azd NPUOINACMbCA PO3YMIHHIO nompeo
KIIEHma ma mozo, wo MAe 8UKOHY8amu NpocpamHuil npodykm. Y opyeomy, domeHi peanizayii, OCHOBHY
y6a2y 30Cepe0HceHO HA POZYMIHHI MO020, K NPOSPAMHUL NPOOYKM NOSUHEH NOBOOUMUCH | peazysamu Ha
nompedbu Kiienmis. Y mpemvomy, npooOiemMHoOMY, OOMeHI OCHOBHA Y8a2a NPUOINAEMbCA DO3YMIHHIO
BILACHUX NPOOIEeM [THHCeHepii NPoepamMHO20 3abe3neyents, AKi MOXCYMb GUHUKHYMU NPU CIEOPEHHI ma
CYNPOBOONCEHHT NPOSPAMHO20 NPOOYKMY.

Mema docnidcennn — po3pobka Kiacugikayii oHmonoeii iHcenepii npoepamnozo 3abesneyenns o
nIOMPUMKU NPOSPAMHUX NPOYECIE.

Memoodu: onmonoziune nOOAHHs 3HAHL 3 NPOSPAMHOSO 3A0e3NeYenHs; OOMEHHUN AHaNi3, 00 €KMHO-
OpiEHmMOoBaHe NPOSPaAMYSaHHs; OHMONO2TUHE GUKOPUCAHHA CIMULIE NPOZPAMYEAHHS.

Pesynomamu: xamezopuzayiss owmonoeiti ma nioxo0ie IHceHepii npocpamHo20 3a0e3nedeHH.
Ilpeocmasneno pesynomamu mMemMamuyHux OOCHIONCEHb 3 BUKOPUCMAHHAM OHMONOZIU WAAXOM
Kamez20pu3ayii.

002060penHs: 3acmMOCy8anHs Munie 0oMeHie 015 Kiacuixayii onmonozitl inxiceHepii npocpamuHo2o
3abe3neuents, 3aCMOCY8ANH 0eMOHCMPYEMbCS HA NPUKIAOAX ApXIMeKmypu iHCmpymenmapiio 00MeHHOo20
ananizy ma 3acoobie 0jisi KOHMPOIO NPABU IMeny8anHs cmanoapmy Java.

KurouoBi cioBa: ountojorisi, po3poOka, 0a3oBaHa Ha OHTOJIOTII, IOMEH, JOMEHHWU aHali3, CTUIb
MporpamMyBaHHs, CTaHAAPT KOAYBaHHS, IPOTPaMyBaHHsI, iH)KEHEPis TPOrpaMHOro 3a0e3rmeveHHsl.

Mamepian naodiviwos 28.11.2017

