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Introduction

In recent decades, fractional diffusion equations are studied very intensively. The
fractional reaction-diffusion models are studied due to their usefulness and importance
in many areas of science and engineering. The first works in this direction include [1-7].
Any close-to-complete analysis of the multitude of works devoted to the diffusion-wave
equation would require a separate special study [8-12].

The result of the analytic theory of heat and mass transfer are represented in [13-15],
with a view to the development of computational techniques to determine the fluxes of
matter and heat at the interface, including the presence of chemical reactions. Last but
not least, the concepts of fractal geometry have entered recently in optics, where they
have been successfully used for classification and characterization of rough surfaces and
solving numerous related applied problems [16-31].

In [32] we present a formula for classical solutions for time- and space-fractional
kinetic equation (also known as fractional diffusion equation) and deviation time varia-
ble is given in terms of the Fox’s H-function, using the step by step method. This equa-
tion describes fractal properties of real data arising in applied fields such turbulence,
hydrology, ecology, geography, air pollution, economics and finance.

The experimental results of the study of statistical, correlations and fractal parame-
ters, which characterize the real component of the Jones-matrix image of polycrystalline
network of flat layers of the main types of human amino acids, are presented in [33].
The use of fractional calculus in mathematical modelling of nonlocal process has been
studied by A.M. Nakhushev [34, 35], V.A. Nakhusheva [36], Y.Z. Povstenko [37-39].
It has been noted [35] that the fractional differential and integral calculus in the theory
of fractal and systems with memory becomes as important as the classical analysis in
physics (mechanics) continua. Thus, fundamental research on non-local problems for
pseudo-differential equation is well-timed and relevant.

The Cauchy problem for the fractional diffusion equations is studied in [40-42].
In [40] construction Green-function of Levi-method, and in [41] by method from [43],
construction the integral equation.

In this paper we consider a new class of the fractional equation (1) with deviation
time variable always supposing that the solution satisfies the nonlocal initial condi-
tion (2) using the step by step method. Such equations describe diffusion on inhomo-
geneous fractals. A fundamental solution of the Cauchy problem is constructed and
investigated.

© YA.M. DRIN, LI. DRIN, S.S. DRIN, 2022
MixcHapoOHUtl HAYKOBO-MEXHIUHUL HCYPHAT
«IIpobnemu xepysanns ma ingpopmamuruy, 2022, Ne 1 47



1. Fractional diffusion equation

Introduce into consideration a new class of the following fractional equation with
deviation time variable

M =a(t, X)M+b(t, X)M+C(t, X)u(t, X)+
ot ox? OX
+f(t, x,u(t—h,x), t>h, xeR. (1)
Assume that the function u(t, x) satisfies the nonlocal initial condition
U(t, X) lo<t<h=Uo(t, X), X€R, )

where u = u(t, x), 0 <t<T, xeR is the function to be found and o €(0,1].
The time derivative of o (0, 1] order is defined as follows:

rutt ) _ augt’ N, ifa-1 o
ot (DLu)(t, X), if o e (0,1),
where
o __ 1 y0th g _u(h,x)
(DEu)(t, X)_F(l—oc)[atg(t )" %u(r, X)dt (t—h)o‘]’ h<t<T,

is the regulised fractional derivative or fractional derivative in Caputo—Djrbashian
sense.

We prove the solvability of the Cauchy problem (1), (2) using the step by step
method. The Riemann—Liouville fractional integral of order o >0 is defined for a = 0
as J% =1, where | denotes the identity operator, and for a > 0 as

a — 1 L a—1 _ *
J7f() -—%(I)(t—a) f(r)dt=(g,* F)), 4
where
tocfl
ga(t):r,(a)

is the Riemann-Liouville kernel and (*) denotes the convolution in time.
Definition. Let 0<B<1. Suppose uyeC([0,0)xR), f eC([0, x)xR);

Cf([O, ©)xR). Then a function u eCf([o, o) xR) is a classical solution of the non-

local problem (1), (2) if:
1) the coefficients a(t, x), b(t, x), c(t, x), is bounded by number M;
2) a polynomial is ranger if its leading coefficient is a(t, x) > ap > 0,

la(t, x)—a(t, &) <Ko (| x—§|+(t—r)a/2), t,X)e(0,T)xR, (1,&) (0, T)xR;
3) Uy eCO0,N)xR, feC™((0,T)xR), o(t), w(t) satisfies the Dini condi-
tions [42, p. 11];

4) for every x R the fractional integral Iy , as defined in (4), is continuously
differentiable with respect to t > 0, and

5) the function u(t, x) satisfies the pseudodifferential equation of (1) this

a“u(;, X) @)
ot

for every (t, X) e (h,0)xR and the initial condition (2) for every (t, X) € (0, h)xR .
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Let us denote by
ou (t X)

Au(t, x) :=a(t, x) git X) +b(t, X) +c(t, X)u(t, x), t>h, xeR.

2. Step method

By the step method we reduce the nonlocal problem for a fractional diffusion equa-
tion with deviating argument to the nonlocal problem for an equation with nondeviating
argument.

Let h<t<2h and xeR, and f(t, x Ugt—h, x))= "ot x,h). Then
O<t—h<h and u(t—h, x) =uy(t, x), xe R, and problem (1), (2) takes the form

w Aut, x)+ fo(t, x, ), h<t<2h )
t®
u(t, X) l=n= o (h, ), xeR, (6)

To construct a solution of problem (5), (6) we fixed a point (B,y), h<B<2h,
y € R and consider the Cauchy problem

o*u(t, x) _
a o

azu(t X),

a(B, y) 4 fo(t, x, h), h<t<2h @)

Ut X) k=t (h, X), X R , ®)

The Green’s function of this problem according to [40, 42] has the components
Gyt X B ¥) = Py Eu (-a(B, Y)ot%) |

Gyt X; B, y) =t *D{Gy(t, X B, ¥)
and there are estimates of their derivatives that are uniform with respect to (B, y)

1+m

DGy (t, X B, y) [<Ct 2 expf—cp(t, )}, ©

o
m ) —E(m+1)+oc—1
| DX GZ (t, X; B! y) |£ Cmt eXp{_Cp(t' X)},

| DY'Gy(t, X; By, Y1) — DY'Gy(t, X; B2, ¥2) I<

o 1+m )

<co(lyp—Yo [+[B =Bz 12)t 2 exp{-cp(t, )},

where p(t, x) =( laxll Y, q= ZL , m<3, w(h) is a function on [0, ) as a module of
-
continuity type, ie non-decreasing, non-negative, half-additive, bounded function.
The solution of the problem (5), (6) we will find as a sum

) t ©
U(t, X) = _[ Gl(t! X_E;; h, E_,)Uo(h, E.a)dE.a +Id’t I GZ(t_‘Cl X_&_y; T E.:)u(rv E.))dE.H (10)
— o h -

when we suppose that function p(t, x) is integrable function and its module of continuity
by x satisfies the Dini condition when t > 0. Let’s apply the operator of equation (5)
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to (10) for defining function u(t, X) and satisfy non-homogeneous equation (5). Con-
sidering the properties of differentiation of potentials with kernel G; and G, we have

o 02
Lu(t, x) = poe —af(t, x)——b(t x)——c(t X) |u(t, x) =

= | LGy(t, x=& h, &)ug(h, E)dE+nu(t, x) +

+j'dr T LGyt x—& 1, E)u(s, AL + ot x, h), t>h xR |
h

We have the integral equation of second order Volterra—Fredholm

t 0
u(t, x) = F(t, X)+j dt j Kt X&) u(rEdE t>h xeR, (11)

h -
for defining the function uf(t, x) .

In (11) the functions F and K found via known functions G; and G,. These func-
tions are the solutions of problem (7) and data of original problem as

F(t, X) = f(t, X, h) - Of LGy (t, x—&; h, £) ug(h, £)dE = fo (t, X, h) +

Gl

52
+ I [(act, ) -a(h, é)) +h(t, X)aa—GgH(t, X)Gy]ug (h, )dE = fo + Ky *ug,

2
K(t, ;% E) = (a(t, x)—a(x, g))a GZ +b(t, x) —2 aGZ +CGy(t—1, X—E; 1, &) =—LG,.

Let’s estimate the functions F(t, X) and K(t, 7, X, &) using the estimates of (9) and
the properties of the module of continuity [43]

oMt <20(t)t ™, 0< T <t.
Thus, we have

o
o -Z(1+2)
IFt X fle+cp [ €S0 x—g|+t¥2)t 27 "dg|gle<

— o0

o 2 o
. w X ——
<cout) | ep{(CoE)z} 2az ol

o

<Cow(t2)t * I T expf 22! X@,f"')2 o}t 20|&,,|<p|X <l +Coolt )t “lol,  (12)

: o x-&|+(t-1)*?) o—Cp(t—t, x-E)
| K(tv T X a) |S C (t )(1/2+3/2+1— <

o

< f |o +Coo(t2)t ol (13)
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Since for module of continuously (t) =t", y (0,1) and the kernel K(t, t; X, &)
is quasi-regular, then the resolvent

ot 0
Rt x, €)=Kt tx,&+X [ dB [ Kt B x E)Ki(B, vy, E)dy

i=1‘[ — 00

defined from uniformly and absolutely convergent Neman series satisies the inequali-
ty (13) but with other constants, where

Ki(t, 5 x, &) =K(t, 1 % &), K(t, h;x & =Ky, X &),

t 0
Kiat tx8)=[dB [ Kt B x EKiB 7y, Edy.

— 00

T
If for module of continuously w(t) the integral ®(t) = j @dr converges, then
0 T
Neman series is estimated by series

RETx 8 S COMY a(t-0¥2)t—7) 26 2E7*),
i=1

This series is converging series for CO(T) <1, t,t<[0, Ty], To < T, ie locally

converges.
3. The solution of integral equation

Let’s write the integral equation (11) using a resolvent to finding of its solution
u(t, x) and substitute it into (10). Then we found the components of Green function for
problem (5), (6)
w(t, x) = fot, X, h)+ Ky, X, &) *ug(h, x)+R(t, ©; X, &)**(fy(t, X, h) +

+Ky, (t, %, &) *ug (h, X)) = F(t, X, h) +R(t, 7 x, &) **fo(t, X, h) +(Ku(t, X, &) +
+R(t, T X, ) **K (¢, X, &) *ug(h, X)). (14)

If we substitute (14) into (10) we obtain that the solution of the problem (5), (6) we
can write in the form

u :G]_*UO +G2 **( fO + R**fo) +G2 **(Kh + R**Kh)*UO =
=[Gy +Gy **(Kp + R*Kpy ) |* +(Gp + Gy **R)**f, (15)
and the components of Green function in the form

Zl(tv X, Fa) = Ql_(tv X, h! <t3) +G2 **(Kh + RKh)v (16)

t )
Zz(t, X; T, é) EGz(t—T, X—é; T, (ta)+ J. dB J. GZ(t_B! X—Yi Bl y)R(Bv T y! F’.’)dy (17)

— 0

So, we construct the classical solution of the problem (1), (2) on first step
h<t<2h:

0 t ')
ut,x)= [ Zy(t, x; E)ug(h, E)dE+[ dt | Zy(t, T X, €) fo(x, & h)dE, (18)
—© h —©

where Z1 and Z2 defined via equalities (16) and (17) respectively.
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We can prove using the method of mathematical induction that formulas (15)—(18)
are correct when nh <t <(n+21)h and if we substitute nh instead of h and define Green
function component respectively. So, theorem takes place.

Theorem. The solution of the problem (1), (2) is constructed using the step by step
method and it is determined by the formula

0 t 0
ut,x)= [ Zy(t, x, E)ug(nh, E)dé+ [ dt [ Z,(t, 7 x, &) f(t, €, nh)dE,
—0 nh — 0

nh<t<(h+)h,x eR.

Conclusion

In this paper we prove the solvability of the nonlocal problem using the step by
step method for the first time. We consider a new class of the fractional equation with
deviation time variable always supposing that the solution satisfies the nonlocal initial
condition using the step by step method. These equations describe diffusion on inhomo-
geneous fractals. A fundamental solution of the Cauchy problem is constructed and in-
vestigated.

AM. Hpiny, 11 [lpins, C.C. [pins

HEJIOKAJIBHA 3AJIAUA
J1J11 PIBHSHHS ®PAKTAJIBHOI JUD V31T

[IpoTarom ocTaHHIX KIIBKOX JECSATUIIITH IHTEHCHBHO PO3BHBAETHCS TEOPis ICEBIO-
nudepenuianbanx oneparopis (I110) ta piBusHb i3 Takumu omepatopamu (I11P).
ABTtopamu HOBoro HampsMky Teopii [1/IP, nazeanoro napatomniuni [1/IP 3 Hernaaku-
mu ofnopiguumu cumBoiamu (ITIIAP), € Spocnas Hpius i Camyin Eitnensman. Ha
mo4yatky 70-X pOKiB MHHYJIOTO CTOJITTS BOHH MOOymyBamu mpukinaja 3axaui Ko
Ui Mo (iKOBAHOTO PIBHSHHS TEIJIOMPOBITHOCTI, 1[0 MICTHUTh 3aMICTh ONepaTopa
Jlarunaca 110, o € fioro xBagpatHuM kopeneM. Taxuit [1JO mae ongHOpinHui cum-
BOJ |O|, HEerMajakuii y mo4yatky koopauHaT. DyHaaMeHTanpHHN PO3B’SA30K 3amadi
Komri (®P3K) st Takoro piBHSHHS € TOYHOIO cTerneHeBoro (yHKiiew. s piBHIH-
Hs TeruionposigHocti ®P3K € ToyHOIO ekcrioHeHTHOIO (yHKIier. Oneparop Jlan-
Jlaca MoskHa TiryMaunTH sk I1J10 3 onHopimHMM IaakuM cumBosioM |62, 6 € Rn. V3a-
raJbHEHHAM piBHAHHS TerutonposinHocTi € [P, mo mictsats I1/10 3 ogHOpigHNME
HETJIaJIKUMH CUMBOJaMU. BOHM MaroTh BasK/IMBE 3aCTOCYBaHHS B TEOPii BUNAIKOBHUX
MIPOIIECiB, 30KpeMa, P MO0Y/I0BI PO3PUBHUX MapKiBCHKUX MPOILECIB 3 TBIPHUMH 1H-
Terpo-audepeHiiaTbHIME oriepaTopamu, siki BigHocsatees 10 [1J10, y cyvacHiit Teo-
pii dpakranis, ska ocraHHIM yacoM OypxiMBO po3BuBaeThes. Skio cumson [110 ne
3aJIeKHUTh BiJl MPOCTOPOBUX KoopawHat, To 3amada Komri mms IITJIP xopektHO
pO3B’si3HAa Y mpoOCTOpi y3araidbHeHUX (yHKHiH Tumy posmoniiiB. Po3p’s30k mpu
npOMy 3amucyerbes sk 3roptka @P3K i3 mouaTkoBolo y3aranabHEHOIO (yHKIERO.
L1i pe3ynbTaTé HajexaTh HU3LI BITYM3HAHUX Ta 3apyOiKHUX MaTEMaTHKIB, 30Kpe-
ma C. Eiinenpmany ta S1. [pinto (sxi nepurumu BusHaunnu [I1J]O 3 Hermaakumu
CHMBOJIAaMH Ta PO3MOYain AOCHiKeHHs 3amadi Komn mis Bigmosigaux IIIT/P),
M. ®enoproky, O. KouybGero, B. T'oponeuskomy, JlitoBuenky ta iH. g meBHHX
nosux kiaci IITJIP noBeneHo kopekTHY po3B’si3HicTh 3amaui Komi y mpocropi
renpaepoBux QyHKiN, modynoBano kiacuyni O®P3K, oTpuMaHO TOYHI OIHKH iX
MOXiMHKUX CTeneHeBoro xapakrepy [1—4]. [IpHHIKTIOBO BaXKITUBUM € 3alPOITOHOBAHE
A. Kouy6eem Tnymauenns 110 uepe3 rinepcunryisipi interpanmu (I'CI). Ilpu upo-
My 3a BigomuMm cumBosioM [1J10 Gynyersest cumBon I'CI i naBmaku [6]. Teopis I'CIL,
1o cyrreBo posmmupioe kiac [1J10, pospodnena C. Camkom [7]. Lle moHATTS po3moB-
cromkero Ha matpuyHi ['CI [5]. V3aransHenHsm 3amaqi Komri € HenokanbHi OaraTo-
TOYKOBI 32 YaCOBOIO 3MIHHOIO 33jaui Ta 3aJa4a 3 BIAXWICHHSIM apryMeHTy. Tyt mo-
BE/ICHO PO3B’SI3HICTh HENOKAIBHOI 3a]a4i 3 BUKOPUCTAHHSAM METOJy KpOKiB. Po3riis-
JTAEMO €BOJIIOLIIHHE HEeNliHIHHE PIBHSHHS 3 PETYJSIPU30BAHOI0 (DPAKTAIEHOIO MOXITHOK
npobosoro mopsiaky o € (0, 1] 3a 4acoBOrO 3MIHHOO Ta eMNTHYHMI OTepaTop 3i 3MiH-
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HUMH KoedilieHTaMu IpocTopoBoi 3MiHHOI. Lle piBHSHHS omucye (pakranbHi Biac-
THBOCTI PEaIbHUX JAaHHX, [0 BUHUKAIOTh y TAKUX IMPHUKIAJHUX 00JIaCTAX, IK TypOy-
JICHTHICTb, TifIpOJIOTis, eKOJOris, Teodi3uka, 3a0pyTHEHHS CEpeOBHINA, EKOHOMIKa
Ta (iHaHCH.

Ya.M. Drin, L.I. Drin, S.S. Drin

THE NONLOCAL PROBLEM
FOR FRACTAL DIFFUSION EQUATION

Over the past few decades, the theory of pseudodifferential operators (PDO) and
equations with such operators (PDE) has been intensively developed. The authors of
a new direction in the theory of PDE, which they called parabolic PDE with non-
smooth homogeneous symbols (PPDE), are Yaroslav Drin and Samuil Eidelman. In
the early 1970s, they constructed an example of the Cauchy problem for a modified
heat equation containing, instead of the Laplace operator, PDO, which is its square
root. Such a PDO has a homogeneous symbol |c|, which is not smooth at the origin.
The fundamental solution of the Cauchy problem (FSCP) for such an equation is an
exact power function. For the heat equation, FSCP is an exact exponential function.
The Laplace operator can be interpreted as a PDO with a smooth homogeneous sym-
bol [6]"2, 6 € Rn. A generalization of the heat equation is PPDE containing PDO
with homogeneous non-smooth symbols. They have an important application in the
theory of random processes, in particular, in the construction of discontinuous Mar-
kov processes with generators of integro-differential operators, which are related to
PDO; in the modern theory of fractals, which has recently been rapidly developing. If
the PDO symbol does not depend on spatial coordinates, then the Cauchy problem
for PPDE is correctly solvable in the space of distribution-type generalized functions.
In this case, the solution is written as a convolution of the FSCP with an initial ge-
neralized function. These results belong to a number of domestic and foreign mathe-
maticians, in particular S. Eidelman and Y. Drin (who were the first to define PPDO
with non-smooth symbols and began the study of the Cauchy problem for the corre-
sponding PPDE), M. Fedoruk, A. Kochubey, V. Gorodetsky, V . Litovchenko and
others. For certain new classes of PPDE, the correct solvability of the Cauchy prob-
lem in the space of Holder functions has been proved, classical FSCP have been con-
structed, and exact estimates of their power-law derivatives have been obtained [1-4].
Of fundamental importance is the interpretation of PDO proposed by A. Kochubey in
terms of hypersingular integrals (HSI). At the same time, the HSI symbol is con-
structed from the known PDO symbol and vice versa [6]. The theory of HSI, which
significantly extend the class of PDO, was developed by S. Samko [7]. We extends
this concept to matrix HSI [5]. Generalizations of the Cauchy problem are non-local
multipoint problems with respect to the time variable and the problem with argument
deviation. Here we prove the solvability of a nonlocal problem using the method of
steps. We consider an evolutionary nonlinear equation with a regularized fractal frac-
tional derivative a € (0, 1] with respect to the time variable and a general elliptic op-
erator with variable coefficients with respect to the second-order spatial variable.
Such equations describe fractal properties in real processes characterized by turbu-
lence, in hydrology, ecology, geophysics, environment pollution, economics and fi-
nance.
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