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REMARKS ON MY ALGEBRAIC PROBLEM OF
DETERMINING SIMILARITIES BETWEEN CERTAIN
QUOTIENT BOOLEAN ALGEBRAS

Remarks on my algebraic problem of determining similarities between certain quotient boolean alge-

bras.

In this paper we survey results about quotient boolean algebras of type P(x)/fin(x) and condition

for them to be or not to be isomorphic for different cardinals x.

Our consideration have their root

in the classical result of Parovicenko and o less classical, nevertheless really considerable result about
non-ezistence of P-points by S Shellah. Our main point of interest are the algebras P(w)/fin(w) and

P(R)/fin(Ry).
Keywords: logic, boolean algebras, forcing.

By w = Ny we will denote the set of natural

numbers. For any set X by fin(X) we will denote
the family of all finite subsets of X.
Definition 1. By o boolean algebra we will mean
o set A with at least two distinct elements 0 and
1, endowed with binary operations + and - and a
unary operation — satisfying the following proper-
ties:

o both (B,+,0) and (B,-,1) are commutative
monoids,

+ is distributive with respect to -,
- 18 distributive with respect to +,
Va,bEACL + (CL : b) = @,

Va,bEACL : (CL + b) = @,

VaEACL + (—CL) - 17

Vacaa - (—a) =0.

In any boolean algebra A one can introduce

partial ordering by putting a < b < a+b = 0.
One of the most popular examples of boolean al-
gebras are P(X) with §, X, U, N for any non-empty
set X.
Definition 2. Let A be a boolean algebra. We will
soy that I C A is an ideal in Aif0e I, 1 €1, it
is closed under + and for any a € I and b < a we
have b € 1. We can define am equivalence relation
on A by

abealNbel

where aAb = (a-(—b))+(b-(—a)) and consequently
we can define o quotient algebra A/ as the family
of equivalence classes of with operations extend-
ing in a clear woy.

Observe that fin(X) is an ideal in P(X).

There is a very well know theorem by Parovi-
cenko concerning universal algebra, model theory
and topology.
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Definition 3. Let A be a boolean algebra. A gap
in A of type (k, A) will be o pair (L, R) of sequences
in A such thot

o |L| =k and L is increasing,

o |R| = X and R is decreasing,

o [ <rforanyle L andr e R.

A gap is said to be filled if there exists c € A satis-
fuingl < c<r foranyl e L andr € R. Otherwise
a gap is said to be unfilled.

Definition 4. Let A be a boolean algebra. A limit
in A of length A will be a sequence s: A — A such
that

® S S increasing,

o s is unbounded.

Theorem 1. Under assumption of CH (the Con-
tinuum Hypothesis) any topological space X such
that:

o X is compact Hausdorff

o X is dense in itself

o the weight of X - ie the minimal cardinality
of a base for its topology - is exactly ¢
disjoint open F, sets in X have disjoint clo-
sures

o non-empty Gs sets have non-empty interior
is homeomorphic to the space w* = fw \ w, ie to
the remainder of the Cech-Stone compactification
of natural numbers. [8][1]

The theorem above can be rephrased in terms of
boolean algebras in a following way. Both ways of
phrasing the theorem are in direct correspondence
by taking the stone space of a boolean algebra as a
topological space and by taking the algebra of all
clopen subsets of a topological space as a boolean
algebra.

Theorem 2. Under assumption of CH any
boolean algebra A such that:

. 4=,
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o A is atomless,

o A has no limits of length w,

o A has no gaps of type (w,w)

i isomorphic to the quotient algebra P(w)/fin(w).

It has been proved in 1980s independently by

me [4] as well as Van Mill and Van Douven [5] that
this result is not only a consequence of CH but is
in fact equivalent to it. During a proof of such an
equivalence a problem of determining similarities
between the boolean algebras P(x)/fin(x) for dif-
ferent cardinals » naturally occurs. In [6] together
with Balcar we have shown that for w < X\ < k and
k > o the algebras P(x)/fin(x) and P(A)/fin(A)
are not isomorphic. The proof for that is based on
the following theorem.
Theorem 3. If P(w)/fin(w) and P(R1)/fin(Ry)
then there exists a scale of length ¥y in w*, ie
there exist S C w*, such that |S| = Ry and for
any [: w — w there exist g € S such that g(n) >
> f(n) for all but finitely many n € w.

The notion of scale has been introduced by ¥
Hausdorff in [9]. As of now the problem in all its
generality whether it is equiconsistent with ZFC
that the algebras P(w)/fin(w) and P(Ry)/fin(Ry)
are isomorphic (ie under assumption of existence
of a model for ZFC can they be isomorphic in some
model) remains open.

The next breakthrough came in [7] when to-
gether with P Zbierski and M Grzech we showed
that it is equiconsistent with ZFC that ¢ = N, and
the completions of the algebras P(w)/fin(w) and
P(Ry)/fin(Ry) are isomorphic. More precisely the
following holds.

Definition 5. Let X be a topological space and
xz e X. We will say x is a P-point if for any open

sets U; C for i € w such that x € U; there exists
an open set U C X such that

ergﬂU;

iCw

Similarly a set A C X will be called a P-set if for
any open sets U; C for i € w such that A C U;
there exists an open set U C X such that

AgUgﬂw.

iCw

Definition 6. Let X be a topological space, k be
an uncountable cardinal and U C X. We will say
that U has the x-ce (antichain condition) if any
family of pairwise disjoint, non-empty subsets of
U has the cordinality strictly less than k.

If U has Ry-cc then we will say that it has ccc
(countable antichain condition).

The corresponding definition can be made for
antichains in boolean algebras.

Theorem 4. If G is a generic ultrafilter of Grig-
orieff forcing then in the model V|G| there are no
P-sets that satisfy c-cc.

Theorem 5. If G is a generic ultrafilter of Grig-
orieff forcing then in the model V2 [G] every fat
P-set I' has o w-base tree of height w, each vertex
of which splits into ¢ elements.

In an upcoming work by replacing the Grig-
orieff forcing by a more refined forcing notion we
will be able to show that the problem whether
Pw)/fin(w) and P(R1)/fin(Ry) are isomorphic is
in fact equivalent to the existence of a special type
of partitioners in the algebra P(w)/fin(w).
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P'puHKicBMY P.

3AYBAXEHHA WLOAO0 MOET ANTEBPATUHOIT
MPOB/TEMN BNUN3HAYHEHHA MNMOAIBHOCTI M DK
OEAKNMN PAKTOPHUMW BYJIEBUMWN AJITEBPAMU

Y Uil cTaTTi MU pPo3rnsgaEemMo pesysibTaTy Woa0 hakTopHUx 6ynesux anrebp Twuny V (K)/An(k)
Ta BignoBigaemMo Ha 3anuTaHHA, 4n e Oynesi anrebpu i30oMOpPHUMM ANA PiISHUX KapguHaniiB K. Ha-
Wi MipKyBaHHSA 6epyTb CBOE KOPiHHSA. 3 K/aCMYHOro pesyabTaTy [lapoBiv.eMka i MeHLW KJ/acu4yHoro,
npoTe fJilfiCHO Baromoro pe3ynbTaTy Npo BiACYTHICTb P-Touyok 3a C.lenax. NonoBHa mMeTa Hawol
cTaTTi — ue posrnag anrebp V(w)/nn(w) iV (Hi)/An(Hi).

Knw4oBi cnoBa: norika, 6ynesi anreépn, gopcyBaHHA.
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