

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

 Manuscript Received: 15 April 2021, Received in Revised form: 12 May 2021, Accepted: 17 May 2021 DOI: 10.46338/ijetae0521_02

9

Applying an Aspect-Oriented Approach When Developing an

 E-Commerce System
Olga Kucherіava

1
, Larisa Bachynska

2
, Nataliia Holeho

3

1,3
National Aviation University, 1, Liubomyra Huzara ave, Kyiv, Ukraine 03058.

2
National University of Kyiv-Mohyla Academy, 2 Skovorody vul., Kyiv, Ukraine 04070.

Abstract— A new promising approach to program development

has been considered – aspect-oriented programming, intended

for automated adding to the target applications of crosscutting

functionality. The article presents the application of an aspect-

oriented approach for creating logging in the e-commerce

system.

 Keywords— Advice, Aspect, Aspect-Oriented Programming,

Crosscutting Concerns, Join Point, Logging, Module, Point

Cut.

I. INTRODUCTION

Object-Oriented Programming (OOP) is currently a

technology that benefits to most of the new software

development projects. Of course, the technology of the OOP

has demonstrated its strength in modeling the overall

behavior of the system being developed. However, as you

can see from the experience, the OOP does not sufficiently

handle the growing complexity of software systems.

Aspect-oriented programming (AOP) is one of the

concepts of programming which is the further development

of procedural and object-oriented programming. This

technology allows to reduce time, cost and complexity of

development of modern software. Aspects are separate parts

that are responsible for one or another program functionality,

the implementation of which is dispersed by program code,

but consists of similar parts of the code. According to

experts, most of the time in projects is spent on maintaining

and making changes to the finished program code.

Therefore, in the near future, the AOP and other similar

transformational approaches plays a very important role.

This comparatively new technology has already become

quite widespread, showing its effectiveness on test

applications, but the place of this approach in the software

industry for a number of objective reasons is still not

defined.

An essential feature of the software system is the level of

difficulty. It is almost impossible for one developer to cover

all the details when creating the system, and the complexity

inherent in most modern software systems. The complexity

of software systems is due to four main reasons:

 the complexity of the real subject area, which is the

source of the order for development; the complexity of

managing the development process; the need to ensure

sufficient flexibility of the program; unsatisfactory ways of

describing the behavior of large discrete systems [1].

In the course of development, to overcome the complexity

of the software system, the proven principle of modular

decomposition is used. Modular decomposition involves the

division of systems into hierarchical (ie, modular) elements

(modules, components, classes, objects, functions,

procedures, etc.). "Hierarchy" means that an element can

consist of other elements, the latter - even a few elements,

etc. The boundaries of these elements are set in such a way

that they are related to each other ("neighbors"). In order to

provide a close link between elements within each individual

element and to minimize the interaction between elements, it

is necessary to focus on solving a single problem. Dijkstra

called this problem the principle of division of tasks or

concepts (principle of separation of concerns) [2]. Being one

of the fundamental principles of engineering, the division of

tasks (concepts) is widely used at all stages of the

development of software systems.

II. ANALYSIS OF STUDIES AND PUBLICATIONS

The main ideas of aspect-oriented programming were

formulated in the article by G. Kiczales [3]. Useful and up-

to-date information on the development and innovation of

this programming concept is available on a dedicated

website [4], which is constantly updated.

At the heart of aspect-oriented programming are the ideas

that occur in the field of programming technology, for

example: subject-oriented programming, composite filters

(composition filters), adaptive programming (adaptive

programming) [5-6]. AOP is closely related to intentional

programming, the concepts of which are described in Ch.

Simony [7]. Another related concept is the so-called

generative, or transformational programming (genera-tive

programming, transformational program-ming) [8].

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

10

E.A.Zhuravliov and V.A.Kiryanchikov article [9] offers a

brief introduction to the problems of the AOP, presents the

key concepts of the AOP and discusses ways of integrating

aspects, including at the stage of program execution. There

[10] are advantages of the aspect-oriented approach, the

disadvantages of existing implementations of describing the

points of linking aspects and functional modules.

In the article [11] R. Laddad gives the basic concepts of

AOP, introduces the term of through functionality, and also

provides a brief description of the language AspectJ. The

article [12] demonstrates the use of the aspect approach for

implementing the protocol of interaction of objects in the

implementation of design patterns, and also considers

improvements in terms of modularity, increasing the degree

of reuse and improving the perception of the source code of

the classes of participants in the templates from the catalog.

M. Lippert and C. V. Lopes in their article [13] discuss

general approaches to processing errors at the design stage

of the software system, and offer tools for using AOP at

different stages of the software lifecycle.

III. FEATURES OF THE ASPECT-ORIENTED APPROACH

In all programming languages, there are constructions that

allow you to structure the description of the system as a

hierarchical compositions of small modular elements. These

constructions are aimed at identifying and constructing

functional components that are expressed as classes, objects,

modules, procedures, etc.

The disadvantage of functional solutions is that some

concepts (tasks) such as synchronization, component

interaction, stability, and security management that deal with

multiple functional components can not be precisely

localized. Typically, they are implemented by small code

snippets, dispersed among many functional components.

This last circumstance is at the core of the AOP. Aspect-

oriented programming offers, in addition to functional

components, the use of aspects that "cross" the functional

components, and provides their composition in order to

obtain high-quality software implementations. Examples of

"intersecting" tasks (concepts) for aspects are

synchronization, real-time constraints, error checking,

parallel object interaction, stability, history tracking,

protection, caching policy, profiling, monitoring, testing, etc.

Some systems are characterized by very wide-reaching

aspects. For example, component interaction,

synchronization, remote call, parameter transfer strategies,

load balancing, replication, fault neutralization, service

quality, and distributed transactions are among the aspects of

distributed systems [14].

Generally, any software system consists of several parts:

the main (subject-oriented) and system parts, which carry the

necessary functionality. For example, the core of the e-

commerce system is designed to work with payments, while

system-level functionality is designed to keep a log of

events, security, performance, etc. Most similar parts of the

system, known as crosscutting functionality [10], affect the

many core object-oriented modules. You can consider a

complex program system as a combination of modules, each

of which includes in addition to business logic part of the

through functionality from the set of requirements to the

system.

The program consists of a set of implementations of

modular concerns and crosscutting concerns, the latter, for

example, security checks, implemented in the form of

aggregates of dispersed code snippets in different program

modules.

Crosscutting functionality combines such types of

functionality, ideas, principles, methods, the implementation

of which is fundamentally impossible in the form of only

one hierarchy of interdependent modules, and also requires

the insertion into the physically dispersed points of the

program fragments of the new code (or the implementation

of new code snippets in dispersed points of the target

program, without their explicit insertion). Typically, code

snippets implementing a new through-through functionality

are executable designs (operators), often calls, but they can

be descriptions (definitions) of data, also part of the

implementation of through-the-line functionality.

With a high probability in any application you can find

the sections of the through functionality that are available in

the code under the guise of caching, logging, exception

handling, transaction control, and delimitation of access

rights.

Since the complexity of software systems is increasing,

then there is a through functionality, that is, several

approaches to address these problems. These approaches

include mix-in classes [15], design patterns [16], and

specific domain solutions.

When using mix-in classes you can put in them the

implementation of crosscutting functionality. The

components contain an instance of the mix-in class and

allow other parts of the system to install their instance.

Software design patterns are effective tools for solving

software design problems.

Specific domain solutions, such as frameworks and

application servers, allow developers to make some

crosscutting requirements to the level of these solutions.

Specific domain solutions offer a specialized mechanism to

address specific problems, but when technology changes,

new approaches of solving the same problems have to be re-

examined.

When developing a software system using existing

programming technologies, crosscutting functionality will be

included in all modules, resulting in a system that will be

difficult to design, implement, and further support.

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

11

Aspect-oriented programming is one of the solutions that

offers the means of allocating through-the-line functionality

to individual program module-aspects in complex software

systems.

In terms of AOP in the development of a fairly complex

system, the programmer solves two problems: the

development of components - the discovery of classes and

objects that make up the subject area vocabulary; the

development of services that support the interaction of

components - that is, the construction of structures that

provide the interaction of objects, in which the requirements

of the task are fulfilled.

Modern programming languages (such as C ++) are

focused, first of all, on solving the first problem. The

component code is presented as a class, that is, it is well-

localized, and, therefore, it is easy to view, explore, modify,

reuse. On the other hand, when programming processes

involving different objects, we get a code in which the

elements associated with the support of this process are

distributed by the code of the entire system. These elements

are found in the code of many classes, their totality is

generally not localized in the segment of the code. As a

result, there is a problem of "confusing" code.

Within the AOP concept, it is argued that no design

technology will help resolve this problem, the only way is to

remain within the framework of component-oriented

language. To program services that provide interaction of

objects, you need special tools, possibly special languages.

After the component and aspect coding phase in the

corresponding languages an automated construction of the

code optimized for execution (but not for viewing and

modification) is performed. This final process is called

merge or weaving.

Aspect-oriented approach considers the software system

as a set of modules, each of which reflects a certain aspect-

goal, the function of the system. A set of modules that form

a program depends on the requirements of the program, the

features of its subject area. Along with the functional

requirements of the program are introduced and system-wide

requirements, such as: integrity of transactions, authorized

data access, logging events, etc. When designing a software

system, the developer selects the modules so that each of

them implements a certain functional requirement to the

system. However, the implementation of some program

requirements can often not be localized in a separate module

within a procedural or object-oriented approach. As a result,

a code that reflects such aspects of the functioning of the

system will be encountered in several different modules.

Traditional programming rules are used in the design of the

program functional decomposition and do not allow the

localization of crosscutting functionality in individual

modules. The necessity of implementing crosscutting

functionality by the available means leads to the fact that

some component contains a code that reflects a lot of system

requirements. This makes this module highly specialized,

impairs the ability to reuse it, and in some cases leads to

duplicate code. In turn, this increases the likelihood of

errors, increases the time of debugging, reduces the quality

of the program and to some extent complicates its

maintenance. Aspect-oriented approach in some cases avoids

the described problems and improves the overall design of

the system, allowing the possibility of localization of

crosscutting functionality in special modules-aspects.

The AOP allows the implementation of individual

concepts in a slightly connected form, and, combining such

implementations, forms a finite system. AOP allows you to

build a system, using partitioning into separate modules

(aspects) for implementing system-wide requirements.

The development within the AOP consists of three

separate steps:

- aspect decomposition: breakdown of requirements for

the allocation of general and crosscutting functionality. At

this step, it is necessary to highlight the functionality for the

modular level with the through-the-system-level

functionality. For example, for the e-commerce system you

can distinguish: creating a catalog of goods, a log of events,

creating a list of products for sale;

- implementation of functionality: to fulfill each

requirement separately. For the e-commerce system it is

necessary to implement separately the module for forming

the catalog of goods, the module of the event log, the

module for creating a list of products for sale;

- layout of aspects: in this step, the aspect integrator

defines the rules for creating its module-aspects, forming a

finite system. In the example with the e-commerce system, it

is necessary to determine, in terms of language, implement

the AOP, when calling which operations it is necessary to

make an entry in the journal, and upon completion of which

actions it is necessary to report the success / failure of the

operation.

AOP distinguishes a lot from traditional OOP approaches

in the implementation of crosscutting functionality: a

different way to imagine the process of decomposition, and

the architecture of the resulting software product to a large

extent goes beyond the concepts that are traditional for

object programming. When designing on AOP, concepts are

implemented completely independently of each other, as all

existing links between them (crosscutting functionality) can

be localized in aspect modules that describe the protocol of

interaction of concepts. For example, in the module for

creating a catalog of e-commerce products, there may be no

log entry or a call to the module to create a list of products

for sale, but when working, such a crosscutting functionality

can be called if it is described in the interaction protocol.

This is a serious step in the development of technology from

object-oriented programming.

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

12

Aspect in AOP is a system module, which has a

crosscutting functionality. An Aspect Module is the result of

an aspect decomposition, at which stage any phenomena,

concepts, events that can be applied to a group of

components obtained after an object decomposition are

detected. Aspect represents a linguistic concept, similar to

class, but only a higher level of abstraction.

Aspects can be applied to a large number of components

and use so-called insertion points to implement regular

actions that are usually dispersed throughout the text of the

program. The aspect module describes the sections of the

program implementation points, in which language

instructions are embedded, which must be executed before,

after, or instead of a strictly defined point of the program.

Similar language instructions are functionality, which

supports the interaction of components. In addition, the

aspect modules can describe the role of components that can

be affected by this aspect. In some implementations of AOP

using aspect modules, you can influence the existing

inheritance scheme. In terms of AOP aspect, it is a service

that connects system components.

The automatic layout of aspects and the traditional

component program modules is a key feature of the AOP,

which determines the main advantage of this technology: it

makes possible encapsulation of through functionality in

individual software modules.

The automated layout of aspects and components is a

powerful source of code generation and in general

guarantees that the aspect will be applied to all component

modules to which it relates, which is difficult to achieve if

you implement the crosscutting functionality in the module

(manually). Implementation of the automatic layout of

aspects and components largely determines the possibilities

of a particular aspect-oriented platform.

IV. E-COMMERCE SYSTEM AND LOGGING TOOLS

An e-commerce system is a system that has a modular

structure and allows you to conduct sales procedures of

certain types of goods (for example, books, software,

computer and home appliances, clothing, footwear, furniture,

office equipment, etc.) via electronic payment means (credit

cards, smart cards, micro-payments, electronic money).

In the general case, within the e-commerce system, there

is a certain Internet technology that provides the participants

with the following capabilities: producers and suppliers of

goods and services of various categories - to display

products and services online, as well as to accept and

process customer orders; customers (clients) - to view

information (catalogs, price lists, etc.) about the offered

goods and services, to make an order (requests, requests) and

receive ordered goods (services) with standard browsers;

manufacturers and suppliers - to accept payment, and buyers

- to make payments using a payment system; in this case a

bank becommes one of the participants of the system.

E-commerce systems are presented in two versions: the

first one - in the form of the purpose of providing sales via

the Internet; the second - in the form of complex decisions,

integrated with the management of the enterprise.

E-commerce companies use different types and forms of

business: e-shops, electronic stores, electronic exchanges,

auctions, trading platforms, electronic advertising or travel

agencies, electronic advisory centers, etc.

When developing an e-commerce system, you must

adhere to the following rules:

1) the definition of the intended purpose of the system

(will the system serve old or new clients; what the system is

created for, for advertising or for sales, etc.);

2) creation of a demonstration version of the project and

its presentation to potential users;

3) application of encryption mechanisms. Since e-

commerce works with credit cards. This is usually a SSL

(Secure Sockets Layer) technology, widely supported by

web browsers and servers. However, it involves the storage

of unencrypted information on the server, where hackers or

simply dishonest employees can access it;

4) the establishment of interaction with related

organizations. Despite the contradictions, there are common

problems, such as increasing the level of information

security when online orders are shipped;

5) providing the necessary data protection level.

To date, e-trading is the basis of e-commerce. The most

common criterion for classifying an e-commerce company is

the level of technology used to organize the trade process. In

practice, trade systems are rarely fully automated and, by the

degree of automation, such systems can be classified as

electronic stores.

Logging - the process of recording information about

events with some object (or as part of a process) events in

the log / log file (for example, in a file). This is a

chronologically ordered record of data processing

operations.

For e-commerce, logging is very important. The system

administrator can monitor user activity in the software

system, analyze their preferences. Get information about the

user's time spent in the system and his order.

To illustrate how to use the AOP, let's present the code to

create the logging:

 * @Before("within(**)")

 */

 public function

beforeMethodExecution(MethodInvocation $invocation)

 {

 $file = 'log.txt';

 $obj = $invocation->getThis();

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

13

 if(is_object($obj) &&

get_class($obj)=="EShoppingCart" && $invocation-

>getMethod()->getName()=="getCost"){

$person = $_SERVER["REMOTE_ADDR"]."

".date("d.m.y G:i:s")." User ".$this-

>getNameUser($_SESSION['name'])." added the book to

the cart.\n";

 file_put_contents($file, $person, FILE_APPEND |

LOCK_EX);

};

 if(is_object($obj) &&

get_class($obj)=="EShoppingCart" && $invocation-

>getMethod()->getName()=="clear"){

 $person = $_SERVER["REMOTE_ADDR"]."

".date("d.m.y G:i:s")." User ".$this-

>getNameUser($_SESSION['name'])." formalized the

order.\n";

 file_put_contents($file, $person, FILE_APPEND |

LOCK_EX);

 };

if(is_object($obj) &&

get_class($obj)=="BookController"){

if($invocation->getMethod()->getName()=="widget")

 {

$data=$invocation->getArguments();

if($data[0]=="zii.widgets.CDetailView" AND

$data[1]['attributes'][0]=="id"){

$person = $_SERVER["REMOTE_ADDR"]." ".date("d.m.y

G:i:s")." User ".$this-

>getNameUser($_SESSION['name'])." looked the goods

".$this->getName($_GET['id'])."\n";

file_put_contents($file, $person, FILE_APPEND |

LOCK_EX);

 }

if($data[0]=="zii.widgets.CListView")

 {

 $person = $_SERVER["REMOTE_ADDR"]."".

date("d.m.y G:i:s")." User ".$this-

>getNameUser($_SESSION['name']).." looked through the

list of all available offers.\n";

file_put_contents($file, $person, FILE_APPEND |

LOCK_EX);

 }

 }

}

V. SOFTWARE DEVELOPMENT TOOLS

To implement the e-commerce system, Yii Framework

was selected. Yii is a highly effective, based on the

component structure of the PHP framework, suitable for

developing large web applications. It allows you to

maximize the concept of reuse of the code and can

significantly accelerate the web development process.

The name Yii means simple, effective, and extensible. Yii

is a general-purpose web programming framework that can

be used to develop virtually any web application. Thanks to

its ease-of-use and advanced caching capabilities, Yii is

especially suited for the development of high-traffic

applications such as portals, forums, content management

systems (CMS), e-commerce systems, and more.

Like most of other PHP-frameworks, Yii is an MVC

framework. The advantage of Yii over other frameworks is

its efficiency, broad capabilities and high-quality

documentation. Yii from the very beginning is very carefully

designed to meet all the requirements for the development of

serious web applications. Yii is neither a byproduct of any

project nor a collection of third-party solutions. It is the

result of the extensive experience of authors in the

development of web applications, as well as their research

on the most popular web-based frameworks and

applications.

Yii uses the Model-View-Controller design pattern, which

is widely used in web programming.

MVC is aimed at separating business logic from the user

interface so that developers can easily modify individual

parts of the application without worrying others. In

architecture MVC model provides data and rules for

business logic, while the representation is responsible for the

user interface (for example, the text, the input fields), and

the controller provides interaction between the model and

the presentation.

In addition, Yii also uses a front controller, called the

application, which encapsulates the query processing

context. The application collects information about the

request and passes it for further processing to the appropriate

controller.

Controller is an instance of a CController class or a class

inherited from it. It is created by the application object when

the user makes a corresponding request. When launched, the

controller performs the appropriate action, which usually

involves the creation of appropriate models and the

rendering of the necessary representations. In the simplest

case, the action is a method of a controller class, whose

name begins with action.

The controller has the default action, which is executed

when the user does not specify the action on request. By

default, this action is called index. You can change it by

setting the value CController :: defaultAction.

A model is an instance of a CModel class or a class

inherited from it. The model is used for storing data or

applicable business rules.

The model represents a separate data object. This can be a

record of a database table or an HTML form with fields for

entering data. Each field of a data object is represented by a

model attribute. Each attribute has a label and can be

validated using a set of rules.

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

14

Yii provides two types of models: the form model and

Active Record. Both types are extensions of the base class

CModel.

The form model is an instance of the CFormModel class.

It is used to store data entered by the user. As a rule, we get

this data, process it, and then get rid of it. For example, on

an authorization page, a model of this type can be used to

provide information about a username and password. For

more details on working with forms, see Working with

Forms.

Active Record (AR) is a design pattern used to abstraction

access to a database in an object-oriented form. Each AR

object is an instance of the CActiveRecord class or class

inherited from it, and represents a separate row in the

database table. The fields of this line correspond to the

properties of the AR-object. See the Active Record section

for details on the AR-model.

Representation is a PHP script that consists predominantly

of user interface elements. It can cover PHP expressions, but

it is recommended that these expressions do not change the

data and remain relatively simple. According to the logic and

representation separation concept, most of the logic code

should be placed in the controller or model rather than in the

submission script.

The representation has the name used to identify the

presentation script file in the rendering process. The

presentation name must match the name of the submission

file. For example, to submit editing, the corresponding script

file should be called edit.php. To display a view, you must

call the CController :: render () method by specifying the

name of the presentation. The method will try to detect the

corresponding file in the directory protected/

views/ControllerID.

Inside the representation script, an instance of the

controller is available via $this. Thus, we can refer to the

properties of the controller from the representation code:

$this->propertyName.

Extending the functionality of Yii is a standard practice in

the development process. For example, to write a new

controller, you need to expand Yii by inheriting its class

CController; to write a widget - a class CWidget or a class of

an existing widget. If the completed code is designed for use

by third-party developers, we call it extension. Yii was

originally designed in such a way that any part of it could be

modified and supplemented for any needs.

To support the aspect-oriented approach, the library Go!

AOP PHP was created. The main difference from all existing

analogs is: a library does not require any PHP extensions. It

does not use eval() and does not use the DI-container, it does

not require a separate aspect compiler in the final code.

Aspects are ordinary classes, which are organically using all

the capabilities of the OOP. The library-generated code with

interleaving aspects is very clean, it can be easily adjusted

using XDebug, both for classes and aspects.

The most valuable thing in this library is that it is

theoretically possible to connect it to any application,

because to add a new functionality with AOP it is not

necessary to change the code of the program at all, the

aspects interwoven dynamically. For example: using ten to

twenty lines of code, you can capture all public, protected,

and static methods in all classes when you run a standard

application and display the name of this method and its

parameters when calling the method.

The main advantages of the Go! AOP PHP library:

- does not use PHP extensions, written entirely in PHP

itself;

- can be used with any application in PHP;

- well-optimized (class caching, support for opcode

caches)

- does not require a DI container to replace proxy objects;

- can intercept dynamic and static methods, methods in

the final classes, as well as methods in the trades;

- can intercept access to public and protected fields;

- clean generated code; It is convenient to perform classes

and aspects debugging using XDebug.

Adding aspects occurs only once, after which we get code

from opcode-cache. Doctrine annotations are used for

classes of aspects. Library Go! uses a unique Load-Time

Weaving technology for PHP that allows you to track the

load time of the class and modify this code before it parses

the PHP. This allows you to dynamically modify the class

code, without modifying the source code from the

developers. At the beginning of the program, we initialize

the core of the AOP, adding our aspects there, then transfer

the management of the main program. When creating an

object, an automatic boot of the class will work, which will

determine the desired file name and try to download it. At

this point, the call will be intercepted by the kernel, followed

by a static code analysis and validation of the current

aspects. The kernel will detect that there is a class in the

code and that you need to implement the tips in this class, so

the code transformers in the kernel will change the original

class name, create a proxy class with the original name of

the class redefinition method and give a list of tips for the

given point. Next, PHP parser disassembles this code and

downloads it into memory, with the name of the output class

already having a class-decorator, so the usual method call

will be wrapped up to the connection point with the

connected tips.

When creating the e-commerce system, the following

design methods were applied: a set of instructions (Advice)

of a programming language executed before, after or instead

of each of the points of execution (JoinPoint) included in the

specified set (Pointcut); @Before and @After are a defined

implementation order for a set that is executed before (after)

execution; within (**) - global set; MethodInvocation

contains an object (class for static method), method

arguments, and information about the point in program.

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

15

VI. CONCLUSIONS

The emergence of new programming technologies has

always been an interesting topic, since each new software

development methodology allowed to solve the problems

posed by its appearance, and significantly promoted

Computer Science and the software industry as a whole.

Complications of software systems as a global problem

requires constant attention and study, so the appearance of

AOP is a broad field for research with their subsequent

practical application.

This article presents ways to use the aspect approach at

different stages of the software lifecycle.

At the stage of designing the system, examples of

implementation of such crosscutting requirements as

implementation of the logging of events were given. The

application of aspect-oriented decomposition at the stage of

analysis and design allows improving the modularity of the

system being developed - to highlight end-to-end

functionality at different levels of abstraction and to localize

it in individual modules-aspects. Such aspects are an integral

part of the resulting software system. In this case, the

components of the software system are completely free from

the context of their application, and as a consequence, these

components are fully ready for reuse. Based on the terms of

modularity and components not burdened with code that are

not related to the abstraction presented by it, it can be argued

that the resulting cross-class composition looks more clear

than in the case of object-oriented implementation.

At the stage of system development, tasks such as

profiling, tracing, compliance with project agreements,

tracking the accuracy of input and output data at different

levels of abstraction are always addressed, the behavior of

objects in a multithreaded environment is monitored,

different approaches to the development of reusable

components and strategies of their reuse. At this stage, the

auxiliary aspects, as well as aspects that can later become

part of the software system, and can provide significant help

to the developer.

With regard to the difficulty of perceiving the source

code, it can be said that the aspect approach increases

modularity, which increases the ability of the components to

be reused and increases the clarity of the code, which is not

burdened with auxiliary built-in logic, which can

subsequently be removed effortlessly.

At the stage of supporting the existing system, fewer

architectural innovations are introduced, but more localized

changes are used instead of taking into account new

requirements and fixing old mistakes. The AOP provides

new features with the support of software systems, with the

addition of new functionality and the modification of

existing ones.

An aspect approach provides new possibilities for

integrating new requirements into a software system in

comparison with the traditional object-oriented approach. If

there are new requirements at the stage of system support,

then such requirements are easily integrated without loss of

modularity and modification of the code of components,

which is very relevant at this stage of development.

Thus, the possibility of using an aspect-oriented approach

is shown for tasks of a different nature. It should be noted

that the main advantage of AOP is the improvement of the

modularity of the software system, as well as the explicit

identification of the structure of end-to-end functionalities,

simplification of maintenance and making changes, the

emergence of new possibilities for re-use of the code.

It should be noted that the AOP is not considered as a

substitute for the established programming rules, but only

serves as an extension that allows for end-to-end

functionality.

The considered approach to the use of AOP for the e-

commerce system offers great opportunities for the

development of software systems. Thanks to the use of AOP,

programming inherits all the benefits of aspect-oriented

programming in the development of software systems:

reducing the time, cost and complexity of development;

simplify the maintenance of products and make changes to

them; creation of reliable and safe systems through the

allocation and implementation of crosscutting functionality

in certain modules-aspects.

As further research, one can consider the work on

formalizing the approach, as well as work to prove the

correctness of the programs developed by the AOP. Also,

one of the most promising researches in this area is currently

considered the study of the event model of AOP and the

applicability of this model for the construction of operating

systems. In order for AOP, at last, to become an integral part

of the process of developing and maintaining software

systems, it is necessary, above all, to ensure the integration

of AOP tools with traditional IDEs.

The main ideas and results included in the article, in

particular, the development of a software system on the

example of the system of electronic commerce, received a

confirmation in the form of a certificate of registration of

copyright to the work [17].

References

[1] G. Buch. Object-oriented analysis and design. Publisher

Binom, Nevsky dialect, St. Petersburg, 1999. (in Russian).

[2] E. Dijkstra. A Discipline of Programming. — M.: Mir, 1978. –

277 pp. (in Russian).

[3] G. Kiczales, J. Lamping, A. Mendhekar, etc. Aspect-oriented

programming. Published in proceedings of the European

Conference on Object-Oriented Programming (ECOOP).

Finland, Springer-Verlag LNCS 1241. June 1997

 International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 11, Issue 05, May 2021)

16

[4] Aspect-Oriented software development network www.aosd.net

[5] Homepage of the Subject-Oriented Programming Project, IBM

Thomas J. Watson Research Center, Yorktown Heights, New

York, http://www.research.ibm.com/sop/.

[6] K. Leiberherr. Component Enhancement: An Adaptive

Reusability Mechanism for Groups of Collaborating Classes.

In Information Processing'92, 12th World Computer Congress,

Madrid, Spain, J. van Leeuwen (Ed.), Elsevier, 1992, pp.179-

185.

[7] Ch. Simony. The Death of Computer Languages, The Birth of

Intentional Programming, Microsoft Research, 1995,

https://www.microsoft.com/en-us/research/publication/the-

death-of-computer-languages-the-birth-of-intentional-

programming/.

[8] Krzysztof Czarnecki, Ulrich Eisenecker Generative

Programming: Methods, Tools, and Applications, Addison-

Wesley, Paperback, Published June 2000.

[9] E.A. Zhuravliov, V.A. Kiryanchikov. About the possibility of

dynamic integration of aspects in aspect-oriented

programming. Izv. SPbGETU (LETI) Ser. Computer science,

management and computer technologies. 2002 Issue 3. P. 81-

86. (in Russian)

[10] E.A. Zhuravliov, V.N. Pavlov. About one approach to the

implementation of Aspect-oriented programming. Izv.

SPbGETU (LETI) Ser. Computer science, management and

computer technologies. 2003/ (in Russian)

[11] Laddad, R. I want my aop!, part 1. JavaWorld. January 18,

2002. Avaliable at

http://www.dmi.usherb.ca/~sgiroux/COURS/2008

/ift785/fichiers/articles/AspectOrientedProgramming/jw-0118-

aspect....pdf.

[12] O. Hachani, D. Bardou. Using aspect-oriented programming

for design patterns implementation. Equipe SIGMA, LSR-

IMAG, 38402 Saint Martin d'Heres Cedex, France.

[13] M. Lippert, C Videira Lopes. A Study on Exception Detection

and Handling Using Aspect-Oriented Programming.Xerox

PARCTechnical Report P9910229 CSL-99-1, Dec. 1999.

[14] Charnetsky K., Eiseneker U. Generative programming:

methods, tools, applications. For professionals. - St.

Petersburg: Peter, 2005. – 731 p. (in Russian)

[15] Bruno Schaffer Design and Implementation of Smalltalk

Mixin Classes. Ubilab Technical Report 98.11.1

Universitдtsstrasse 84 CH-8033 ZurichSwitzerland.

[16] Myers G. Software Reliability. M.: Mir, 1980. (in Russian)

[17] A.s. Computer program «Information Web-system «Aspect e-

commerce»/ Kucheryava O.M., Nabok D.A. – №59632;

Application dated 17.032015; published from 013.05.2015 –

1p.

