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Introduction 
Generating high fidelity speech using a text-to-speech (TTS) system remains a 

challenging task despite the decades of research and investigations. Modern TTS 

systems are very complex. For example, it is a common practice for a statistical 

TTS system to have a linguistic extractor in the front, which extracts different 

linguistic features. It is followed by a duration model to estimate the speech length 

in time of a given text and an acoustic feature prediction model. Given these 

features, it is all fed into a vocoder, which synthesizes speech out of acoustic 

features. All these components are trained independently and require extensive 

field knowledge to be sophisticated enough and produce considerable results. 

Because it has a modular design, it is prone to errors which will proceed in the 

following modules and can accumulate.  

 

There are many pros to an end-to-end system, which is compounded of just a text-

audio pair. First of all, it alleviates the need for complex acoustic and linguistic 

features which may bottleneck other modules. Second of all, it is much easier to 

implement different conditionings such as speaker and sentiment. It also has the 

benefit of easily transferable onto new data. Finally, it is much more robust that a 

modular design and alleviates most accumulating errors. 

 

A straightforward approach to an end-to-end system is using machine learning. 

Given the vast amounts of data we have today, machine learning system have been 

on a rise. They are able to model complex systems and behaviors without the need 

of extensive task-specific field expertise, although it is preferable. 

 

In order to produce realistic speech which has clear speech (intelligibility), sounds 

natural (naturalness) and is expressive, the model must impute many implicit and 
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explicit factors which are not given in a simple text input. Such factors include the 

intonation, stress, rhythm and style of the speech, and are collectively referred to as 

prosody. 

 

Speech synthesis using only text is a challenging and an undetermined task. The 

meaning of an utterance usually relies heavily on expressiveness, intonation, stress 

and rhythm. These factors also influence the naturalness of speech, because a 

human would easily differ a recording from a monotonic, robotic speech generated 

from a plain TTS system conditioned only on text. For example, let’s take the 

phrase “John was standing under the pole”. If the question this phrase answers is 

“Where did John stand?”, then the speaker would underline and give a higher 

intonation to the word “pole” to indicate that it is the answer. Another example 

would be a question “Would you like water or cola?”. If there are only two options, 

the speaker will start lowering his pitch towards the end of the sentence, so the 

word “water” will have a lower pitch and be more intoned than “cola”, but if there 

are more options, they will have the same pitch and intonation to provide this 

information of choice. So we can define prosody as the variation in speech signals, 

which is left after accounting for variation due to phonetics and speaker. 

 

The main problem that arises in this scenario is how can we measure speech 

quality and prosody. This remains an unresolved task to automate and currently the 

most reliable metric is mean opinion score (MOS), which involves taking a group 

of people and letting them score the naturalness, intelligibility and expressiveness 

of the speech. In this work some sophisticated automatic approaches and analysis 

will be used to measure speech and prosody quality. 

 

My work is based off of a relatively new development in TTS called “Tacotron 2” 
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which is implemented and used as a baseline to further experiment with modeling 

prosody. Tacotron 2 model has text as input, and outputs an audio spectrogram, 

which is a two dimensional representation of audio spectra frequencies over time. 

More details about this model, augmentations, and audio preparation is explained 

in details in other sections. 
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Theory 
 

Audio Preparation 
Full end-to-end process is currently too hard for machine learning models, to take 

in text pairs and produce audio waveform as the output. This requires processing 

power and GPU memory that is currently very hard and/or expensive to obtain. So 

it is usually split into two modules: given the text synthesize a spectrogram and 

feed it into a vocoder to further produce a waveform. 

A spectrogram is a two dimensional audio spectra frequencies by time. It is 

achieved by applying Short-time Fourier transform to an audio signal. 

The  Short-time Fourier transform is a Fourier transform that is used to determine 

the sinusoidal frequency and phase changes over time. 

𝑋(𝑚, 𝑘) =  ∑ 𝑥[𝑛 + 𝑚𝐻]𝜔[𝑛]𝑒−
2𝜋𝑖𝑘𝑛

𝑁

𝑁−1

𝑛=0

 

Where  

𝑥: [0: 𝐿 − 1] ≔ {0,1, … 𝐿 − 1} →  ℝ  real valued discrete time audio of length L 

received by sampling an audio signal at a constant sampling rate R. 

𝜔: [0: 𝑁 − 1]→ ℝ  window function of length 𝑁 ∈ ℕ. 

𝐻 ∈ ℕ  is the hop size, or by what amount we shift the window function. 

𝑚 ∈ [0: 𝑀] 𝑤ℎ𝑒𝑟𝑒 𝑀 ∶=  ⌊
𝐿−𝑁

𝐻
⌋ is the maximal window index.  

𝑘 ∈ [0: 𝐾] 𝑤ℎ𝑒𝑟𝑒 𝐾 =
𝑁

2
 frequency index corresponding to Nyquist frequency. 

The complex number 𝑋(𝑚, 𝑘) represents kth Fourier coefficient for the mth frame. 

So for each time frame we compute a vector of length K. 

The main idea is instead of considering the full input signal, we only use a small 

section of it. It is achieved by introducing a window function, which is non-zero 
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for only a short period of time. The original signal is then multiplied by this 

windowed function. To compute the frequency information signal at different 

timestamps we move the window function across the whole signal by hop size 

steps and apply FFT to each windowed segment. 

 

Thus we can easily calculate the dimension of the resulting spectrogram, as it’s just 

𝑆 ∈ ℝ
𝑑𝑠𝑝𝑒𝑐𝑡𝑟×⌈

𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
ℎ𝑜𝑝 𝑠𝑖𝑧𝑒

⌉
 

where S is our spectrogram.  

To localize speech signal in time, we introduce windowing functions 𝜔[𝑛, 𝜏] which 

degrades on its ends to avoid unnatural sounding discontinuities in speech. 

The window function we’ll be using is called Hann window and is defined as 

following: 

𝜔[𝑛, 𝜏] = 0.54 − 0.4cos [
2𝜋(𝑛 − 𝜏)

𝑁𝜔 − 1
] 
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Although there are many more windowing functions, Hann window is by far the 

most popular choice in speech processing, as it provides a balance between 

frequency resolution and the dynamic range. 

After STFT we receive a frequency spectrogram and complex phase, which is 

discarded. Humans can only perceive sound from 20 Hz to 20,000 Hz, so the 

information in a spectrogram that is outside this range becomes useless in our task. 

We can transform amplitudes to decibels which is just the log scale of amplitudes 

and finally receive a spectrogram. 

 

The next thing we’ll do is transform it to a Mel-scaled spectrogram. It is 

constructed such that the sounds of equal “distance” on the Mel-scale also “sound” 

to humans as if they are equally distant. 

𝑚 = 2595 log10 (1 +
𝑓

700
) 

f - Hertz,  m - mel 

It has a logarithmic curve, because, as an example, the difference between 500Hz 

and 1000Hz is obvious to human perception, while the difference between 7500Hz 

and 8000Hz is barely noticeable. 
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We’ll be capping this spectrogram to only have 80 mel-bins, as it has been 

determined with as a breakpoint for optimal performance, because of a sufficient 

resolution along the frequency  dimension.  

 

 

Neural Network for TTS 
In my previous coursework we went through the basics of Neural Networks, how 

they learn and optimize their parameters, convolutional and linear layers, 

representation learning and so forth. We’ll continue off of that to explain all the 

components needed for a TTS models and how they come together. 

 

Recurrent Neural Network 
Recurrent Neural Networks (RNNs) are a family of neural networks for processing 

sequential data. They are similar to a feedforward network except a few changes to 

process sequential data. At each time step t the recurrent neuron receives the inputs 

𝑥𝑡 as well as its own output from the last time step 𝑦𝑡−1. If t=0, meaning that it’s 

the first token in a sequence, then the previous output is usually initialized as 0. If 

we unroll this RNN, we receive the following visualization   

 

 

Output of a recurrent layer for a single instance is defined as follows: 

𝑦𝑡 = 𝜙(𝑊𝑥
𝑇𝑥𝑡 + 𝑊𝑦

𝑇𝑦𝑡−1 + 𝑏)  
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𝜙(𝑥) – activation function,   𝑊𝑥 - learnable weight matrix for inputs x,                  

𝑊𝑦 – learnable weight matrix for previous output. 

After unrolling the network through time, backpropagation becomes straight-

forward with a well-defined computational graph. Since the output of a recurrent 

neuron at time step t is a function of all the inputs from previous time steps, it can 

be interpreted as a kind of memory. Memory cells are denoted as ℎ𝑡 which refers to 

the memory of a sequence up to time-step t, and would be used with input 𝑥𝑡+1. 

Thus we have defined a Neural Network, capable of processing and storing 

sequence information. 

 

 

Teacher forcing in RNNs 
One weakness in the abovementioned algorithm to RNNs is that they lack hidden-

to-hidden recurrent connections. This means that at every timestep they require all 

previous outputs to produce the next output, so they cannot be parallelized. 

Sequence-to-sequence models that depend on the previous output to generate next 

output can be trained with a method called teacher-forcing. Teacher forcing is a 

method that emerges from maximum likelihood criterion. At time step t + 1 the 

model receives the previous ground truth 𝑦𝑡 , instead of the previous model output. 

Let’s examine a sequence with two time steps. Conditional maximum likelihood 

criterion is specified as:  

log 𝑝(𝑦1, 𝑦2|𝑥1, 𝑥2) = log 𝑝(𝑦2|𝑦1, 𝑥1, 𝑥2) + log 𝑝(𝑦1|𝑥1, 𝑥2) 

We can see, that at t = 2, the model is trained to maximize the conditional 

probability of 𝑦2 given both x sequence and the previous ground truth 𝑦1. Another 

key improvement this provides is that the model can now be trained in parallel, as 

we’ve removed the dependency on the previous model output at each time step.  

Although training time can be parallelized, in inference mode the model is turned 



 13 

back to an autoregressive form, as it doesn’t have the information about ground 

truth. 

 

 

LSTM 
One of the appeals of RNNs is the idea that they might connect previous 

information and capture context. In theory, they are capable to form and handle 

long-term dependencies. But in practice, they fail to generalize to long sequences 

and can only contain short-term memory. This problem was explored in depth by 

Dr. W. Brauer (1991) and Bengio, et al. (1994). The basic problem is that gradients 

propagated over many recurrent connections tend to either vanish, or explode, both 

of which are a big problem in optimizing the network. Even if we manage to 

overcome this issue, long-term interactions will be given exponentially smaller 

weights because of the multiplications of many Jacobians, compared to short-term 

interactions. 

ℎ𝑡 = (𝑊𝑡)𝑇ℎ0 

If the matrix W can be decomposed with eigendecomposition 

𝑊 = 𝑄Λ𝑄𝑇 

with orthogonal Q, the recurrence can be further simplified 

ℎ𝑡 = 𝑄𝑇Λ𝑡𝑄ℎ0 

The eigenvalues are raised to the power t, so if t is large enough, eigenvalues that 

are less than 1 will decay to 0 and larger than 1 will explode. Any component of ℎ0 

that is not aligned with a large enough eigenvalue will thus be discarded with time. 

This is the main issue that LSTMs  proposed by Hochreiter and 

Schmidhuber(1997) or Long Short Term Memory cells combat by creating paths 

through time in which gradients can neither vanish nor explode. The key idea is to 
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introduce self-loops conditioned on the context, rather than fixed.  By making it 

gated, the time scale of integration can be changed dynamically. 

LSTM are defined as follows 

 
 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖
𝑇 𝑥𝑡 + 𝑊ℎ𝑖

𝑇 ℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓
𝑇 𝑥𝑡 + 𝑊ℎ𝑓

𝑇 ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜
𝑇 𝑥𝑡 + 𝑊ℎ𝑜

𝑇 ℎ𝑡−1 + 𝑏𝑜) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔
𝑇 𝑥𝑡 + 𝑊ℎ𝑔

𝑇 ℎ𝑡−1 + 𝑏𝑔) 

𝑐𝑡 = 𝑓𝑡⨂𝑐𝑡−1 + 𝑖𝑡⨂𝑔𝑡 

𝑦𝑡 = ℎ𝑡 = 𝑜𝑡⨂tanh (𝑐𝑡) 

 

𝑊𝑥𝑖, 𝑊𝑥𝑓, 𝑊𝑥𝑜, 𝑊𝑥𝑔 are learnable weight matrices of the four layers for their 

connection with x. 

 𝑊ℎ𝑖, 𝑊ℎ𝑓, 𝑊ℎ𝑜 , 𝑊ℎ𝑔 are learnable weight matrices of the four layers for their 

connection with  the previous short-term state ℎ𝑡−1. 

The forget gate 𝑓𝑡 controls which part of the long-term state should be removed. 

The input gate 𝑖𝑡 controls which part of the 𝑔𝑡 should be added to the long-term 

state. 
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The output gate 𝑜𝑡 controls which part of the long-term state should be read and 

output at this time step, so ℎ𝑡 = 𝑦𝑡 . 

This architecture alleviates exploding and vanishing gradients, as well as improves 

and handles long-term interactions. It can learn to recognize an important input and 

store it in the long-term state 𝑐, and extract it whenever is needed. 

 

 

Bidirectional RNNs 
RNNs mentioned above have a causal structure, meaning that the state at time t 

captures only past and present information 𝑋 = (𝑥0, … 𝑥𝑡) before generating it’s 

output. For many tasks, it is important to also be able to look at the next word 

before generating the current word, so bidirectional RNNs were invented.  

 

The main idea is simple, we have an RNNforward that has an input sequence of 𝑋 =

(𝑥0, 𝑥1, … 𝑥𝑛) and an RNNbackward that has an input sequence 𝑋 = (𝑥𝑛 , 𝑥𝑛−1, … 𝑥0). 

At time step t  

𝑦𝑡 = 𝜙[𝑊𝑇(𝑅𝑁𝑁𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥0, … 𝑥𝑡)||𝑅𝑁𝑁𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑛 , … , 𝑥𝑡)) + 𝑏] 

 



 16 

 

Encoder-Decoder architecture 
The input to RNNs is often called the context and a good model would produce 

some context vector or sequence of vectors representation 𝐶 that summarizes its 

input sequence 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛) and generalizes to other inputs. The first RNN 

architecture to map a variable length sequence to another variable length sequence 

was proposed by Cho et al (2014) and was the first to attain state-of-the-art 

performance in machine translation and it was called an encoder-decoder 

architecture. The idea is that there are two parts: an encoder RNN that encodes 

some input sequence to a hidden representation, and a decoder RNN conditioned 

on a fixed-size 𝐶, which tries to decode the outputs of the encoder back into 

human-readable information 𝑌 = (𝑦1, 𝑦2, … 𝑦𝑛). The main contribution of this 

approach is the variable-length input and output sequence, as it was constrained to 

some constant before. In this architecture, both RNNs are trained jointly to 

maximize average of log 𝑃(𝑦1, 𝑦2 , … 𝑦𝑛|𝑥1, 𝑥2, … 𝑥𝑛) over all x and y. 

 

The last state ℎ𝑛 is typically used as the representation of the whole encoder 

sequence context 𝐶. Nowadays, encoder-decoder architecture is used almost 

everywhere. They are used in image compression-decompression, machine 

translation, translation alignment, TTS, representation learning, image deblurring, 

and the list goes on. The main limitation of this network is the way we capture 

context, as the encoder RNN has a dimension that is way too small to be able to 
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summarize a variable-length sequence into a compact representation. One key 

contribution that popularized encoder-decoder even more are attention 

mechanisms. 

 

 

Attention 
Attention was a groundbreaking idea in Bahdanau et al. (2014) where they 

introduced a technique that allowed the decoder to focus on appropriate parts of the 

context at each time step.  

 

 

 

 
 

It uses an encoder-decoder architecture with an addition of the Alignment or 

Attention model. At each time step, the decoder computes a weighted sum of the 

encoder outputs and produces weights 𝑎𝑡𝑖 for decoder time step 𝑡 of the 𝑖 encoder 

output. Given that we have a softmax as the final attention layer, the model outputs 

a probability distribution for every time step over encoder outputs. So if 𝑎(3,0) >
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𝑎3,1, then the decoder will pay more attention to 𝑎(3,0) at time step 3. These 

attention weights are generated by an attention model, which is trained jointly with 

the encoder-decoder model. It’s often a time-distributed Dense layer with a single 

neuron, which receives all encoder outputs, concatenated with the decoder’s 

previous hidden state and outputs a score or energy 𝑒𝑡𝑖 for each encoder output. 

This energy measures how well each output is aligned with the decoder’s previous 

state. At last, these energy scores go through a softmax to create a probability 

distribution and produce final weights 𝑎𝑡𝑖, so that  ∑ 𝑎𝑡,𝑖 = 1𝑛
𝑖=0 .  

𝑎𝑡,𝑖 =
exp(𝑒𝑡,𝑖)

∑ exp (𝑒𝑡,𝑖′)𝑛
𝑖′=0

 

𝑒𝑡,𝑖 = ℎ𝑡
𝑇𝑊𝑦𝑖  

This exact mechanism is called Bahdanau or additive attention. 

 

Batch Normalization 
Normalization is a category of methods that seek to make different samples seen 

by a machine-learning model more similar to each other, which helps generalize to 

new data. 

Batch normalization is a type of layer introduced in Ioffe and Szegedy (2015), 

which can adaptively normalize data even as the mean and variance change during 

training. The main effect it has is that it helps gradients flow through deep 

networks during training and alleviates the problem of exploding/vanishing 

gradients. It simply zero-centers and normalizes each input, then scales and shifts 

the result using two new parameter vectors per layer. So it lets the model learn the 

needed mean and shift to learn a better representation, it is also possible for the 

model to learn to ignore it, which makes it a good addition anyways. In order to 

zero-center and normalize the inputs, batch normalization needs to estimate each 

input’s mean and standard deviation, which is done over the whole mini-batch. 
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𝜇𝐵 =
1

𝑚𝐵
∑ 𝑥𝑖

𝑚𝐵

𝑖=1

 

𝜎𝐵
2 =

1

𝑚𝐵
∑(𝑥𝑖 − 𝜇𝐵)2

𝑚𝐵

𝑖=1

 

𝑥�̂� =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 

𝑧𝑖 = 𝛾⨂𝑥�̂� + 𝛽 

Where: 

𝜇𝐵 is the vector of input means, evaluated over a mini-batch B. 

𝜎𝐵
2 is the vector of input variances, evaluated over a mini-batch B. 

𝑚𝐵 is the number of instances in mini-batch B. 

𝑥�̂� is the zero-centered and normalized input vector for instance 𝑖. 

𝛾 is the learnable scale parameter for the layer. 

𝛽 is the learnable shift parameter for the layer. 

𝑧𝑖 is the output of Batch Normalization for instance 𝑖. 

 

This approach adds some complexity to the model, but it’s often possible to 

integrate these parameters into the previous layer at test times, further improving 

speed. During training the algorithm is clear, but the problem comes at test times 

when we need to normalize a single input, instead of a batch, so we have no way of 

computing it’s mean and standard deviation. One approach of fixing this issue is 

by learning a moving mean and average during training and freeze it on inference 

stage, thus alleviating this problem. Although this approach is not optimal for 

every task. It will fail for a task like stock prediction if the stocks are highly 

volatile, so we will have to constantly update the mean and standard deviation for 

the model to be adequate. 
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Tacotron 2 
A modern state-of-the-art TTS system is usually a modified Tacotron 2 

spectrogram generator, coupled with a vocoder. We’ll be basing off of a Tacotron 

2 model which is known of producing robotic, but clear speech and further 

modifying it by coupling it with a prosody encoder to further enhance the results. 

This is a model based off of RJ Skerry-Ryan et al. (2018) which is a neural 

network architecture for speech synthesis conditioned on text. It is composed of 

two components: a recurrent sequence-to-sequence encoder-decoder network with 

attention, which predicts a sequence of mel spectrogram frames from input 

character sequence, and a Wavenet vocoder, which will be explained in a later 

section. 

 

The network is composed of an encoder and a decoder.  

Encoder produces a context over input text 𝑋 = (𝑥0, … 𝑥𝑛) which is preprocessed 

to only contain lower-case letters, punctuation and numbers. It is then fed into a 

character embedding matrix, which stores and learns the representation of each 
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letter in a  512 dimensional latent space for the network to use further on. Each 

character is encoded and passed on to a stack of convolution layers containing 512 

filters with the shape of 5 × 1, so that their feature maps for every character 

contain information about the previous two and next two characters, encoded in a 

single representation and is then followed by batch normalization and ReLU 

activation. These convolutional layers model N-grams in the input sequence, which 

is then passed on to a bidirectional LSTM layer containing 256 units for each 

direction, with 512 in total, which generates the encoded feature set. It could be 

thought of as a smoothing network over all features which captures all character 

information with a smooth transition in-between character embeddings. This 

encoded feature set is then passed into a Location sensitive attention, which is a 

modification of additive attention, to include the cumulative previous decoder 

states as additional feature to generate current attention. This encourages the model 

to move forward without the regard for potential failures in the decoding process 

like repeating vowels or incorrectly generated mel-spectrogram frames. Attention 

probabilities are computed after projecting inputs and location features to a 128-

dimensional representation. Location features are computed using 32 1-D 

convolution filters. 

Decoder is a teacher-forced autoregressive recurrent neural network composed of 

two stacked LSTM layers, which produce a mel-spectrogram frame for each time 

step. Prediction from the previous time step is passed through a pre-net, which is a 

small network containing two Dense layers with 256 neurons each, and a ReLU 

activation. It acts as an information bottleneck and could be theoretically upgraded 

to a VAE (Variational Autoencoder) which can also act as an information flow 

bottleneck. Prenet output and attention context are both concatenated and passed 

into the LSTM stack. Both of the LSTM layers are uni-directional with 1024 units 

each, because the model is autoregressive and on inference time there is no 
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information regarding the future frames. LSTM stack and attention outputs are 

then concatenated to produce a single spectrogram frame at each time step using a 

projection layer, which has a dimension of 80 in our case as we are using an 80-bin 

mel-spectrogram. Finally, the resulting mel-spectrogram is passed through a 5 

layer post-net comprised of convolutional layers, with 512 filters and 5 × 1 

kernels, batch normalization and tanh activation on all but last layer. Post-net 

computes a residual to add to the resulting spectrogram. In theory, this should 

make it less smooth and natural, but in practice it has been shown that it has little 

to no effect further on and can be discarded in a powerful model. The main metric 

used is Mean Squared Error between the predicted and target mel-spectrogram. In 

parallel a small network is trained to output the probability of a generated 

spectrogram frame of being the last, so at inference time we can automatically 

detect when we need to stop generating frames. All convolutional layers are 

normalized with Dropout and LSTM layers are normalized using Zoneout, which 

is a modified Dropout algorithm for LSTMs.  

During training, we use teacher-forcing in LSTM stack. It is essential, as the task is 

too hard for the model to excel at without it. Instead of previously generated 

frames, previous target frames are passed on into pre-net on the decoder side, so at 

every time step the LSTM stack is given the attention text context and pre-net 

transformed previous mel-spectrogram frames. Now that we’ve received a mel-

spectrogram representation, we want to transform it into a waveform, which is not 

as easy as inverting it because we don’t have the phase information. This is where 

the need of a vocoder comes, which would take a mel-spectrogram as it’s input and 

output a waveform. 
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Wavenet 
Wavenet is a vocoder proposed by Aaron van den Oord et al. (2016). The main 

task for this generative model is to model raw audio waveforms. The joint 

probability of a waveform 𝑥 = {𝑥1, … 𝑥𝑛} is factorized as a product of conditional 

probabilities: 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑛|𝑥1, … 𝑥𝑛−1)

𝑁

𝑛=1

 

This conditional probability is modeled by a stack of convolutional layer. No 

pooling layers are used as the goal is to receive the same output dimensionality as 

the input. By stacking 1D dilated convolutional layers, they doubled the dilation 

rate (how spread apart neurons are) at every layer. A dilated convolutional layer is 

a convolution where filter is applied over an area larger than its length by skipping 

input values by a specified step. First convolutional layer analyses two samples, 

second convolutional layer analyses the outputs of first, so it receives 4 samples, 

next one up receives 8 and so on, thus greatly increasing the receptive field with 

every layer. 

 

With this simple technique, they were able to model long sequences using 

convolutions and thus removing RNN dependency. This way they were able to 

make their training session parallel and in return it converged faster. By using 

causal convolutions, we make sure that we don’t violate time conditioning 
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𝑝(𝑥𝑛|𝑥1, … 𝑥𝑛). Although during training we know all inputs and can thus be 

trained in parallel, but during inference we have to revert back to an autoregressive 

model that uses its previous output as a part of the next input. By creating a 

separate upsampling network for our spectrogram 𝑆 = (𝑠1, . . 𝑠𝑡) with t frames, we 

stretch this spectrogram to the length of the waveform it represents 𝑋 = (𝑥1, … 𝑥𝑛) 

so that the new transformation 𝑆𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ∈ ℝ𝑛×𝑚𝑒𝑙 𝑏𝑖𝑛𝑠 . Next we concatenate 

𝑆𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 with 𝑋 and feed it into the model to receive desired waveform.  

𝑝(𝑥|𝑆𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑) = ∏ 𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1, 𝑆𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

𝑁

𝑛=1

  

 

We have now built our entire TTS pipeline with STFT creating mel-spectrograms, 

Tacotron 2 producing mel-spectrograms conditioned on text and Wavenet vocoder 

transforming them to waveforms for us to listen to. 

 

Prosody conditioning network 
With a defined meaning of prosody, we can now model it with a separate sub-

model such that we want max log (𝑝(𝑆|𝑦𝑇 , 𝑦𝑃)), maximize log-likelihood of our 

spectrogram given 𝑦𝑇 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑡𝑒𝑥𝑡(𝑡𝑒𝑥𝑡) and 𝑦𝑃 = 𝑚𝑜𝑑𝑒𝑙𝑝𝑟𝑜𝑠𝑜𝑑𝑦(𝑆). 

We can define our loss function as  

𝐿(𝑆, 𝑦𝑇, 𝑦𝑃) = −log (𝑝(𝑆|𝑦𝑇, 𝑦𝑃) = ||𝑓(𝑦𝑇 , 𝑦𝑃) − 𝑆||
2
 

Where f – is Tacotron 2 model, with an integrated prosody module, which is 

trained with Tacotron and is end-to-end. This means our model learns to 

differentiate between prosody and text.  

We will define 𝑚𝑜𝑑𝑒𝑙𝑝𝑟𝑜𝑠𝑜𝑑𝑦  as a network with a trainable prosody embedding 

matrix 𝑋𝑝𝑟𝑜𝑠𝑜𝑑𝑦 ∈ ℝ10×256, which is initialized using Xavier initialization. It’s an 

embedding matrix with 10 tokens, each with a 256 element vector representing 
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prosody. To extract prosody from speech during training, we need to first feed in a 

spectrogram to reference encoder network to extract information from it, with an 

attention module on top of it. The attention module helps us choose the right style 

token and the chosen style token is used with the outputs of our text encoder to 

synthesize a new spectrogram with a given prosody and text. 

 
 

By keeping a small amount of tokens, we want them to capture the most essential 

information in speech. Given that our decoder is also conditioned on text, it will 

not encode text information to our style embedding given that our text encoder is 

strong enough to encode all sequence information. All we are left with is prosody, 

and speaker. But we are training with a single speaker dataset called Blizzard 

Challenge 2013, which is composed of several hours of a expressive single-speaker 

audio books. Given that we have a single speaker scenario, there is no need to 

encode any speaker specific information. If it were a multi speaker dataset, we 

could also create a speaker encoder, which would encode all speaker information 

and be concatenated with text and prosody encoder outputs. Thus, we leave out any 

phonetic leakage. A reference encoder is composed of stacked convolutional layers 

with pooling layers and batch normalization. To further encode the time 

component, we have an LSTM layer on top of the CNN stack. 
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Now we have a defined Neural Network for speech synthesis with a module for 

prosody extraction. At inference time, we have a choice of extracting prosody from 

a spectrogram the prosody of which we want to copy, or we can manually choose a 

token from the embedding matrix and use it for synthesis. We will further explore 

the effect of these embeddings on generated speech. 

 

Generating and analyzing prosody embeddings 
With a trained model to maximize the log likelihood of our data conditioned on 

text and prosody. We have a learned prosody embedding matrix, which we will 

further call tokens. By synthesizing a single sentence with different tokens, we can 

explore there fundamental frequency 𝐹0 and energy 𝐶0. With a distinct difference 

in tokens, we will see drastic changes using different tokens. If they have no effect, 

their graphs will be the same or close to same. 
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Two sentences are synthesized with three different tokens, scaled by 0.3. We will 

explore scaling effect later. Both fundamental frequency and energy are completely 

different for each token. We see a distinct trend of first token being shorter, 

meaning that it controls the speaking rate. If we scale it by a larger number, speech 

will become longer, but if we scale it by a lower constant, it will become even 

shorter. Third token represents a lower-pitched speech and green token represents 

decreasing pitch as it starts with high energy and gradually decays. Another key 

insight is that these tokens are not completely disentangled. Although first token 

describes speaking rate, we see that second token is a bit faster, than red. Meaning 
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that either red or green tokens contain some information on speaking rate. It would 

be interesting to create a disentangled representation using VAEs in the future. 

We can further explore scaling tokens. I’ll take the first token and scale it by 3 

factors: -0.3, 0.3, 0.5 

 

 

As we can see, it indeed controls the speed and a positive value speeds up speech, 

while a lower value elongates it. These transformations are just not possible using 

vanilla Tacotron 2. As a side bonus, it also produces higher fidelity speech as 

opposed to vanilla and lets us model and control speech prosody directly or 

indirectly with the use of tokens and scaling them manually. 
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Conclusion 
Machine learning is on the rise, showing impressive results even on challenging 

tasks such as text-to-speech. With quite a simple architecture we were able to 

create a system, that synthesizes a spectrogram representation of audio out of 

speech, and combined with a vocoder we produced audio output to further 

examine. After that, we undertook a prosody modeling network which was able to 

successfully model and encode prosody into our text-to-speech pipeline. We’ve 

shown that even with a simple network used to encode prosody we could indeed 

produce prosody embeddings that had a significant effect on our synthesis.  

Future work would include working with VAEs instead of the token architecture. 

By disentangling each prosody dimension we could have a fine-grained prosody 

control system with each component representing some specific change in prosody 

like speaking rate, accents, loudness, pitch and much more. 
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