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ONCE AGAIN -ABOUT VELOCITY OF LIGHT

Basing on the quantum mechanics and the modern model of physical vacuum we offer the consistent
method of understanding one of the postulates of Special Theory of Relativity — invariability of speed expan-
sion of electromagnetic wave in physical vacuum in all inertial systems.
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THE ELECTROMAGNETIC LORENTZ PROBLEM AND
THE HAMILTONIAN STRUCTURE ANALYSIS
OF THE MAXWELL-YANG-MILLS TYPE DYNAMICAL SYSTEMS
WITHIN THE REDUCTION METHOD

Based on analysis of reduced geometric structures on fibered manifolds, invariant under action of an
abelian functional symmetry group, we construct the symplectic structures associated with connection forms
on the related principal fiber bundles with abelian functional structure groups. The Marsden-Weinstein
reduction procedure is applied to the Maxwell and Yang-Mills type dynamical systems. The geometric
properties of Lorentz type constraints, describing the electromagnetic field properties in vacuum and related

with the well known Dirac-Fock-Podolsky problem, are discussed.
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1. Introduction

It is well known [4, 2] that Hamiltonian theory
of electromagnetic Maxwell equations aces with
very important classical problem of introducing into
the unique formalism the well known Lorentz con-
ditions, ensuring both the wave structure of propa-
gating quanta and the positivity of energy. To the
regret, in spite of classical studies on this problem
given by Dirac, Fock and Podolsky [5], the problem
still stays open, and the Lorentz condition is im-
posed within the modern electrodynamics “by
hands” as the external constraint not entering a pri-
ori the initial Hamiltonian (or Lagrangian) theory.
Moreover, when trying to quantize the electromag-
netic theory, as it was shown by Pauli, Dirac, Bogol-
ubov and Shirkov and others, within the existing
approach the quantum Lorentz condition could not
be satisfied, but only in average sense, since it be-
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comes not compatible. This and related problems
stimulated our studying of this problem from so
called symplectic reduction theory [1, 3, 9, 12],
which, in addition, allows systematically to intro-
duce in the Hamiltonian formalism the external
charge and current boundary conditions as well as
to suggest a solution to the Lorentz condition prob-
lem mentioned above. Some applications of the
method are given to Yang-Mills type equations, in-
teracting with a point charged particle. We study
the related Poissonian structures on the correspond-
ing reduced symplectic manifolds, which are used
in various problems of dynamics in modern math-
ematical physics, and apply them to studying the
nonstandard Hamiltonian properties of the Max-
well and Yang-Mills type dynamical systems. We
also analyze from symplectic point of view the im-
portant Lorentz type constraints, describing the
electrodynamic vacuum properties.
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2. The symplectic analysis of the maxwell
and yang-mills type
electromagnetic dynamical systems

2.1 The Hamiltonian analysis of the Maxwell
electromagnetic dynamical systems

Under the Maxwell electromagnetic equations
we will understand the following relationships

OE[ot=VxB—J, OB[ot=-V xE, (2.1)
<V,E>=p, <V,B>=0,

onthe cotangent phasespace T"(N)to N T (D;]E?
being the smooth manifold of smooth vector fields
on an open domain D c R®, all expressed in the
light speed units. Here (E,B)e T (N) is a vector
of electric and magnetic fields, p:D —> R and
J:D—>E are, simultaneously, fixed density and
current functions for a smeared in the domain D
electric charge, satisfying the continuity relation-
ship

op/ot+<V,J >=0, (2.2)

holding for all e R, where we denoted by sign
“V ” the gradient operation with respect to a varia-
ble x e D, by sign “x” the usual vector product in
E’ =(R’,<-, >), being the standard three-dimen-
sional Euclidean vector space R’, endowed with
the usual scalar product <-,->.

Aiming to represent equations (2.1) as those on
reduced symplectic space, define an appropriate
configuration (base) space M <7 (D;E’) with a
vector potential field coordinate 4 € M . The cotan-
gent space T'(M) may be identified with pairs
(4Y)eT" (M), where Y € T*(D;E’) isasuitable
vector field density in D. On the space T°(M)
there exists the canonical symplectic form
0? e A’ (T (M )), allowing, owing to definition
of the Liouville from

o (47 )= |d’x(<Y,d4d >=(Y,d4), (2.3)
(v.d4)
D

the canonical expression
o® = dpr'a®) = (dY,ndA). (2.4)

Here we denoted by “A” the standard external
differentiation, by d’x, x € D, the Lebesgue meas-
ure in the domain D and by pr:T"(M)— M the
standard projection upon the base space M. Define
now a Hamiltonian function H € D (T* (M )) as

H(AY)=

=12[(Y.Y)+(Vx A VxA)+(<V,4>,<V,4>)], (23)
describing the well known Maxwell equations in
vacuum, if the densities p = 0 and J = 0. Really, ow-
ing to (2.4) one easily obtains from (2.5) that

0Afot=8H /oY =7, (2.6)

OY /ot :=—8H/5A=-V xB+V <V, 4>,

being true wave equations in vacuum, where we put,
by definition,

B=VxA, 2.7

being the corresponding magnetic field. If now to
define

E=-Y-VW, (2.8)

for some function W:M — R as the correspon-
ding electric field, the system of equations (2.6)
transforms, owing to definition (2.7), into
OB/ot=-V xE, OE/0t=V x B, exactly coincid-
ing with the Maxwell equations in vacuum, if the
Lorentz condition

OW /0t+<V,A>=0 2.9

is involved.

Since definition (2.8) was not foreseen a priori
from the very beginning within the Hamiltonian ap-
proach and our equations fit only for vacuum, we
will try to proceed with analysis our electrodynamic
model making use of the reduction approach de-
vised in [1, 3, 9, 12]. Namely, we start with the
Hamiltonian (2.5) and observe that it is invariant
with respect to the following abelian functional
symmetry group G :=expG where G =C" (D;R)
, acting on the base manifold M naturally lifted to
T*(M): for any [le G and (4.Y)eT (M)

¢, (4)=4+Vy, ¢,(Y)=Y.

Under transformation (2.10) 1-form (2.3) is, evi-
dently,invarianttoosince ¢, o (4,Y )= (¥,d4+Vdy)=
=(Y,dA)~ (< V.Y >,dy)=a"(4,Y), where we
made use of the condition dy =0 in A' (T (M ))
for yweG. Thus, the corresponding momentum
mapping[1,3,9, 12]is givenas /(4,Y)=—<V,Y >
forall (4,Y)eT"(M).If peG" is fixed, one can
define the reduced phase space M, =1 (p)/ G
since evidently, the isotropy group G, =G due to
its commutivity and condition (2.10). Consider now
a principal fiber bundle p:M—N with the abelian
structure group G and a base manifold N taken as
N={BeT(D;E"): <V,B>=0, <V.E(S)>=p},
where, by definition, p(4)=B=VxA.

Over this bundle one can build [10, 3] a connec-
tion 1-form A e A' (M)@ G, where forall 4eM
A(A)-A(D=1, d < A(4).p>,= % (4)e H* (M;Z),
where A(4)e A' (M) is some differential 1-form,
which we choose in the following form:
A(4)=-(W,d <V,A>), where W ¢ c® (D;R)

(2.10)
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is some scalar function, still not defined. As a result,
the Liouville form (2.3) transforms into

0 =(Y,d4)-(W,d <V,4>)=

) . (2.11)
=(Y +VW,dd):= (Y,dA), Y=Y+VW,
giving rise to the corresponding canonical symplec-

tic structure on 7"(M) as
@) = déi = (d¥,ndA) (2.12)

Respectively, the Hamiltonian function (2.5), as
a function on 7"(M), transforms into

i, (4.7)- (2.13)
=1/2[ (7.7 ) (VX AV x A)+(<V,4>,<V,4>)],

coinciding with the well known Dirac-Fock-
Podolsky [4, 5] Hamiltonian expression. The corre-
sponding Hamiltonian equations on the cotangent
space T (M) 0AJot:=8H/8Y, Y==—E-VW,
oY /ot :=—8H[84=-Vx(Vx A)+V <V, 4>,
describe true wave processes related with Max-
well equations in vacuum, but not take into
account boundary charge and current densities con-
ditions. Really, from (2.13) we obtain that
o’ Afot ~V*A4=0= OE[ot+V (oW [ot+ <V, A>)
)=-V x B, giving rise to the true vector potential
wave equation, but the electromagnetic Farady in-
duction law equation satisfies if one to impose ad-
ditionally the Lorentz condition (2.9).

To remedy this situation, we will apply to this
symplectic space the reduction technique [1, 3, 9,
12]. Namely, the constructed above cotangent mani-
fold T"(N) is symplectomorphic to the correspond-
ing reduced phase space M, that is

M, ={(B:S)eT" (N):<V,E(S)>=p,<V,B>=0} (2.14)
with the reduced canonical symplectic 2-form
ol (B,S)=(dB,AdS)=da (B,S),

o) (B.5)= ~ (5.dB), (219

where we put, by definition,

VxS+F+VW=-Y=E+VW, <V,F>=p, (2.16)

for some fixed vector mapping F e C" (D; E’ ),
depending on the imposed boundary conditions.
The result (2.15) follows right away, if to substitute
the expression for the ellectric fileld E=V xS+ F
into the symplectic structure (2.12), having taken
into account that the external differenatial dF =0
in A'(M). The Hamiltonian function (2.13) reduc-
es, respectively, to the following symbolic form:

H,(B,S)=1/2[(B.B)+(VxS+F+VW.VxS+F+VIW)+
H VTX) B V(VX) B> (2.17)

where “(V ><)71 ” means, by definition, the corre-
sponding inverse curl-operation, mapping the diver-
gence-free subspace C", (D;E’)c C"(D;E’)
into itself. As a result from (2.17), the Maxwell
equations (2.1) become a canonical Hamiltonian
system upon the reduced phase space T°(N), en-
dowed with the canonical symplectic structure
(2.15) and the modified Hamiltonian function (2.17).
Really, one obtains easily that

3S/ot:=38H/8B=B~(Vx) V<V,(Vx)' B>, (2.18)
OBJot =—8H[8S = -V x(VxS+F +VW):=-VxE,

where we made use of the definition E=V xS+ F
and the elementary identity VxV =0. Thus, the
second equation of (2.18) coincides with the second
Maxwell equation of (2.1) in the classical form
0B/0t ==V x E. Moreover, from (2.16), owing to
(2.18) one obtains via the differentiation with re-
spectto ¢ € R that

OE/0t=0F |0t +V x0S/0t = 0F [0t + V x B, (2.19)

as well as, owing to (2.2),

<V,0F /ot >=0pJot=—<V,J>. (2.20)

So, we can write down from (2.20) that, up to
non-essential curl-terms V x (-), the following rela-
tionship

OF [0t =—-J 2.21)

holds. Having now substituted (2.21) into (2.19), we
obtain exactly the first Maxwell equation of (2.1):

OE/ot=V xB—J, (2.22)

being supplemented, naturally, with the external
boundary constraint conditions

<V,B>=0, <V,E>=p, 0p/ot+<V,J>=0, (2.23)

owing to the continuity relationship (2.2) and defini-
tion (2.14).

Concerning the wave equations, related
with Hamiltonian system (2.18), we obtain the fol-
lowing: the electric field £ is recovered from the
second eqution as E:=-04/0t—VW, where
wec® (D;R) is some smooth function, depend-
ing on the vector field 4e M .

To retrieve this dependence, we substitute (2.21)
into equation (2.22), having taken into account that
B=VxA4:

&’ Afot* =V (W [ot+<V,A>)=V>A+J. (2.24)

Thereby, if to choose now that the Lorentz con-
dition (2.9) is involved, one obtains from (2.24) the
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corresponding true wave equations in the space-
time, taking into account the imposed external
boundary conditions (2.23).

Nonetheless, the problem of fulfilling a priori
the Lorentz type constraint (2.9) within the canon-
ical Hamiltonian formalism remains still not
solved, that forces us to proceed to analysing the
structure of the Liouville 1-form (2.11) for Max-
well equations in vacuum on a functional manifold
slightly extending M. As the first step, we rewrite
1-from (2.11) as &S) = (f’,dA): (Y +VW,dA)=
=(Y,dA)+(W,-d <V,A>)=(Y,dA)+(W,dn),
where we put, by definition, n:=—<V,4>. Con-

sidering now the elements (7, 4, W )e T" (M x L)
as new canonical variables on the extended cotan-
gent phase space 7" (M x L), where L:=C" (D;R),
we can rewrite the symplectic structure (2.12) in the
following canonical form

o =(dY,AdA)+(dW ,Adn).  (2.25)
Subject to the Hamiltonian function (2.13) we
obtain the expression
H(AY;W)= 1/2[(1/ —~VW.,Y -VW)+, 226
+(Vx A,V x 4)+(n,n)] '
with respect to which the corresponding Hamilto-
nian equations look as follows:
0A/ot =8H/8Y =Y —-VW, Y :=-F,
0Y /ot =—8H |84 =-V x (V x A),
on/ot:=8H[3W =<V,Y -VW >,
oW [ot = —8H [dn =—n. (2.27)

From (2.27) we obtain, owing to external
boundary conditions (2.23), sucessively that
OBJot+V xE=0, o*W/o* =V*W =p, OE/ot-VxB=0,
O Alor —V? A=~V (oW [ot+ <V, 4>).

As is seen, these equations describe electromag-
netic Maxwell equations in vacuum, but without the
Lorentz condition (2.9). Thereby, as above, we will
apply to the symplectic structure (2.25) the reduc-
tion technique devised in [1, 3, 9, 12]. We obtain
that under transformations (2.16) the corresponding
reduced manifold M, becomes endowed with the
symplecic structure

@ = (dB,AdS)+(dW,Adn).  (228)

The corresponding expression for Hamiltonian
(2.37) looks as

H(S,BmW)= (2.29)
=12[(VxS+F+VW,VxS+F+VW)+(B,B)+(nn)].
whose Hamiltonian equations

0S/ot:=8H/5B=B,  OW/ot:=—-5H[5n=-n,

0B/ot:=-3H[8S =-V x(VxS+F +VW)=-VxE, (2.30)

on/ot =8H/3W =—-<V,VxS+F+
+VW >=—<V,E>-AW,

coincide completely with Maxwell equations (2.1)
under conditions (2.16), describing true wave proc-
esses in vacuum, as well as the electromagnetic
Maxwell equations, taking into account a priori
both the imposed external boundary conditions
(2.23) and the Lorentz condition (2.9), solving the
problem mentioned in [4, 5]. Really, it is easy to
obtain from (2.30) that

O*W/ot* —NW =p, OW/ot+<V,A>=0,

VxB=J+0E[ot, 0BJot=-VxE, (231)

Based now on (2.31) and (2.23) one can easlily
calculate [7, 6] the magnetic wave equation

O*Alor —VA=J, (2.32)

supplementing the suitable wave equation on the
scalar potential W e L, finishing the calculations.
Thus, we can formulate the following proposition.

Proposition 2.1. The electromagnetic Maxwell
equations (2.1) jointly with Lorventz condition (2.9)
are equivalent to the Hamiltonian system (2.30)
with respect to the canonical symplectic structure
(2.28) and Hamiltonian function (2.29), which cor-
respondingly reduce to electromagnetic equations
(2.31) and (2.32) under external boundary condi-
tions (2.23).

The obtained above result can be, eventually,
used for developing an alternative quantization pro-
cedure of Maxwell electromagnetic equations, be-
ing free of some quantum operator problems, dis-
cussed in detail in [4]. We hope to consider this as-
pect of quantization problem in a specially devoted
study.

Remark 2.2. If one to consider a motion of a
charged point particle under a Maxwell field, it is
convenient to introduce a trivial fiber bundle struc-
ture p.M—N, such that M =N x G, N:=DcR’
and G=R\ {0}, being the corresponding (abe-
lian) structure Lie group. An analysis similar to the
above gives rise to the reduced upon the space
M = I (é’;)/G =T"(N), £ G, symplectic struc-

ture

o (g, p)=<dp,ndg >+d < A(q,2),&>,, (2.33)

where A(q,g):=<A4(q).dq>+g 'dg is a suitable
connection 1-form on phase space M, with
(¢.p)eT"(N) and g eG. The corresponding ca-
nonical Poisson brackets on T"(N) are easily found
to be {ql’ql }: 0, {pj’ql }: 81]5 {pi7pj }: Fji (C])
forall (¢,p)eT"(N).If one introduces a new mo-
mentum variable p:=p+A(q) on T" (N) > (¢, p),
it is easy to verify that o) 5 @) =< dp,ndq >,
giving rise to the following Poisson brackets [11,
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13, 14] {qiaqj }= O: {ﬁ_,,qi}= Sl/a {ﬁiaﬁj}= Oa
where i, j =1,_3, iff for all 4, j,k = 1,_3 the standard
Maxwell field equations are satisfied on N:
OF, [0q, +OF [0q, + OF, [0q; =0 with the curvature

tensor F,(q)=04,/0q' —=04,/0q’, i,j=13, geN.
Such a construction permits a natural generalization
to the case of non-abelian structure Lie group
yielding a description of Yang-Mills field equations
within the reduction approach, to which we proceed
below.

2.2 The Hamiltonian analysis
of the Yang-Mills type dynamical systems

As above, we start with defining a phase space M
of a particle under a Yang-Mills field in a region
DeR® as M := Dx G, where G is a (not in general
semisimple) Lie group, acting on M from the right.
Over the space M one can define quite naturally a
connection I' (A) to consider the following trivial
principal fiber bundle p: M — N, where N =D,
with the structure group G. Namely, if g€ G, g€ N,
then a connection 1-form on M > (g, g) can be writ-
ten down [3, 8, 9, 10] as

A(g:g)=g" (d + Zi:aiA(i) (q)}g, (2.34)

where {ai eqGi =1,_n} is a basis of the Lie algebra

G of'the Lie group G,and 4, : D — Al (D), i= I,_n,
are the Yang-Mills fields on the physical space
DeR’.

Now one defines the natural left invariant Liouville
form on Mas o (¢;g)=< p,dg > +<y,g"'dg >,

where y e T"(G) and <-,->, denotes as before the
usual Ad-invariant non-degenerate bilinear form on
G xG ,asevidently g”'dg € A'(G)®G . The main
assumption we need to accept for further is that the
connection 1-form is in accordance with the Lie
group G action on M. The latter means that the con-
dition R;A(q;g)= Ad A (¢:g) is satisfied for all

(:2)eM and heG, where R,:G — G means

the right translation by an element # € G on the Lie
group G.

Having stated all preliminary conditions needed
for the reduction to be applied to our model, sup-
pose that the Lie group G canonical action on M is
naturally lifted to that on the cotangent space T"(M)
endowed due to (endowed owing to (2.3) with the
following G-invariant canonical symplectic struc-
ture:

o?(¢,p:8,v)=d pr'a® (¢, p;g,»)
=<dp,ndq >+ (2.35)

+<dy,ng \dg >, +< ydg™', Adg >

for all (q,p;g,y)e T (M) Take now an element

£eG" and assume that its isotropy subgroup
G. =G, thatis Ad,E=¢ forall heG . In the gen-

eral case such an element £ e G can not exist but
trivial £ =0, as it happens, for instance, in the case
of the Lie group G =SL, (R). Then one can con-
struct the reduced phase space [~ (&)/ G symplec-

tomorphic to (T (N ),mé )), where owing to (2.33)
forany (¢,p)eT"(N)
m(z) (¢.p)=<dp,ndq>+< o® (9).6>,=

=<dp,ndq > +Z Ze F()(q)dqi Adq’.

s=11i,j=1

(2.36)

In the above we have expanded the element

&= ea' €G" with respect to the bi-orthogonal
.=l i * . i i L. T
basis {a eg .a, eG<a ,a, >g—6j, i,] —l,n},
with e eR,i=1,3, being some constants, and

as well we denoted by E./.(S) (9), ij =1,3, s=Ln,
the corresponding curvature 2-form

0O® c A2 (N) ® g that is
00 ()= 3 3 0 (q)dg’ ndg’ for any point

s=11i,j=1
g € N. Summarizing calculations accomplished

components,

above, we can formulate the following result.

Theorem 2.3

Suppose the Yang-Mills field (2.34) on the fiber
bundle p:M—N with M = D x G is invariant with
respect to the Lie group G action GxM — M .
Suppose also that an element &eG" is chosen so
that Adj & =¢. Then for the naturally constructed
momentum mapping :T" (M)—) G" (being equiv-
ariant) the reduced phase space |~ (&)/ G=T"(N)
is endowed with the symplectic structure (2.36),
having the following component-wise Poissoin

{pi,CI‘f}é:S{, {qi’q_j}§=0’
{pl,p} ZecF/(l)(q) for all i,j=1,_3 and

@.p)=T" (V).

The respectively extended Poisson bracket on
the whole cotangent space 7"(M) amounts owing to
(2.10) into the following set of Poisson relation-
ships:

brackets form

{ys’yk };; = ;c,:kyr: {anj}i = 6;/:
bor, }g =0={.¢'} {pr, }g = iystgx) (¢) (2:37)
s=1

where i,jzl,_n, c, R, s,k,rzl,_m, are the
structure constants of the Lie algebra G, and we
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made use of the expansion A (q) = z Aj(.s) (q)dqi
j=1

as well we introduced alternative fixed
values e =y, i=lLn. The result (2.37)
can be seen easily if one to make a shift within the
expression  (2.35) as o® 6@, where

6% = , A (g)=g"'dg,g€G. Thereby

A, A
one can obtain in virtue of the invariance properties

of the connection I (A) that

o (¢, psu,y)=<dp,ndg>+d < y(g), Adg,,A(q;e) >4=
=<dp,ndq>+<dAd’ .y (g):~AA(g;e)>;=

=< dp’ /\dq > +i dys Adu’ + iiAfg) (q)lys A dq -
s=1 j=ls=l (238)
_< Ad*g,ly(g),A(qae)/\ A(g.e)>; +

* i iy]cikduk Adu’ + i i ysF;/'(S) (q)dq‘ A dqja

k2s=1 I=1 s=1 iz j=1

where coordinate points (g, psu,y)eT" (M)
are defined as follows: A (e)=) du'a,
s=1

m

Ad;,ly(g)z y(e)= Z::‘ysas for any clement

g €G. Whence one gets right away the Poisson
brackets (2.8) plus additional brackets conne-
cted with conjugated sets of variables

{f eR:s=1,_m}€g* and:{)’s ER:S=1’_’"}EQ

youtt =8 Wut,q' =0,
Dot} =8l e’

oo} ~40(a). ) -0

where j=1,n, k,s=1,m and ge N .

Note here that the suggested above transition
from the symplectic structure ¢ on T* (N) toits
extension ¢ on T* (M) just consists formally in
adding to the symplectic structure o' an exact
part, which transforms it into equivalent one. Look-
ing now at the expressions (2.38), one can infer im-
mediately that an element & := Zesas eG" will be

s=1

(2.39)

invariant with respect to the Ad"-action of the Lie

group G iff {y,,y, }é‘ = Zc;'ker =0 identically
Vs =6s r=1

for all s,kzl,_m, j=1Ln and g€ N. In this and
only this case the reduction scheme elaborated
above will go through.
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Returning attention to the expression (2.57), one
can easily write down the following exact expres-
sion:

o (¢, piu,y)= o (}1, p+ Zn:y.vA(“') (q)u. yj, (2.40)

on the phase space 1" (M) 'B:I(q, p; u, y), where we
apbreviated for brevity < AV (9).dg> as
> Aj(.“) (¢)dq’ . The transformation similar to (2.40)

J=r . . .
was discussed within somewhat different context in

articles [11, 14] containing also a good background
for the infinite dimensional generalization of sym-
plectic structure techniques. Having observed from
(2.40) thmat the simple change of variable

p=p+ Z ysA(S) (q) of the cotangent space T"(N)

s=1
recasts our symplectic structure (2.38) into the old
canonical form (2.35), one obtains that the following
new set of Poisson brackets on T°(M) > (¢, p; u, y)

v = v, {pb, §=0. {p.a’}=8],
=1

ok -0} a0 o
{”X’qi}ézoa {yu“k}é=5f, {M‘Y,ﬁj}ézo, where

k,s=1,m and i,j =1,_n, holds iff the nonabelian

Yang-Mills type field equations GE].(S) / oq' + aFjS“') / oq' +

+oF fog’ + Y e (FAD + FPAD + FO 4D )=0
k=1

are fulfilled for all s=1,m and i,j,/=1,n on the
base manifold V. This effect of complete reduction
of gauge Yang-Mills type variables from the sym-
plectic structure (2.38) is known in literature [11] as
the principle of minimal interaction and appeared to
be useful enough for studying different interacting
systems as in [12, 15]. We plan further to continue
the study of the geometric properties of reduced
symplectic structures connected with such interest-
ing infinite-dimensional coupled dynamical systems
of Yang-Mills-Vlasov, Yang-Mills-Bogolubov and
Yang-Mills-Josephson types [12, 15] as well as their
relationships with associated principal fiber bundles
endowed with canonical connection structures.
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Tanepi FO., Bosk M. 1., Ilpukapnamcovkuu A. A., Ilpukapnamcokuii A. K.

EJIEKTPOMATI'HITHA ITPOBJIEMA JIOPEHIIA
TA AHAJII3 TAMLIBTOHOBOI CTPYKTYPU JUHAMIYHUX CUCTEM THITY
MAKCBEJIA-THT'A-MILJICA HA OCHOBI METOIY PEJIYKIIII

Ipynmyiouucs Ha aHanisi peoyKoBaHux 2eoMempuynux CmpyKnyp Ha po3UaposaHux MHO206UOAX, iH-
8aPIAHMHUX U000 OIi 36UHAUHOL epynu cumempii, n06YO08AHO CUMNIECKMUYHI CINPYKIMYPU ACOYITTIOBAHI 3
dopmamu 38 A3HOCMI HA BIONOBIOHUX 20106HUX PO3ULAPYBAHHAX. IIPONOHYEMbCA 3ACMOCYBAHHI 2AMINbIMO-
HO06020 ananizy ma pedykyii Mapcoena-Betincmetina 0o ounamiunux cucmem Maxceena i Anea-Minca. /la-
HO Onuc e1eKmpoOUHAMIYHUX BAKYYMHUX 61ACMUBOCTHEU, NPOAHANI308AHO 2eOMEeMPULHY NPUPoOy obme-
aicens Jlopenya.

KuarouoBi ciioBa: cumniexmuuna cmpymypa, 2onoeme poauiapyeanhs, oomedcenns Jlopenya.



