Ministry of Education and Science of Ukraine
National University “Kyiv-Mohyla Academy”
Faculty of Informatics

Mathematics Department

Master's thesis

educational level — master

on the topic: “RECOGNIZING GESTURES OF THE UKRAINIAN
DACTYLIC ALPHABET”

By: 2-nd year student

of the educational program “Applied
Mathematics”, 113

Bikchentaev Mykola Oleksiiovych

Supervisor: Hlybovets A. M.,
Doctor of Engineering

Reviewer

(surname and initials)

The master's thesis was defended
with a grade

EC secretary

« » 2023 p.

Kyiv — 2023

CONTENTS

LT 0o L1 Tt A o] o ISP 3
Y [o = o U T o T SRR 4
1.1. Sign Language Definitionccccoovieiieiiicie e 4
1.2. Types of Ukrainian Sign Languagecccceevverierieiieiie e 4
1.3. USL (Ukrainian Sign Language) Alphabet...........c.ccccvviiiiiniininienieeieee 6
2. Approaches to Gesture RECOGNITION........ccuviiiiieeiie e 7
2.1. Glove-Based Gesture ReCOgNItION.........cccveiieieiiie i 7
2.2. CV-Based Gesture RECOgNITIONccvviiiiiiciie e 7
3. System for Recognizing USL Alphabet GeStures.........c..cooevvveiiee e cvie e, 9
3.1. GOOQIE MEAIAPIPE.....eiiee ittt sreenree e 9
3.2, LSTM NEIWOIK ...ttt et 10
TR I D - - L O 1= U1 o [OOSR 13
3.4, MOdel TraiNING......ccceeiiieiie et re et ee e 15
3.5. Model EVaIUALIONccuvviiieicie e 17
3.6. A Program for Gestures RECOgNITION........cccovirieiieiiesie e 21
(OF0] 0 0] 1113 [0 H SR PP PRI 24

RETEIEINCES ..., 25

INTRODUCTION

Sign language is a visual way of communicating used by people who are
deaf or hard of hearing. It involves handshapes, facial expressions, and body
movements to convey meaning. Sign language helps the deaf community interact
with each other and the hearing world, allowing them to fully participate in society.

According to the WHO (World Health Organization) over 5% of the world’s
population — or 430 million people — experience problems with hearing. More than
44,000 people with hearing impairments are registered with the Ukrainian Society
of the Deaf, an all-Ukrainian public organization for the disabled[™,

In this context, applications for interpreting sign language can be very
beneficial as they can narrow the communication gap between sign language users
and those who are not familiar with sign language. They can be used in educational
and healthcare settings to facilitate communication between hearing and non-
hearing people.

Therefore, the aim of this work is to review the techniques for gesture
recognition and develop a system for detecting and classifying gestures of the
Ukrainian dactyl alphabet.

The object of study: Ukrainian sign language, Ukrainian dactyl alphabet,
gesture recognition, LSTM, and Google MediaPipe.

Research methods: analysis of scientific literature.

Objectives of the study:

1. Study the concept of sign language and Ukrainian sign language in

particular.

2. Review approaches to gesture recognition.

3. Build a model for recognizing gestures of the Ukrainian dactyl alphabet.

The work consists of an introduction, three chapters, a conclusion, and a list
of references.

In the first chapter, we study the concept of sign language as well as review
Ukrainian sign language and the Ukrainian dactyl alphabet.

In the second chapter, we review existing approaches to gesture recognition.

The third chapter is devoted to the LSTM network, Google MediaPipe, and
their use for building a model for recognizing gestures of the Ukrainian dacty!l
alphabet. The process of collecting data for the model and evaluating its
effectiveness is also discussed in this section.

The scientific novelty of the obtained results: the paper presents a method
that utilizes hand keypoints for recognizing hand gestures of the Ukrainian dactyl
alphabet. Also, as part of the development of the gesture recognition system, a data
set was collected, where each gesture corresponds to 50 videos of 65 frames.

The practical significance of the results obtained: the model obtained as a
result of the study can be used to interpret the gestures of the Ukrainian dactylic
alphabet. The dataset collected for training this model can be used in other works
to train or validate similar models. The paper might be of use to the ones who are
interested in developing similar systems for gesture recognition.

1. Sign Language
1.1. Sign Language Definition

Sign language is a communication system that relies on visible cues, such as
hand gestures, eye movements, facial expressions, and body language, to convey
meaning. It is primarily used by people who are deaf or hard of hearing, but it can
also be used in other contexts where verbal communication is not possible or
practical.

Although both sign languages and gestures involve the use of the hands (and
other parts of the body), they are somewhat different. Sign languages, like spoken
languages, have evolved over time and have their own grammar and structural
rules, and are used instead of speaking. Gestures, on the other hand, are mostly
used during the verbal communication.

Examples of gestures include waving when saying “Hello” or “Goodbye”,
pointing to an object or place, shrugging to indicate uncertainty, and giving a
thumbs up or thumbs down to indicate approval or disapproval. The gestures just
act as a supplement to verbal communication.

Sign language has many variations across different countries and regions.
These variations reflect the unique cultures and customs of the people who use
them. For instance, American Sign Language (ASL) is different from British Sign
Language (BSL), which is different from Australian Sign Language. This means
that sign language users may have difficulty communicating with people from
other countries, even if they both use sign language!?l.

Today, there are more than 300 different sign languages in the world, spoken
by more than 72 million deaf or hard-of-hearing people worldwidel?l.

1.2. Types of Ukrainian Sign Language

Deaf individuals use two kinds of sign language - conversational sign
language and mimetic sign language (ukr. kanbpkyroua xectoBa MoBa) - that differ
in their linguistic structure and functional purposel®!.

Mimetic sign language, which is used alongside spoken language, is
composed of gestures that function as replacements for spoken words and maintain
the same sequence as words in a typical sentence. Since mimetic sign language
lacks its own grammar, it relies on the grammar of the spoken language. Typically,
it is employed by the deaf in formal situations like conferences, meetings, and so
forth.

Conversational sign language, which we will further refer to as Ukrainian
sign language or USL, differs from mimetic sign language in that it has its own
syntax and sentence construction rules, rather than simply repeating the word order
of spoken language®®l.

To illustrate, in mimetic sign language, the phrase "There's a chair in the
bottom left corner of the room, and a floor lamp is behind the chair" would be
conveyed using several gestures representing individual concepts (left, bottom,
corner, room, to stand, chair, floor lamp) and alphabet letters. In conversational
sign language, however, the same phrase would be demonstrated as follows: the
left hand of the speaker makes a gesture representing the concept of a chair, and
the right hand makes a gesture representing the floor lamp, with both gestures
being performed simultaneously but the left gesture being positioned to the left and
closer to the speaker, thus reflecting the specified spatial relationship between the
two objectstl,

The USL is typically used in a casual and informal setting, where
conversations revolve around everyday events. Therefore, certain concepts are
absent from the language, such as specialized designations that are only used in the
learning processl. When the need arises to express such concepts, deaf people
who have achieved a certain level of education can use mimetic sign language.
However, this does not at all indicate the incompleteness or primitiveness of the
USL, but rather emphasizes its functional purpose. This also explains the absence
of specialized designations in the language's vocabulary, which are always present
in spoken language situations, such as designations for the head, nose, hand, etc.
They are always expressed by pointing to the head, nose, hand, etc. Such gestures
are called indicative gesturest®l,

Indicative gestures are widely used in conversational sign language and have
a fairly wide range of functions. For example, if a deaf person "tells" a
conversation partner the color of their new coat, they can point to a passerby,
thereby showing that their coat color is the same as that of the passerby's coat. The
lexical features of conversational sign language may also be related to kinesics. For
instance, gestures that express the meaning of "going up™ and "going down" differ
only in the direction of movement: upward and downward, respectively®l.

Sign language is an independent language that allows the expression of any
meanings and relationships between them. Therefore, it successfully solves the
communication problem of the deaf in an informal, non-official environment.

Translating from USL to Ukrainian verbal language is a complex scientific
and applied problem, the solution of which requires analyzing the grammar of
Ukrainian sign language, developing translation rules from Ukrainian verbal
language to sign language, and vice versal®l. The absence of large dictionaries and
corpora of Ukrainian sign language increases the complexity of developing a
computer translation system for USL.

Therefore, in this work, we will develop a system for translating gestures
from the USL alphabet which is a less complex task that requires smaller amounts
of data.

1.3. USL (Ukrainian Sign Language) Alphabet

Fingerspelling (or dactylology) is the representation of the letters of
a writing system, and sometimes numeral systems, using only the hands. These
representations are gathered into manual alphabets (also known as finger alphabets,
hand alphabets, or dactyl alphabets) that are often used in deaf education and have
subsequently been adopted as a distinct part of several sign languages!.

The Ukrainian dactyl alphabet is an auxiliary system of Ukrainian sign
language in which each gesture of one hand corresponds to a single letter of the
Ukrainian alphabet. The dactyl alphabet is used for pronouncing auxiliary words,
words that lack gestural representation, as well as when it is necessary to clarify
the meaning of a particular word. The modern Ukrainian dactyl alphabet includes
33 dactyl signs, which is the same as the number of letters in the Ukrainian

21 B
L dvch.
LI
W |

)
L
]

B
%
Qe%:

2
7
I

=
=<
=

Z
f)%l
P

Figure 1. Ukrainian dactyl alphabet [4]

=5,

Each gesture in the Ukrainian dactyl alphabet can be reproduced in three
ways:
e By finger movement;
e By wrist movement;
e By positioning one's fingers in a specific way.
23 gestures of the Ukrainian dactyl alphabet we will call “static” since they
require only positioning one’s fingers in a specific way.
The remaining 10 gestures will be referred to as “dynamic” since they
require one to position one's fingers in a specific way and move either wrist or
finger.

The need for movement when reproducing some gestures is caused by the
similarity of some of these gestures. We can list these similar gestures in the form
of pairs: I-I, U-U, -1, I'-T, II-11, X-3.

2. Approaches to Gesture Recognition

There are two approaches to gesture recognition: glove-based, which
involves wearing some kind of gloves with sensors that capture hand motion and
position in space, and CV-based which uses computer vision techniques and does
not require wearing any sensorstl,

2.1. Glove-Based Gesture Recognition

Gloves with sensors can be used to capture data about hand position and
movement. Such sensors can also quickly provide the exact coordinates of palm
and finger locations and data about their orientation in spacef®.

Nevertheless, despite the precision and variety of data this approach offers,
it is fully dependent on specialized sensors, which may be quite expensive to
purchase and maintain. Moreover, constantly wearing gloves to interpret gestures
can be cumbersomel®],

Figure 2. Wearable glove with sensors [5]

2.2. CV-Based Gesture Recognition

Computer vision or CV is a field of artificial intelligence and computer
science that focuses on enabling computers to interpret and understand the visual
world. It involves developing algorithms and techniques that allow computers to
analyze and interpret images and video data. The CV-based approach does not

require any special equipment, except a computer camera, however, involves
several challenges such as lighting variation, complex backgrounds, noisy images
or videos, or occlusion®!,

We may view hand gesture recognition as an object detection task. Object
detection is a set of computer vision tasks that deal with object localization and
classification within an image or video. Object localization is a computer vision
task that involves identifying the location of one or more objects in an image or
video. Object classification is a computer vision task that assigns a class or
category label to an object in an image or video. Therefore, the goal of an object
detection algorithm is to locate the presence of objects with a bounding box and
assign each object a class label.

There are several approaches to object detection which can be grouped into
two categories: machine learning-based approaches and deep learning-based
approaches®.,

Machine learning-based approaches use computer vision techniques to look
at various features of an image, such as color or object edges, to identify groups of
pixels that may belong to an object. These features are then fed into a machine
learning algorithm, such as a support vector machine (SVM) or random forests
(RDF), to classify the object.

For example, in [7, 8], approaches are presented that use image color spaces
(such as RGB, HSV, and Y-Cb-Cr) to separate the hand from the background of
the image. By separating the hand from the background we would have
information about its shape which can be used to classify the hand gesture. In [9]
Haar-like features are used for posture recognition as well as the AdaBoost
learning algorithm to speed up the performance of the gesture classifier.

The performance of machine learning-based approaches is often limited by
the quality of the features used and requires significant domain expertise to
produce effective results.

On the other hand, deep learning-based approaches use neural networks to
learn features from raw image data automatically and do not require hand-crafted
features. This has led to significant improvements in the accuracy of object
detection systems, and deep learning-based approaches have become state-of-the-
art in the field. Deep learning-based approaches use neural network architectures
like YOLO (You Only Look Once), SSD (Single Shot Detector), or CNN for
object localization and the extraction of the features that are then used for gesture
classification.

For instance, in [10, 11] deep convolutional neural networks (CNN) are used
to classify images with hand gestures. The model proposed in [10] is used to
recognize gestures from the Ukrainian dactyl alphabet and achieves an accuracy of
97%. The model presented in [11] achieves 99% accuracy in recognizing hand
gestures of post-stroke people. In [12, 13] models utilize hand keypoints to classify
hand gestures. In [12] hand keypoints are classified using a single-shot, heuristics-
based classifier that achieves a 0.86% false positive rate and 44.4% recall rate on
the test dataset. In [13] the classifier is based on the LSTM network and achieves
an accuracy of 92.54% on the test dataset.

3. System for Recognizing USL Alphabet Gestures

Since deep learning-based approaches give good results in object detection
and are the most popular in the field of computer vision, in this work, we will be
utilizing two deep neural networks to detect and classify USL alphabet gestures.
The first one, a pre-trained neural network, called HandLandmarker, will be used
to detect a hand on the video and extract its keypointsi*4., The second one will
classify a hand gesture on the video using the extracted keypoints.

3.1. Google MediaPipe

Google MediaPipe is a set of tools and libraries that allow its users to apply
machine learning methods to solve such problems as face detection, hand landmark
detection, or pose landmark detection. Models proposed within the MediaPipe
library are open-source, fully customizable, and can be set up both on mobile
devices and computers.

The HandLandmarker model is a part of the Google MediaPipe library and
can be used to detect and extract hand landmarks from an image or video. This
model is composed of two parts: a single-shot detector, called BlazePalm, which is
used to detect initial hand locations, and a regression model which is used to
extract hand landmarks and handedness (i.e. whether the detected hand is left or
right)it4 191,

HandLandmarker outputs a list of 21 hand keypoint, where each keypoint
has X, y, and z coordinates. Below you can see an image with keypoint names and
their position relative to each other!*4],

L]
g® 12 ®16 0. WRIST 11. MIDDLE_FINGER_DIP
» 1% ® 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 s |1 2. THUMB_MCP 13. RING_FINGER_MCP
6% 107 ¢, 20 3.THUMB.IP 14. RING_FINGER_PIP
o e . [4. THUMB_TIP 15. RING_FINGER_DIP
4 519 43 o 18 5. INDEX_FINGER_MCP 16. RING_FINGER_TIP
3% 17 6. INDEX_FINGER_PIP 17. PINKY_MCP
® 7. INDEX_FINGER_DIP 18. PINKY_PIP
2 8. INDEX_FINGER_TIP 19. PINKY_DIP
1 9. MIDDLE_FINGER_MCP 20. PINKY_TIP
{0 10. MIDDLE_FINGER_PIP

Figure 3. Keypoints output by Google MediaPipe HandLandmarker

3.2. LSTM Network

An LSTM (Long Short-Term Memory) network is a type of recurrent neural
network (RNN) that can learn long-term relationships between input data and is
capable of processing the entire sequence of data, such as video, rather than
individual elements, such as video frames(®l. Since the output of HandLandmarker
is a list of hand landmarks, the LSTM network is well-suited for their processing
and, therefore, will be used as a basis for gesture classifier.

>
LA

Figure 4. LSTM network structure [17]

The LSTM network, displayed in the diagram above, uses input data x; to
calculate the output h; and has a loop that allows information to be passed from
one step of input data processing to the next. We can simplify this diagram by
representing LSTM as a set of repeating “modules”, where each module passes
data to a successorft’l. All modules have the same structure and consist of three
“gates”: forget gate, input gate, and output gate. Gates control how the information
in a sequence of data comes into, is stored in, and leaves the network™7],

® ® ©
r i t

% @ D
A | st
|

&) ®

Figure 5. Simplified LSTM network structure [17]

v

&——H
>

One of the most important concepts on which LSTM is built is called cell
state. Cell state is the long-term memory of the network which is available to each
LSTM module. The state of the long-term memory is changed using gates,
mentioned abovel*,

Ci_1

®
@
v

Figure 6. LSTM cell state [17]

The first gate (the forget gate) is responsible for determining how much of
the information from long-term memory we can "forget.” To do this, we multiply
the cell state, denoted by C;_,, by vector f; = {v,, v,, ..., v} € [0,1]", which is
calculated using the input data x,, output of the previous LSTM module h,_4,
weight W, bias by, and sigmoid function*™:

o= o (W lhisz] + by)

Figure 7. LSTM forget gate [17]

In the f; vector, a value close to 0 indicates that the corresponding long-term
memory component is not relevant, and vice versa, a value close to 1 indicates that
the component is relevant. We can think of the components of this vector as filters
that let more information pass through them when the values are close to 1[81,

The second gate (the input gate) determines what new information should be
added to the cell state. Firstly, we calculate a vector of updated long-term memory
values denoted by C,!*"1. This vector shows us how much each component of the
long-term memory (cell state) of the network needs to be updated with new datal®l,

it =0 (Wirlhe—r,] + by)
Cy = tanh(Wo-[hy 1, @] + bo)

Figure 8. LSTM input gate [17]

When we calculate €, we use the tanh (hyperbolic tangent) function
because its values lie in the range [—1,1]17). The possibility of negative values
here is necessary if we want to reduce the influence of the update vector
component on the cell statel*®l,

eX —e™*

tanh = ———
an eX+e™*

C, is then multiplied by vector i, which is similar to f; in its purpose.
However, in this case, a value close to 0 in vector i, will indicate that a
corresponding element of the cell state should not be updated(*7],

-
f1 i‘r_%t Ci=fixCio1+iy+C,

Figure 9. Updating LSTM cell state [17]

The result of the multiplication of C, by i, is added to the cell state resulting
in the long-term memory of the network being updated.

The third and last gate (the output gate) decides which data will be output
by the LSTM modulel!’l, To determine the output we will use the output of the
previous LSTM module h;_,, input data x,, and the newly updated cell state C;.

hy
‘%D op =0 (W, [hi—1, 2] + bo)
hi—1 Lo] N ht o tanh (Ct)

Ty

Figure 10. LSTM output gate [17]

Firstly, we create a filter o, , which is similar to f; in the forget gate; the
inputs are the same as well as the activation function. This filter is applied to the
updated cell state C, to make sure that only the necessary information is output.
Before applying the filter, however, we pass the cell state to the tanh function so
that output values were in the [—1,1] interval™.,

3.3. Dataset Creation

Deep neural networks require a significant amount of data to train them. For
the Ukrainian dactyl alphabet, there are no publicly-available data sets that can be
used to train the model, so it was decided to create our own set.

The resulting dataset consists of 33 classes. Each class corresponds to 50
videos, which are further divided into 65 frames.

Initially, it was decided to use YouTube videos to create the dataset.
However, even though the quality of the videos found was high, the number of
videos was too small to train the network and required additional preprocessing. In
total, six videos from YouTube were used, as well as videos from the Spread The
Sign resource, an online multilingual sign languages dictionary.

Each of the six YouTube videos was divided into video segments depicting a
particular gesture of the dactyl alphabet. After that, the video fragments were
divided into 65 frames; if a video fragment consisted of fewer frames, it was
"looped" by adding the original frames to the end of the fragment.

To record the rest of the video, a program was developed in the Python
programming language using the OpenCV and Google MediaPipe libraries. The
program uses a webcam to record a 65-frame video. After recording, the video
frames are saved in JPG format on a computer disk.

After each recorded video, the program pauses for 5 seconds to let you
prepare for the recording of the next video. During the video recording, the
program displays the code of the gesture, for which a video is being recorded as
well as the number of the video.

I
‘ B | OpenCV Feed

:

{ ©
Figure 11. Screenshot of a program for recording gesture videos

Code for the video recording program can be seen below. The
capture_videos function reads frames from the computer web camera and saves
them as JPG files on the computer disk using the imwrite function. Frames are

also shown in the program window with Google MediaPipe keypoints drawn on
them using the draw_styled_landmarks function.

def capture_videos(mp_holistic, mp_drawing, letter, videos_nums, frames_num, destination):
cap = cv2.VideoCapture(9)
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
for video_num in videos_nums:
if not os.path.exists(os.path.join(destination, letter, f'{letter} {video_num}')):
os.makedirs(os.path.join(destination, letter, f'{letter}_{video_num}'))
for frame_num in range(frames_num):
ret, frame = cap.read()
image, results = mediapipe_detection(frame, holistic)
image_copy = image.copy()
draw_styled_landmarks(image_copy, results, mp_drawing)
if frame_num ==
cv2.putText(image_copy, '!STARTING COLLECTION IN 5 SEC. GET READY!', (120, 200),
cv2.FONT_HERSHEY_SIMPLEX, 1, (@, 255, ©), 4, cv2.LINE_AA)
cv2.putText(image_copy,
f'Collecting frames for {letter} Video number {video_num}',
(15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (@, @, 255), 1, cv2.LINE_AA)
else:
cv2.putText(image_copy,
f'Collecting frames for {letter} Video number {video_num}',
(15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (@, ©, 255), 1, cv2.LINE_AA)
cv2.imwrite(os.path.join(destination,
letter,
f'{letter}_{video_num}',
f'{letter}_{video_num}_Frame_{frame_num + 1}.jpg'), image)
cv2.imshow('OpenCV Feed', image_copy)
if frame_num == 0:
cv2.waitKey(56000)
if cv2.waitKey(10) & OxFF == ord('q'):
break
cap.release()

cv2.destroyAllWindows ()
Figure 12. The capture_videos program

On Figure 13 you can see a few videoframes from the dataset with keypoints
(obtained using Google MediaPipe) displayed on top of them. It is worth noting
that only the right hands are depicted in all video frames in the resulting dataset.

After collecting the required number of video frames for each gesture,
Google MediaPipe and NumPy are used to extract key points from each video
frame and save them to a computer disk. This significantly speeds up the
processing of keypoints, as we can no longer need to work with images, instead we
can work with lists of numbers.

600 800 1000 1200

Figure 13. Sample of images from the collected dataset

3.4. Model Training

The gesture classification model consists of 6 layers. The first 3 layers use
LSTMs with the activation function tanh (hyperbolic tangent). The remaining
layers are regular densely-connected layers, 2 of which use ReL.U as an activation
function, while the last layer uses Softmax.

X _ ,—X e’Vi
, Softmax(y); = SNSTL ReLU(x) = max (0, x)
j=1

tanh (x) = m

Adam algorithm is used as an optimizer for the model. Optimizers are
algorithms that are used to adjust learnable parameters of the model (i.e. weights
and biases) to minimize the loss function and maximize mode efficiency. Adam
optimization algorithm is an extension of stochastic gradient descent and is widely
used for deep learning applications in computer vision and natural language
processing(?l,

The cross-entropy loss will be used as a loss function. This function is often
used for multi-class classification problems and is defined as follows:

n

CE = — Z t;log (Sofrmax(s);)

i=1

where n is the total number of classes, ¢; is a true probability for the i-th
class, and Softmax(s); is a predicted probability for the same class2%,

The model was trained on an NVIDIA GeForce 1660 Ti GPU. The training
lasted 1416 epochs, with the model's accuracy stopping at 99% after 960 epochs.
The training dataset was 20% of the total dataset. The total number of parameters,
used by the model, is 188321.

In the images below, we can see the number of parameters used by the mode
and how the model's accuracy and loss function value changed during the training.

Layer (type) Output Shape Param #
lstmilz (LSTM) ===========E;0ne, 65, 5&):: 32?23]
1stm_13 (LSTM) (None, 65, 128) 93816
1stm_14 (LSTM) (None, 64) 49408
dense 12 (Dense) (None, 64) 4160
dense 13 (Dense) (None, 32) 2080
dense 14 (Dense) (None, 33) 1089

Total params: 188,321
Trainable params: 188,321
Non-trainable params: @

Figure 14. Model layers and number of paramaters

N

Figure 16. Changes in the model loss function value with an increasing number of epochs

3.5. Model Evaluation

To evaluate the performance of the trained model we will use metrics like
classification accuracy, precision, recall, and F1 score; we will also plot the
confusion matrix and ROC curve.

Classification accuracy (or accuracy) is the ratio of correct predictions to
the total number of predictions madel?*.

Num.of Correct Predictions

A =
ccuracy Total Num.of Predicitons

The accuracy of the model for gesture classification on the test dataset is
98.4%.

In [49]: print(f'Model accuracy: {round(accuracy_score(ytrue, yhat) * 1ee, 2)}%')

Model accuracy: 98.4%

Figure 17. Model accuracy

However, this metric may be misleading if the dataset is imbalanced (i.e.
when some classes have more samples than others). For this, we will supplement
accuracy with other metrics that measure classification performance.

A confusion matrix is a n X n matrix, where n is the number of classes the
model is trying to predict. It provides a detailed summary of the model's
predictions and the actual values from a dataset by grouping the classification
results into four categories: True Positive, False Positive, True Negatives, and
False Negatives(?!,

Suppose we are dealing with a binary classification problem, where we have
a set of samples categorized into two classes: Yes and No. Additionally, we have
developed our own classifier that assigns a class to each input sample. After
evaluating our model on 100 samples, we obtained the following outcome.

n = 100 Predicted No Predicted Yes
Actual No 40 10
Actual Yes 5 45

In this case, the four categories, mentioned above, can be interpreted the
following way:

e True Positives (TP): the cases when both actual and predicted values are
“Yes”.

e False Positives (FP): the cases in which the actual value is “No” but the
predicted value is “Yes”.

e True Negatives (TN): the cases when both actual and predicted values are
“No”.

False Negatives (FN): the cases in which the actual value is “Yes” but

the predicted value is “No”.
Applied to the example above, values will be the following:

e True Positives (TP): 45

False Positives (FP): 10
e True Negatives (TN): 40

False Negatives (FN): 5
In the case of the model for classifying USL alphabet gestures, the confusion

matrix will be a 33 x 33 matrix, which can be seen below.

OO0 0DO0O0D00O000D0O00O0D0D0000O0O0O0D0D0OD0O0O0DO0OO0O0O00OCO

COO0O0COO0OO0O0O0OO0O0O0COO0OO0OO0OO00O0O0O0O00O0O0O0C0O0O0O0OOOOO®O
00000000O000000000000000000000.00
OO0 0000000000000 O00O0O000O0OO0OO0O0O0Om@O OO
OO0 0 0000000000000 00D0DO0O000O0ODO0O0O00O@OO OO
000000000000000000000000000.00000
OO 0000000000000 0000O0O00D0DO0O0DO0OMOOO0O0O OO
0000000100000000000000000“0000000
OO0 0D00D00O000D0O00O00D0O0000O000D0OWOOOO0OODOOO
OO0 0000000000000 O00O0O0O00WOOOOO0OO0OO OO
OO0 0 0000000000000 00O0O0OO0OWOODO0OO0OO0OO0OO0O0O OO
000000000000000000000“00000000000
OO0 0 0000000000000 00O0ODWVWOO0ODO0O0ODO0OO0OO0OO0OO0OO OO
COO0O0COO0OO0O0O0OO00O0CO0COO0OO0OOCO0OMOO0OOoO0O0OO0OOO0OOOOO
00000000OOOOOOOOOOEOOOOOOOOOOOOOO

OOO0OOOOOOOGOOOOO.DOOODOOOOOOODOD
000DOOODODDDODDG.DDGOODOOODODDDOD
000000000000000.00000000000000000
OOO0OOODODODOD“OODDOOODOOODODODOD
COO0O0COO0OO0O0O0OO0O0OMSTOOCOCOO0OOOO0OO0OOO0OOOOOOOO
OOO000000000.00000000000000000000
OO0 0000000000000 000O000 00000000 OO

Confusion Matrix

OO0 000000CO0OO0OMO OO0 00000DO0O00D0O0OD0OO0ODO0OO0OOOO
OO 000000 ONOOOODOOO0ODO0OO0O0OO0OO00O0ODODO0OO0OO0O0OO0O0 OO
OO0 00000 WOO0O0DO0ODODO0DO0OO0DO00DO0ODO0OO0O0DO0OD0DOD0O0OO0OO0OO0OO0OO OO
COO0O0COCOO OO0 O0COOO0OO0OO0C0O00OO0O0O0O0O0C0O0O0O0OOO0OOOO
OO 0000 WVWOOO0OO0DO0DO0ODO0OO0DO0OO0D0O0O0OO0O0D0DO0O0DO0O0OO0OO00O00O OO
OO0 00O OO0 O00 0000000000000 0000000 OCOO
[eeololol-loelololeoloNoleoleollololololeololelololololeloelololNoNoNolNoNol
OO0.00000DODODOOODDOOODOOODODODOD
OO INOO0OO0O00O0000CO0OD0D000D000DO0O00D0O0OD0O0ODO0OO0OO OO
OO OO OO0 O0OO0O0O0CO0OO0OO0OO0OO00O00O0OO0O0O00O0O0O0OOO0OOOO
RO OO0 O0D00O0000O0D0O0D000D00O0O00D0D0D0D0O0O0OO000O OO

0 T € € ¢+ S 9 L 8 6 0T TT &1 €1 HT ST 9T LT 81 61 OC 1Z TZ € ¥ S 9C LI 8Z 6T 0E 1 €
|2ge snuL

i
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Predicted Label

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 18. Model confusion matrix

Using the values from the confusion matrix we can calculate precision and

recall for each class using the following formulas!?*:

TP
TP+ FN

TP
TP + FP’

Recall

Precision

Precision refers to the percentage of positive identifications that were
accurate, while recall informs us about the proportion of actual positives that were

identified correctly.

To comprehensively assess model performance, it is necessary to consider
both precision and recall. However, enhancing precision typically leads to a
decrease in recall, and vice versa.

The F1 score is the harmonic mean between precision and recall. It provides
a value between 0 and 1, indicating the precision of the classifier (how many
instances are classified correctly) and its robustness (it does not miss relevant
instances)?!. The F1 score can be calculated using the following formula:

2 * Precision * Recall
F1 =

Precision * Recall

Below we can see precision, recall, and F1 score calculated for each class of
the USL alphabet gesture classification model.

precision recall fl-score support

a 1.6@ 1.e@ 1.88 7
1 1.6@ 1.e@ 1.88 8
2 1.6@ 1.e@ 1.88 5
3 1.6@ 1.8 1.88 1@
4 1.6@ 1.8 1.88 6
5 1.6@ 1.8 1.88 1
=] 1.6 1.8 1.88 6
7 1.6 .28 @.93 E
2 1.6@ 1.6 1.08 6
] 1.6@ 1.6 1.08 2
18 1.68 1.6 1.08 3
11 1.68 1.88 1.88 7
12 1.68 a.75 a.86 12
13 a.57 1.88 a.73 4
14 1.88 1.88 1.88 11
15 1.08 1.e8 1.08 1a
16 1.08 1.e8 1.08 1a
17 1.08 1l.0@ 1.08 9
18 1.08 1.08 1.08 13
1o 1.08 1.08 1.08 8
28 1.08 1.08 1.08 6
21 1.68 1.e8 1.08 11
22 1.68 1.e8 1.08 8
23 1.68 1.e8 1.08 6
24 1.68 1.e@ 1.08 6
25 a.e2 1.e@ @8.96 11
26 1.68 1.e@ 1.08 3
27 1.68 1.8 1.08 1@
28 1.68 1.8 1.08 2
20 1.68 1.8 1.08 2
EL] 1.68 1.8 1.08 1a
31 1.68 1.8 1.08 E
22 1.68 1.6 1.08 9
accuracy @8.08 2t@
macro avg a.c08 a.09 .98 2ta8
weighted avg 28.99 8.98 8.98 258

Figure 19. Precision, recall, and F1 score calculate for each class

The ROC (Receiver Operating Characteristic) curve is a graphical
representation of the trade-off between the true positive rate (TPR) and the false
positive rate (FPR) as the classification threshold of the model is varied(??,

True positive rate is a synonym for recall, which was mentioned earlier; the
false positive rate is defined as follows:

FPR = 2p TN

The curve is created by plotting the TPR on the y-axis against the FPR on
the x-axis for different threshold values. Below you can see an example of a ROC
curve.

-
P s TP vs. FP rate at
7 one decision
7 threshold
e

é 7
£ /.
= I TP vs. FP rate at

another decision

I threshold
!
- l’
0 FP Rate 1

Figure 20. ROC curve example [22]

AUC (Area Under the Curve) measures the entire two-dimensional area
underneath the entire ROC curve from (0,0) to (1,1). The AUC gives a general
measure of how well the model performs across all possible thresholds. The higher
the AUC, the more accurate the model is in predicting 0 classes as 0 and 1 classes
as 11221,

AUC is scale-invariant since it measures how well accurate the predictions
are rather than their absolute values. AUC is also classification-threshold-invariant
as it measures the quality of the model’s predictions irrespective of the chosen
classification threshold.

ROC curves are commonly utilized in scenarios involving binary
classification, where the true positive rate (TPR) and false positive rate (FPR) can
be clearly defined. However, when dealing with multiclass classification, as in our
case, determining the TPR or FPR requires transforming the output into a binary
form. This can be done in 2 different ways/?!:

e The One-vs-Rest (OvR) scheme: compares each class against all the

others.

e The One-vs-One (OvO) scheme: compares every unique pairwise

combination of classes.

To evaluate the model for classifying USL alphabet gestures we will use the
One-vs-Rest scheme. This strategy consists in computing a ROC curve per each of
the n classes. In each step, a given class is regarded as the positive class and the
remaining classes are regarded as the negative class as a bulk.

Below you can see a ROC curve that measures the performance of the USL
alphabet gestures classifier plotted using the OvR technique.

Micro-averaged One-vs-Rest
Receiver Operating Characteristic

1.04 v
4
’
#
#
#
,I
0.8 4
#
4
/I
]
B "
e 0.6 1 //’
Y
#
= i
3 s
o #
v 0.4 e
2 e
= ’
#
#
’I
0.2 R4
s
,I
” —— micro-average OvR (AUC = 1.00)
0.0 1 . === chance level (AUC = 0.5)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 21. Model ROC curve

3.6. A Program for Gestures Recognition

A program to classify USL alphabet hand gestures is written in Python
programming language and uses a video feed from a web camera to detect and
classify hand gestures in real-time. The operation of the program is supported by
libraries such as OpenCV, which is used to display a program window as well as
classification results, and Google MediaPipe, which extracts hand keypoints from
video frames.

Extracted keypoints are then processed by a pre-trained classifier that
outputs a probability distribution with probabilities for each of the 33 letters of the
Ukrainian alphabet. Three letters with the highest probabilities are shown in the
program window.

|m 1 USL Alphabet Gestures = [m] X

Figure 22. Screenshot of a program for gesture recognition

Figure 21 displays a screenshot of the program window that displays
classification results for a gesture corresponding to the letter “B” of the Ukrainian
alphabet. Since cyrillic letters are not supported by the fonts, provided by OpenCV,
all letters from the Ukrainian alphabet were transliterated.

Gesture detection and classification are carried out only when a hand is

(P2

visible to the web camera. By pressing “q” on the keyboard one can shut down the
program. Below you can see a function that preforms gesture recognition.

def interpret_gestures(model, ukrainian_alphabet_indexed, window_size = 65, verbose = False):
sequence = []
colors = [(245,117,16), (117,245,16), (16,117,245)]
cap = cv2.VideoCapture(9)
with mp_hands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5, max_num_hands=2) as
hands:
while cap.isOpened():
ret, frame = cap.read()
image, results = mediapipe_detection(frame, hands)
if results.multi_hand_landmarks:
draw_styled_hands_landmarks(image, results)
keypoints = extract_hands_keypoints(results)
if(len(keypoints) == 63):
sequence.append(keypoints)
sequence = sequence[-window_size:]
if len(sequence) == window_size:
try:
expanded_sequence = np.expand_dims(sequence, axis=0)
res = model.predict(expanded_sequence)[0]
res_enumerated = list(enumerate(res))
res_sorted = sorted(res_enumerated, key = lambda x: x[1])
res_sorted.reverse()
most_likely predictions = list(map(lambda item: (labels[item[©]], item[1]),
res_sorted))
most_likely prediction_letters = get_letters(most_likely predictions,
ukrainian_alphabet_indexed)[:3]
if verbose:
print("Most Likely Letter:", most_likely prediction_letters[0])
print(most_likely_prediction_letters)
image = score_viz(most_likely prediction_letters, image, colors)
except:
print("Something went wrong!")
else:
sequence = []
cv2.imshow('USL Alphabet Gestures', image)
if cv2.waitKey(10) & OxFF == ord('q'):
break
cap.release()

cv2.destroyAllWindows ()
Figure 23. The interpret_gestures function

This function reads 65 frames from a web camera and passes them to the
Google MediaPipe model for keypoints extraction. Number of frames read can be
changed using the window_size argument of the function.

Extracted keypoints are then passed to the classifier. The classification
results are then transformed into a list of tuples using the get_letters function.
Each tuple will contain a transliterated letter of the Ukrainian alphabet and the
probability corresponding to it.

Three predictions with the highest probabilities are then shown on the screen
using the score_viz function.

CONCLUSION

In this paper, the concepts of sign language, on the example of the Ukrainian
sign language, and the Ukrainian dactylic alphabet were considered. Different
approaches to gesture recognition were considered and a model based on LSTM
and Google MediaPipe was built to classify Ukrainian dactylic alphabet gestures.

Comparing the resulting model with similar works, it can be noted that its
accuracy is higher than that of the models presented in [12] and [10], where it is
equal to 92.54% and 97% respectively.

To train the model, a dataset of video recordings of Ukrainian dactylic
alphabet gestures was collected, where each gesture corresponds to 50 videos of 65
frames each. To record video gestures, a program was created in the Python
programming language.

The classifier for the Ukrainian dactylic alphabet gestures was used to
develop a program that, using a video stream from a computer webcam, recognizes
the gesture shown and displays the recognition result on the screen.

The program can be further improved by adding the ability to compose
sentences from the detected letters of the Ukrainian dactylic alphabet.

REFERENCES

. JIronu 3 Bajiamu CiIyXy NoTpeOy0Th OCOOMBOI yBaru 1 3aXUCTy B MEPioJ1
BO€HHOI arpecii // Cexpemapiam Ynoenosascenozo Bepxosnoi Paou
Ykpainu 3 npae nroounu. URL:
https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-
potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi
(visited 03.06.2023).

. International Day of Sign Languages // United Nations. URL.:
https://www.un.org/en/observances/sign-languages-day (visited
04.06.2023).

. Kpak FO.B., bapmak O.B., C.O. PomanunuH. Y3arajibHeHi rpaMaTH4HI
KOHCTPYKIi JJIs1 aBTOMAaTU30BAaHOTO MEPEKIIay 3 YKpaiHChKOi MOBHU Ha
YKpaiHCBKY *ecTOoBY MOBY // LlImyunuii inmenexm. 2011. Ne3. C. 136-
146. URL.:
http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-
Krak.pdf?sequence=1 (visited 03.06.2023).

. 3acenko B.B., Kyns6inga C.B. Jlaktumnosnoris // Enyuxionedis cyuacuoi
Vrpainu. Kuis: [HcTuTyT eHImMKIoneauaHux gociigxessb. 2007. T Ne7.
C. 496. URL: https://lib.iitta.gov.ua/711107/ (visited 04.06.2023).

. Munir Oudah, Ali Al-Naji, Ali Al-Naji. Hand Gesture Recognition Based
on Computer Vision: A Review of Techniques // Journal of Imaging 6,
no. 8: 73. 2020. URL.: https://doi.org/10.3390/jimaging6080073 (visited
03.06.2023).

. L. Dipietro, A. M. Sabatini and P. Dario. A Survey of Glove-Based
Systems and Their Applications. // IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews). 2008*.* vol. 38, no.
4. P. 461-482. URL: http://dx.doi.org/10.1109/TSMCC.2008.923862
(visited 03.06.2023).

. Shaik K.B., Ganesan P., Kalist V., Sathish B.S., Jenitha J.M.M.
Comparative study of skin color detection and segmentation in HSV and
YCDbCr color space // Procedia Comput. Sci. 2015. P. 41-48.

. Zarit B.D., Super B.J., Quek F.K.H. Comparison of five color models in
skin pixel classification // In Proceedings of the International Workshop
on Recognition, Analysis, and Tracking of Faces and Gestures in Real-
Time Systems, In Conjunction with ICCV99 (Cat. No. PR00378). Corfu,
Greece. 1999. P. 58-63.

. Chen Q., Georganas N.D., Petriu E.M. Real-time vision-based hand
gesture recognition using haar-like features // In Proceedings of the 2007
IEEE Instrumentation & measurement technology conference IMTC.
Warsaw, Poland. 2007. P. 1-6.

https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi
https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi
https://www.un.org/en/observances/sign-languages-day
http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-Krak.pdf?sequence=1
http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-Krak.pdf?sequence=1
https://lib.iitta.gov.ua/711107/
https://doi.org/10.3390/jimaging6080073
http://dx.doi.org/10.1109/TSMCC.2008.923862

10.Konapatiok C. C. Po3nizHaBaHHS Ta MOACITIOBAHHS KECTIB YKPATHCHKOT
JTAKTHILHOT a0ETKH 3a JOTIOMOTO0 KPOCIIIaTHOPMEHHUX TEXHOJIOTIH //
2021.

11. Alnaim N., Abbod, M., Albar, A. Hand Gesture Recognition Using
Convolutional Neural Network for People Who Have Experienced A
Stroke /I In Proceedings of the 2019 3rd International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT). Ankara,
Turkey. 2019. P. 1-6.

12. Mapuyxk II.K., JleBkiBcbkuii B.JI., Mapuyk I'.B., I'onenko M.1O.
Cucrema po3Ii3HaBaHHS JAaKTUILHOT MOBHU YKpaiHChKO1 abeTku // 2022.
URL: https://doi.org/10.32782/2663-5941/2022.6/19 (visited
03.06.2023).

13. George Sung, Kanstantsin Sokal, Esha Uboweja, Valentin Bazarevsky,
Jonathan Baccash, Eduard Gabriel Bazavan, Chuo-Ling Chang, Matthias
Grundmann. On-device Real-time Hand Gesture Recognition // 2021.
URL.: https://doi.org/10.48550/arXiv.2111.00038 (visited 03.06.2023).

14. Hand landmarks detection guide // Google MediaPipe. URL.:
https://developers.google.com/mediapipe/solutions/vision/hand_landmar
ker (visited 04.06.2023).

15. MediaPipe Hand (Lite/Full) Model Card. URL.:
https://drive.google.com/file/d/1-rmigTfuCbBPW_IFHkh3fO0-
U_InGrWpa/preview (visited 03.06.2023).

16. Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink,
Jurgen Schmidhuber. LSTM: A Search Space Odyssey // IEEE
Transactions on Neural Networks and Learning Systems. 2017. vol. 28,
no. 10. P. 2222-2232. URL.: https://doi.org/10.48550/arXiv.1503.04069
(visited 03.06.2023).

17. Christopher Olah. Understanding LSTM Networks // 2015. URL.:
https://colah.github.io/posts/2015-08-Understanding-LSTMSs/ (visited
03.06.2023).

18. Rian Dolphin. LSTM Networks | A Detailed Explanation // 2020. URL.:
https://towardsdatascience.com/Istm-networks-a-detailed-explanation-
8faebaefc7f9 (visited 03.06.2023).

19. Jason Brownlee. Gentle Introduction to the Adam Optimization
Algorithm for Deep Learning // 2017. URL.:
https://machinelearningmastery.com/adam-optimization-algorithm-for-
deep-learning/ (visited 03.06.2023).

20. Raul Goémez Bruballa. Understanding Categorical Cross-Entropy Loss,
Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss,
and all those confusing names // 2018. URL.:
https://gombru.github.io/2018/05/23/cross_entropy loss/ (visited
03.06.2023).

21. irem Tanriverdi. Model Evaluation Metrics in Machine Learning // 2021.
URL.: https://medium.com/analytics-vidhya/model-evaluation-metrics-in-
machine-learning-928999fb79b2 (visited 03.06.2023).

https://doi.org/10.32782/2663-5941/2022.6/19
https://doi.org/10.48550/arXiv.2111.00038
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview
https://doi.org/10.48550/arXiv.1503.04069
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2

22. Google Machine Learning Education. Classification: ROC Curve and
AUC. URL: https://developers.google.com/machine-learning/crash-
course/classification/roc-and-auc (visited 03.06.2023).

23. Multiclass Receiver Operating Characteristic (ROC) // scikit-learn.
URL.: https://scikit-
learn.org/stable/auto_examples/model_selection/plot_roc.html (visited
04.06.2023)

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

