
Ministry of Education and Science of Ukraine

National University “Kyiv-Mohyla Academy”

Faculty of Informatics

Mathematics Department

Master's thesis

educational level – master

on the topic: “RECOGNIZING GESTURES OF THE UKRAINIAN

DACTYLIC ALPHABET”

By: 2-nd year student

of the educational program “Applied

Mathematics”, 113

Bikchentaev Mykola Oleksiiovych

Supervisor: Hlybovets A. M.,

Doctor of Engineering

Reviewer______________________

(surname and initials)

The master's thesis was defended

with a grade _____________________

EC secretary ___________________

«____» ________________ 2023 р.

Kyiv – 2023

CONTENTS

Introduction ... 3

1. Sign Language ... 4

1.1. Sign Language Definition .. 4

1.2. Types of Ukrainian Sign Language ... 4

1.3. USL (Ukrainian Sign Language) Alphabet .. 6

2. Approaches to Gesture Recognition.. 7

2.1. Glove-Based Gesture Recognition ... 7

2.2. CV-Based Gesture Recognition ... 7

3. System for Recognizing USL Alphabet Gestures ... 9

3.1. Google MediaPipe .. 9

3.2. LSTM Network .. 10

3.3. Dataset Creation ... 13

3.4. Model Training ... 15

3.5. Model Evaluation ... 17

3.6. A Program for Gestures Recognition ... 21

Conclusion ... 24

References ... 25

INTRODUCTION

Sign language is a visual way of communicating used by people who are

deaf or hard of hearing. It involves handshapes, facial expressions, and body

movements to convey meaning. Sign language helps the deaf community interact

with each other and the hearing world, allowing them to fully participate in society.

According to the WHO (World Health Organization) over 5% of the world’s

population – or 430 million people – experience problems with hearing. More than

44,000 people with hearing impairments are registered with the Ukrainian Society

of the Deaf, an all-Ukrainian public organization for the disabled[1].

In this context, applications for interpreting sign language can be very

beneficial as they can narrow the communication gap between sign language users

and those who are not familiar with sign language. They can be used in educational

and healthcare settings to facilitate communication between hearing and non-

hearing people.

Therefore, the aim of this work is to review the techniques for gesture

recognition and develop a system for detecting and classifying gestures of the

Ukrainian dactyl alphabet.

The object of study: Ukrainian sign language, Ukrainian dactyl alphabet,

gesture recognition, LSTM, and Google MediaPipe.

Research methods: analysis of scientific literature.

Objectives of the study:

1. Study the concept of sign language and Ukrainian sign language in

particular.

2. Review approaches to gesture recognition.

3. Build a model for recognizing gestures of the Ukrainian dactyl alphabet.

The work consists of an introduction, three chapters, a conclusion, and a list

of references.

In the first chapter, we study the concept of sign language as well as review

Ukrainian sign language and the Ukrainian dactyl alphabet.

In the second chapter, we review existing approaches to gesture recognition.

The third chapter is devoted to the LSTM network, Google MediaPipe, and

their use for building a model for recognizing gestures of the Ukrainian dactyl

alphabet. The process of collecting data for the model and evaluating its

effectiveness is also discussed in this section.

The scientific novelty of the obtained results: the paper presents a method

that utilizes hand keypoints for recognizing hand gestures of the Ukrainian dactyl

alphabet. Also, as part of the development of the gesture recognition system, a data

set was collected, where each gesture corresponds to 50 videos of 65 frames.

The practical significance of the results obtained: the model obtained as a

result of the study can be used to interpret the gestures of the Ukrainian dactylic

alphabet. The dataset collected for training this model can be used in other works

to train or validate similar models. The paper might be of use to the ones who are

interested in developing similar systems for gesture recognition.

1. Sign Language

1.1. Sign Language Definition

Sign language is a communication system that relies on visible cues, such as

hand gestures, eye movements, facial expressions, and body language, to convey

meaning. It is primarily used by people who are deaf or hard of hearing, but it can

also be used in other contexts where verbal communication is not possible or

practical.

Although both sign languages and gestures involve the use of the hands (and

other parts of the body), they are somewhat different. Sign languages, like spoken

languages, have evolved over time and have their own grammar and structural

rules, and are used instead of speaking. Gestures, on the other hand, are mostly

used during the verbal communication.

Examples of gestures include waving when saying “Hello” or “Goodbye”,

pointing to an object or place, shrugging to indicate uncertainty, and giving a

thumbs up or thumbs down to indicate approval or disapproval. The gestures just

act as a supplement to verbal communication.

Sign language has many variations across different countries and regions.

These variations reflect the unique cultures and customs of the people who use

them. For instance, American Sign Language (ASL) is different from British Sign

Language (BSL), which is different from Australian Sign Language. This means

that sign language users may have difficulty communicating with people from

other countries, even if they both use sign language[2].

Today, there are more than 300 different sign languages in the world, spoken

by more than 72 million deaf or hard-of-hearing people worldwide[2].

1.2. Types of Ukrainian Sign Language

Deaf individuals use two kinds of sign language - conversational sign

language and mimetic sign language (ukr. калькуюча жестова мова) - that differ

in their linguistic structure and functional purpose[3].

Mimetic sign language, which is used alongside spoken language, is

composed of gestures that function as replacements for spoken words and maintain

the same sequence as words in a typical sentence. Since mimetic sign language

lacks its own grammar, it relies on the grammar of the spoken language. Typically,

it is employed by the deaf in formal situations like conferences, meetings, and so

forth.

Conversational sign language, which we will further refer to as Ukrainian

sign language or USL, differs from mimetic sign language in that it has its own

syntax and sentence construction rules, rather than simply repeating the word order

of spoken language[3].

To illustrate, in mimetic sign language, the phrase "There's a chair in the

bottom left corner of the room, and a floor lamp is behind the chair" would be

conveyed using several gestures representing individual concepts (left, bottom,

corner, room, to stand, chair, floor lamp) and alphabet letters. In conversational

sign language, however, the same phrase would be demonstrated as follows: the

left hand of the speaker makes a gesture representing the concept of a chair, and

the right hand makes a gesture representing the floor lamp, with both gestures

being performed simultaneously but the left gesture being positioned to the left and

closer to the speaker, thus reflecting the specified spatial relationship between the

two objects[3].

The USL is typically used in a casual and informal setting, where

conversations revolve around everyday events. Therefore, certain concepts are

absent from the language, such as specialized designations that are only used in the

learning process[3]. When the need arises to express such concepts, deaf people

who have achieved a certain level of education can use mimetic sign language.

However, this does not at all indicate the incompleteness or primitiveness of the

USL, but rather emphasizes its functional purpose. This also explains the absence

of specialized designations in the language's vocabulary, which are always present

in spoken language situations, such as designations for the head, nose, hand, etc.

They are always expressed by pointing to the head, nose, hand, etc. Such gestures

are called indicative gestures[3].

Indicative gestures are widely used in conversational sign language and have

a fairly wide range of functions. For example, if a deaf person "tells" a

conversation partner the color of their new coat, they can point to a passerby,

thereby showing that their coat color is the same as that of the passerby's coat. The

lexical features of conversational sign language may also be related to kinesics. For

instance, gestures that express the meaning of "going up" and "going down" differ

only in the direction of movement: upward and downward, respectively[3].

Sign language is an independent language that allows the expression of any

meanings and relationships between them. Therefore, it successfully solves the

communication problem of the deaf in an informal, non-official environment.

Translating from USL to Ukrainian verbal language is a complex scientific

and applied problem, the solution of which requires analyzing the grammar of

Ukrainian sign language, developing translation rules from Ukrainian verbal

language to sign language, and vice versa[3]. The absence of large dictionaries and

corpora of Ukrainian sign language increases the complexity of developing a

computer translation system for USL.

Therefore, in this work, we will develop a system for translating gestures

from the USL alphabet which is a less complex task that requires smaller amounts

of data.

1.3. USL (Ukrainian Sign Language) Alphabet

Fingerspelling (or dactylology) is the representation of the letters of

a writing system, and sometimes numeral systems, using only the hands. These

representations are gathered into manual alphabets (also known as finger alphabets,

hand alphabets, or dactyl alphabets) that are often used in deaf education and have

subsequently been adopted as a distinct part of several sign languages[4].

The Ukrainian dactyl alphabet is an auxiliary system of Ukrainian sign

language in which each gesture of one hand corresponds to a single letter of the

Ukrainian alphabet. The dactyl alphabet is used for pronouncing auxiliary words,

words that lack gestural representation, as well as when it is necessary to clarify

the meaning of a particular word. The modern Ukrainian dactyl alphabet includes

33 dactyl signs, which is the same as the number of letters in the Ukrainian

alphabet[4].

Figure 1. Ukrainian dactyl alphabet [4]

Each gesture in the Ukrainian dactyl alphabet can be reproduced in three

ways:

• By finger movement;

• By wrist movement;

• By positioning one's fingers in a specific way.

23 gestures of the Ukrainian dactyl alphabet we will call “static” since they

require only positioning one’s fingers in a specific way.

The remaining 10 gestures will be referred to as “dynamic” since they

require one to position one's fingers in a specific way and move either wrist or

finger.

The need for movement when reproducing some gestures is caused by the

similarity of some of these gestures. We can list these similar gestures in the form

of pairs: І-Ї, И-Й, Д-Ц, Г-Ґ, Ш-Щ, Х-З.

2. Approaches to Gesture Recognition

There are two approaches to gesture recognition: glove-based, which

involves wearing some kind of gloves with sensors that capture hand motion and

position in space, and CV-based which uses computer vision techniques and does

not require wearing any sensors[5].

2.1. Glove-Based Gesture Recognition

Gloves with sensors can be used to capture data about hand position and

movement. Such sensors can also quickly provide the exact coordinates of palm

and finger locations and data about their orientation in space[6].

Nevertheless, despite the precision and variety of data this approach offers,

it is fully dependent on specialized sensors, which may be quite expensive to

purchase and maintain. Moreover, constantly wearing gloves to interpret gestures

can be cumbersome[6].

Figure 2. Wearable glove with sensors [5]

2.2. CV-Based Gesture Recognition

Computer vision or CV is a field of artificial intelligence and computer

science that focuses on enabling computers to interpret and understand the visual

world. It involves developing algorithms and techniques that allow computers to

analyze and interpret images and video data. The CV-based approach does not

require any special equipment, except a computer camera, however, involves

several challenges such as lighting variation, complex backgrounds, noisy images

or videos, or occlusion[5].

We may view hand gesture recognition as an object detection task. Object

detection is a set of computer vision tasks that deal with object localization and

classification within an image or video. Object localization is a computer vision

task that involves identifying the location of one or more objects in an image or

video. Object classification is a computer vision task that assigns a class or

category label to an object in an image or video. Therefore, the goal of an object

detection algorithm is to locate the presence of objects with a bounding box and

assign each object a class label.

There are several approaches to object detection which can be grouped into

two categories: machine learning-based approaches and deep learning-based

approaches[5].

Machine learning-based approaches use computer vision techniques to look

at various features of an image, such as color or object edges, to identify groups of

pixels that may belong to an object. These features are then fed into a machine

learning algorithm, such as a support vector machine (SVM) or random forests

(RDF), to classify the object.

For example, in [7, 8], approaches are presented that use image color spaces

(such as RGB, HSV, and Y-Cb-Cr) to separate the hand from the background of

the image. By separating the hand from the background we would have

information about its shape which can be used to classify the hand gesture. In [9]

Haar-like features are used for posture recognition as well as the AdaBoost

learning algorithm to speed up the performance of the gesture classifier.

The performance of machine learning-based approaches is often limited by

the quality of the features used and requires significant domain expertise to

produce effective results.

On the other hand, deep learning-based approaches use neural networks to

learn features from raw image data automatically and do not require hand-crafted

features. This has led to significant improvements in the accuracy of object

detection systems, and deep learning-based approaches have become state-of-the-

art in the field. Deep learning-based approaches use neural network architectures

like YOLO (You Only Look Once), SSD (Single Shot Detector), or CNN for

object localization and the extraction of the features that are then used for gesture

classification.

For instance, in [10, 11] deep convolutional neural networks (CNN) are used

to classify images with hand gestures. The model proposed in [10] is used to

recognize gestures from the Ukrainian dactyl alphabet and achieves an accuracy of

97%. The model presented in [11] achieves 99% accuracy in recognizing hand

gestures of post-stroke people. In [12, 13] models utilize hand keypoints to classify

hand gestures. In [12] hand keypoints are classified using a single-shot, heuristics-

based classifier that achieves a 0.86% false positive rate and 44.4% recall rate on

the test dataset. In [13] the classifier is based on the LSTM network and achieves

an accuracy of 92.54% on the test dataset.

3. System for Recognizing USL Alphabet Gestures

Since deep learning-based approaches give good results in object detection

and are the most popular in the field of computer vision, in this work, we will be

utilizing two deep neural networks to detect and classify USL alphabet gestures.

The first one, a pre-trained neural network, called HandLandmarker, will be used

to detect a hand on the video and extract its keypoints[14]. The second one will

classify a hand gesture on the video using the extracted keypoints.

3.1. Google MediaPipe

Google MediaPipe is a set of tools and libraries that allow its users to apply

machine learning methods to solve such problems as face detection, hand landmark

detection, or pose landmark detection. Models proposed within the MediaPipe

library are open-source, fully customizable, and can be set up both on mobile

devices and computers.

The HandLandmarker model is a part of the Google MediaPipe library and

can be used to detect and extract hand landmarks from an image or video. This

model is composed of two parts: a single-shot detector, called BlazePalm, which is

used to detect initial hand locations, and a regression model which is used to

extract hand landmarks and handedness (i.e. whether the detected hand is left or

right)[14, 15].

HandLandmarker outputs a list of 21 hand keypoint, where each keypoint

has x, y, and z coordinates. Below you can see an image with keypoint names and

their position relative to each other[14].

Figure 3. Keypoints output by Google MediaPipe HandLandmarker

3.2. LSTM Network

An LSTM (Long Short-Term Memory) network is a type of recurrent neural

network (RNN) that can learn long-term relationships between input data and is

capable of processing the entire sequence of data, such as video, rather than

individual elements, such as video frames[16]. Since the output of HandLandmarker

is a list of hand landmarks, the LSTM network is well-suited for their processing

and, therefore, will be used as a basis for gesture classifier.

Figure 4. LSTM network structure [17]

The LSTM network, displayed in the diagram above, uses input data 𝑥𝑡 to

calculate the output ℎ𝑡 and has a loop that allows information to be passed from

one step of input data processing to the next. We can simplify this diagram by

representing LSTM as a set of repeating “modules”, where each module passes

data to a successor[17]. All modules have the same structure and consist of three

“gates”: forget gate, input gate, and output gate. Gates control how the information

in a sequence of data comes into, is stored in, and leaves the network[17].

Figure 5. Simplified LSTM network structure [17]

One of the most important concepts on which LSTM is built is called cell

state. Cell state is the long-term memory of the network which is available to each

LSTM module. The state of the long-term memory is changed using gates,

mentioned above[17].

Figure 6. LSTM cell state [17]

The first gate (the forget gate) is responsible for determining how much of

the information from long-term memory we can "forget.” To do this, we multiply

the cell state, denoted by 𝐶𝑡−1, by vector 𝑓𝑡 = {𝑣1, 𝑣2, … , 𝑣𝑛} ∈ [0,1]n, which is

calculated using the input data 𝑥𝑡, output of the previous LSTM module ℎ𝑡−1,

weight 𝑊𝑓, bias 𝑏𝑓, and sigmoid function[17]:

𝜎 =
𝑒𝑥

𝑒𝑥 + 1

Figure 7. LSTM forget gate [17]

In the 𝑓𝑡 vector, a value close to 0 indicates that the corresponding long-term

memory component is not relevant, and vice versa, a value close to 1 indicates that

the component is relevant. We can think of the components of this vector as filters

that let more information pass through them when the values are close to 1[18].

The second gate (the input gate) determines what new information should be

added to the cell state. Firstly, we calculate a vector of updated long-term memory

values denoted by 𝐶̃𝑡
[17]. This vector shows us how much each component of the

long-term memory (cell state) of the network needs to be updated with new data[18].

Figure 8. LSTM input gate [17]

When we calculate 𝐶̃𝑡 we use the 𝑡𝑎𝑛ℎ (hyperbolic tangent) function

because its values lie in the range [−1,1][17]. The possibility of negative values

here is necessary if we want to reduce the influence of the update vector

component on the cell state[18].

𝑡𝑎𝑛ℎ =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

𝐶̃𝑡 is then multiplied by vector 𝑖𝑡, which is similar to 𝑓𝑡 in its purpose.

However, in this case, a value close to 0 in vector 𝑖𝑡 will indicate that a

corresponding element of the cell state should not be updated[17].

Figure 9. Updating LSTM cell state [17]

The result of the multiplication of 𝐶̃𝑡 by 𝑖𝑡 is added to the cell state resulting

in the long-term memory of the network being updated.

The third and last gate (the output gate) decides which data will be output

by the LSTM module[17]. To determine the output we will use the output of the

previous LSTM module ℎ𝑡−1, input data 𝑥𝑡, and the newly updated cell state 𝐶𝑡.

Figure 10. LSTM output gate [17]

Firstly, we create a filter 𝑜𝑡 , which is similar to 𝑓𝑡 in the forget gate; the

inputs are the same as well as the activation function. This filter is applied to the

updated cell state 𝐶𝑡 to make sure that only the necessary information is output.

Before applying the filter, however, we pass the cell state to the tanh function so

that output values were in the [−1,1] interval[17].

3.3. Dataset Creation

Deep neural networks require a significant amount of data to train them. For

the Ukrainian dactyl alphabet, there are no publicly-available data sets that can be

used to train the model, so it was decided to create our own set.

The resulting dataset consists of 33 classes. Each class corresponds to 50

videos, which are further divided into 65 frames.

Initially, it was decided to use YouTube videos to create the dataset.

However, even though the quality of the videos found was high, the number of

videos was too small to train the network and required additional preprocessing. In

total, six videos from YouTube were used, as well as videos from the Spread The

Sign resource, an online multilingual sign languages dictionary.

Each of the six YouTube videos was divided into video segments depicting a

particular gesture of the dactyl alphabet. After that, the video fragments were

divided into 65 frames; if a video fragment consisted of fewer frames, it was

"looped" by adding the original frames to the end of the fragment.

To record the rest of the video, a program was developed in the Python

programming language using the OpenCV and Google MediaPipe libraries. The

program uses a webcam to record a 65-frame video. After recording, the video

frames are saved in JPG format on a computer disk.

After each recorded video, the program pauses for 5 seconds to let you

prepare for the recording of the next video. During the video recording, the

program displays the code of the gesture, for which a video is being recorded as

well as the number of the video.

Figure 11. Screenshot of a program for recording gesture videos

Code for the video recording program can be seen below. The

capture_videos function reads frames from the computer web camera and saves

them as JPG files on the computer disk using the imwrite function. Frames are

also shown in the program window with Google MediaPipe keypoints drawn on

them using the draw_styled_landmarks function.

def capture_videos(mp_holistic, mp_drawing, letter, videos_nums, frames_num, destination):

 cap = cv2.VideoCapture(0)

 with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:

 for video_num in videos_nums:

 if not os.path.exists(os.path.join(destination, letter, f'{letter}_{video_num}')):

 os.makedirs(os.path.join(destination, letter, f'{letter}_{video_num}'))

 for frame_num in range(frames_num):

 ret, frame = cap.read()

 image, results = mediapipe_detection(frame, holistic)

 image_copy = image.copy()

 draw_styled_landmarks(image_copy, results, mp_drawing)

 if frame_num == 0:

 cv2.putText(image_copy, '!STARTING COLLECTION IN 5 SEC. GET READY!', (120, 200),

 cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 4, cv2.LINE_AA)

 cv2.putText(image_copy,

 f'Collecting frames for {letter} Video number {video_num}',

 (15, 12),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)

 else:

 cv2.putText(image_copy,

 f'Collecting frames for {letter} Video number {video_num}',

 (15, 12),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)

 cv2.imwrite(os.path.join(destination,

 letter,

 f'{letter}_{video_num}',

 f'{letter}_{video_num}_Frame_{frame_num + 1}.jpg'), image)

 cv2.imshow('OpenCV Feed', image_copy)

 if frame_num == 0:

 cv2.waitKey(5000)

 if cv2.waitKey(10) & 0xFF == ord('q'):

 break

 cap.release()

 cv2.destroyAllWindows()
Figure 12. The capture_videos program

On Figure 13 you can see a few videoframes from the dataset with keypoints

(obtained using Google MediaPipe) displayed on top of them. It is worth noting

that only the right hands are depicted in all video frames in the resulting dataset.

After collecting the required number of video frames for each gesture,

Google MediaPipe and NumPy are used to extract key points from each video

frame and save them to a computer disk. This significantly speeds up the

processing of keypoints, as we can no longer need to work with images, instead we

can work with lists of numbers.

Figure 13. Sample of images from the collected dataset

3.4. Model Training

The gesture classification model consists of 6 layers. The first 3 layers use

LSTMs with the activation function 𝑡𝑎𝑛ℎ (hyperbolic tangent). The remaining

layers are regular densely-connected layers, 2 of which use ReLU as an activation

function, while the last layer uses Softmax.

tanh (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦)𝑖 =

𝑒𝑦𝑖

∑ 𝑒𝑦𝑗𝑛
𝑗=1

, 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)

Adam algorithm is used as an optimizer for the model. Optimizers are

algorithms that are used to adjust learnable parameters of the model (i.e. weights

and biases) to minimize the loss function and maximize mode efficiency. Adam

optimization algorithm is an extension of stochastic gradient descent and is widely

used for deep learning applications in computer vision and natural language

processing[19].

The cross-entropy loss will be used as a loss function. This function is often

used for multi-class classification problems and is defined as follows:

𝐶𝐸 = − ∑ 𝑡𝑖log (𝑆𝑜𝑓𝑟𝑚𝑎𝑥(𝑠)𝑖)

𝑛

𝑖=1

where 𝑛 is the total number of classes, 𝑡𝑖 is a true probability for the 𝑖-th

class, and 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)𝑖 is a predicted probability for the same class[20].

The model was trained on an NVIDIA GeForce 1660 Ti GPU. The training

lasted 1416 epochs, with the model's accuracy stopping at 99% after 960 epochs.

The training dataset was 20% of the total dataset. The total number of parameters,

used by the model, is 188321.

In the images below, we can see the number of parameters used by the mode

and how the model's accuracy and loss function value changed during the training.

Figure 14. Model layers and number of paramaters

Figure 15. Changes in model accuracy as the number of epochs increases

Figure 16. Changes in the model loss function value with an increasing number of epochs

3.5. Model Evaluation

To evaluate the performance of the trained model we will use metrics like

classification accuracy, precision, recall, and F1 score; we will also plot the

confusion matrix and ROC curve.

Classification accuracy (or accuracy) is the ratio of correct predictions to

the total number of predictions made[21].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚. 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠

The accuracy of the model for gesture classification on the test dataset is

98.4%.

Figure 17. Model accuracy

However, this metric may be misleading if the dataset is imbalanced (i.e.

when some classes have more samples than others). For this, we will supplement

accuracy with other metrics that measure classification performance.

A confusion matrix is a 𝑛 × 𝑛 matrix, where 𝑛 is the number of classes the

model is trying to predict. It provides a detailed summary of the model's

predictions and the actual values from a dataset by grouping the classification

results into four categories: True Positive, False Positive, True Negatives, and

False Negatives[21].

Suppose we are dealing with a binary classification problem, where we have

a set of samples categorized into two classes: Yes and No. Additionally, we have

developed our own classifier that assigns a class to each input sample. After

evaluating our model on 100 samples, we obtained the following outcome.

𝑛 = 100 Predicted No Predicted Yes

Actual No 40 10

Actual Yes 5 45

In this case, the four categories, mentioned above, can be interpreted the

following way:

• True Positives (TP): the cases when both actual and predicted values are

“Yes”.

• False Positives (FP): the cases in which the actual value is “No” but the

predicted value is “Yes”.

• True Negatives (TN): the cases when both actual and predicted values are

“No”.

• False Negatives (FN): the cases in which the actual value is “Yes” but

the predicted value is “No”.

Applied to the example above, values will be the following:

• True Positives (TP): 45

• False Positives (FP): 10

• True Negatives (TN): 40

• False Negatives (FN): 5

In the case of the model for classifying USL alphabet gestures, the confusion

matrix will be a 33 × 33 matrix, which can be seen below.

Figure 18. Model confusion matrix

Using the values from the confusion matrix we can calculate precision and

recall for each class using the following formulas[21]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision refers to the percentage of positive identifications that were

accurate, while recall informs us about the proportion of actual positives that were

identified correctly.

To comprehensively assess model performance, it is necessary to consider

both precision and recall. However, enhancing precision typically leads to a

decrease in recall, and vice versa.

The F1 score is the harmonic mean between precision and recall. It provides

a value between 0 and 1, indicating the precision of the classifier (how many

instances are classified correctly) and its robustness (it does not miss relevant

instances)[21]. The F1 score can be calculated using the following formula:

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

Below we can see precision, recall, and F1 score calculated for each class of

the USL alphabet gesture classification model.

Figure 19. Precision, recall, and F1 score calculate for each class

The ROC (Receiver Operating Characteristic) curve is a graphical

representation of the trade-off between the true positive rate (TPR) and the false

positive rate (FPR) as the classification threshold of the model is varied[22].

True positive rate is a synonym for recall, which was mentioned earlier; the

false positive rate is defined as follows:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

The curve is created by plotting the TPR on the y-axis against the FPR on

the x-axis for different threshold values. Below you can see an example of a ROC

curve.

Figure 20. ROC curve example [22]

AUC (Area Under the Curve) measures the entire two-dimensional area

underneath the entire ROC curve from (0,0) to (1,1). The AUC gives a general

measure of how well the model performs across all possible thresholds. The higher

the AUC, the more accurate the model is in predicting 0 classes as 0 and 1 classes

as 1[22].

AUC is scale-invariant since it measures how well accurate the predictions

are rather than their absolute values. AUC is also classification-threshold-invariant

as it measures the quality of the model’s predictions irrespective of the chosen

classification threshold.

ROC curves are commonly utilized in scenarios involving binary

classification, where the true positive rate (TPR) and false positive rate (FPR) can

be clearly defined. However, when dealing with multiclass classification, as in our

case, determining the TPR or FPR requires transforming the output into a binary

form. This can be done in 2 different ways[23]:

• The One-vs-Rest (OvR) scheme: compares each class against all the

others.

• The One-vs-One (OvO) scheme: compares every unique pairwise

combination of classes.

To evaluate the model for classifying USL alphabet gestures we will use the

One-vs-Rest scheme. This strategy consists in computing a ROC curve per each of

the 𝑛 classes. In each step, a given class is regarded as the positive class and the

remaining classes are regarded as the negative class as a bulk.

Below you can see a ROC curve that measures the performance of the USL

alphabet gestures classifier plotted using the OvR technique.

Figure 21. Model ROC curve

3.6. A Program for Gestures Recognition

A program to classify USL alphabet hand gestures is written in Python

programming language and uses a video feed from a web camera to detect and

classify hand gestures in real-time. The operation of the program is supported by

libraries such as OpenCV, which is used to display a program window as well as

classification results, and Google MediaPipe, which extracts hand keypoints from

video frames.

Extracted keypoints are then processed by a pre-trained classifier that

outputs a probability distribution with probabilities for each of the 33 letters of the

Ukrainian alphabet. Three letters with the highest probabilities are shown in the

program window.

Figure 22. Screenshot of a program for gesture recognition

Figure 21 displays a screenshot of the program window that displays

classification results for a gesture corresponding to the letter “В” of the Ukrainian

alphabet. Since сyrillic letters are not supported by the fonts, provided by OpenCV,

all letters from the Ukrainian alphabet were transliterated.

Gesture detection and classification are carried out only when a hand is

visible to the web camera. By pressing “q” on the keyboard one can shut down the

program. Below you can see a function that preforms gesture recognition.

def interpret_gestures(model, ukrainian_alphabet_indexed, window_size = 65, verbose = False):

 sequence = []

 colors = [(245,117,16), (117,245,16), (16,117,245)]

 cap = cv2.VideoCapture(0)

 with mp_hands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5, max_num_hands=2) as

hands:

 while cap.isOpened():

 ret, frame = cap.read()

 image, results = mediapipe_detection(frame, hands)

 if results.multi_hand_landmarks:

 draw_styled_hands_landmarks(image, results)

 keypoints = extract_hands_keypoints(results)

 if(len(keypoints) == 63):

 sequence.append(keypoints)

 sequence = sequence[-window_size:]

 if len(sequence) == window_size:

 try:

 expanded_sequence = np.expand_dims(sequence, axis=0)

 res = model.predict(expanded_sequence)[0]

 res_enumerated = list(enumerate(res))

 res_sorted = sorted(res_enumerated, key = lambda x: x[1])

 res_sorted.reverse()

 most_likely_predictions = list(map(lambda item: (labels[item[0]], item[1]),

 res_sorted))

 most_likely_prediction_letters = get_letters(most_likely_predictions,

 ukrainian_alphabet_indexed)[:3]

 if verbose:

 print("Most Likely Letter:", most_likely_prediction_letters[0])

 print(most_likely_prediction_letters)

 image = score_viz(most_likely_prediction_letters, image, colors)

 except:

 print("Something went wrong!")

 else:

 sequence = []

 cv2.imshow('USL Alphabet Gestures', image)

 if cv2.waitKey(10) & 0xFF == ord('q'):

 break

 cap.release()

 cv2.destroyAllWindows()
Figure 23. The interpret_gestures function

This function reads 65 frames from a web camera and passes them to the

Google MediaPipe model for keypoints extraction. Number of frames read can be

changed using the window_size argument of the function.

Extracted keypoints are then passed to the classifier. The classification

results are then transformed into a list of tuples using the get_letters function.

Each tuple will contain a transliterated letter of the Ukrainian alphabet and the

probability corresponding to it.

Three predictions with the highest probabilities are then shown on the screen

using the score_viz function.

CONCLUSION

In this paper, the concepts of sign language, on the example of the Ukrainian

sign language, and the Ukrainian dactylic alphabet were considered. Different

approaches to gesture recognition were considered and a model based on LSTM

and Google MediaPipe was built to classify Ukrainian dactylic alphabet gestures.

Comparing the resulting model with similar works, it can be noted that its

accuracy is higher than that of the models presented in [12] and [10], where it is

equal to 92.54% and 97% respectively.

To train the model, a dataset of video recordings of Ukrainian dactylic

alphabet gestures was collected, where each gesture corresponds to 50 videos of 65

frames each. To record video gestures, a program was created in the Python

programming language.

The classifier for the Ukrainian dactylic alphabet gestures was used to

develop a program that, using a video stream from a computer webcam, recognizes

the gesture shown and displays the recognition result on the screen.

The program can be further improved by adding the ability to compose

sentences from the detected letters of the Ukrainian dactylic alphabet.

REFERENCES

1. Люди з вадами слуху потребують особливої уваги і захисту в період

воєнної агресії // Секретаріат Уповноваженого Верховної Ради

України з прав людини. URL:

https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-

potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi

(visited 03.06.2023).

2. International Day of Sign Languages // United Nations. URL:

https://www.un.org/en/observances/sign-languages-day (visited

04.06.2023).

3. Крак Ю.В., Бармак О.В., С.О. Романишин. Узагальнені граматичні

конструкції для автоматизованого перекладу з української мови на

українську жестову мову // Штучний інтелект. 2011. №3. С. 136-

146. URL:

http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-

Krak.pdf?sequence=1 (visited 03.06.2023).

4. Засенко В.В., Кульбіда С.В. Дактилологія // Енциклопедія сучасної

України. Київ: Інститут енциклопедичних досліджень. 2007. Т №7.

С. 496. URL: https://lib.iitta.gov.ua/711107/ (visited 04.06.2023).

5. Munir Oudah, Ali Al-Naji, Ali Al-Naji. Hand Gesture Recognition Based

on Computer Vision: A Review of Techniques // Journal of Imaging 6,

no. 8: 73. 2020. URL: https://doi.org/10.3390/jimaging6080073 (visited

03.06.2023).

6. L. Dipietro, A. M. Sabatini and P. Dario. A Survey of Glove-Based

Systems and Their Applications. // IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews). 2008*.* vol. 38, no.

4. P. 461-482. URL: http://dx.doi.org/10.1109/TSMCC.2008.923862

(visited 03.06.2023).

7. Shaik K.B., Ganesan P., Kalist V., Sathish B.S., Jenitha J.M.M.

Comparative study of skin color detection and segmentation in HSV and

YCbCr color space // Procedia Comput. Sci. 2015. P. 41-48.

8. Zarit B.D., Super B.J., Quek F.K.H. Comparison of five color models in

skin pixel classification // In Proceedings of the International Workshop

on Recognition, Analysis, and Tracking of Faces and Gestures in Real-

Time Systems, In Conjunction with ICCV’99 (Cat. No. PR00378). Corfu,

Greece. 1999. P. 58-63.

9. Chen Q., Georganas N.D., Petriu E.M. Real-time vision-based hand

gesture recognition using haar-like features // In Proceedings of the 2007

IEEE Instrumentation & measurement technology conference IMTC.

Warsaw, Poland. 2007. P. 1-6.

https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi
https://ombudsman.gov.ua/news_details/lyudi-z-vadami-sluhu-potrebuyut-osoblivoyi-uvagi-i-zahistu-v-period-voyennoyi-agresiyi
https://www.un.org/en/observances/sign-languages-day
http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-Krak.pdf?sequence=1
http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59837/11-Krak.pdf?sequence=1
https://lib.iitta.gov.ua/711107/
https://doi.org/10.3390/jimaging6080073
http://dx.doi.org/10.1109/TSMCC.2008.923862

10. Кондратюк С. С. Розпізнавання та моделювання жестів української

дактильної абетки за допомогою кросплатформених технологій //

2021.

11. Alnaim N., Abbod, M., Albar, A. Hand Gesture Recognition Using

Convolutional Neural Network for People Who Have Experienced A

Stroke // In Proceedings of the 2019 3rd International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT). Ankara,

Turkey. 2019. P. 1-6.

12. Марчук Д.К., Левківський В.Л., Марчук Г.В., Голенко М.Ю.

Система розпізнавання дактильної мови української абетки // 2022.

URL: https://doi.org/10.32782/2663-5941/2022.6/19 (visited

03.06.2023).

13. George Sung, Kanstantsin Sokal, Esha Uboweja, Valentin Bazarevsky,

Jonathan Baccash, Eduard Gabriel Bazavan, Chuo-Ling Chang, Matthias

Grundmann. On-device Real-time Hand Gesture Recognition // 2021.

URL: https://doi.org/10.48550/arXiv.2111.00038 (visited 03.06.2023).

14. Hand landmarks detection guide // Google MediaPipe. URL:

https://developers.google.com/mediapipe/solutions/vision/hand_landmar

ker (visited 04.06.2023).

15. MediaPipe Hand (Lite/Full) Model Card. URL:

https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-

U_lnGrWpg/preview (visited 03.06.2023).

16. Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink,

Jurgen Schmidhuber. LSTM: A Search Space Odyssey // IEEE

Transactions on Neural Networks and Learning Systems. 2017. vol. 28,

no. 10. P. 2222-2232. URL: https://doi.org/10.48550/arXiv.1503.04069

(visited 03.06.2023).

17. Christopher Olah. Understanding LSTM Networks // 2015. URL:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (visited

03.06.2023).

18. Rian Dolphin. LSTM Networks | A Detailed Explanation // 2020. URL:

https://towardsdatascience.com/lstm-networks-a-detailed-explanation-

8fae6aefc7f9 (visited 03.06.2023).

19. Jason Brownlee. Gentle Introduction to the Adam Optimization

Algorithm for Deep Learning // 2017. URL:

https://machinelearningmastery.com/adam-optimization-algorithm-for-

deep-learning/ (visited 03.06.2023).

20. Raúl Gómez Bruballa. Understanding Categorical Cross-Entropy Loss,

Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss,

and all those confusing names // 2018. URL:

https://gombru.github.io/2018/05/23/cross_entropy_loss/ (visited

03.06.2023).

21. İrem Tanrıverdi. Model Evaluation Metrics in Machine Learning // 2021.

URL: https://medium.com/analytics-vidhya/model-evaluation-metrics-in-

machine-learning-928999fb79b2 (visited 03.06.2023).

https://doi.org/10.32782/2663-5941/2022.6/19
https://doi.org/10.48550/arXiv.2111.00038
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview
https://doi.org/10.48550/arXiv.1503.04069
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2
https://medium.com/analytics-vidhya/model-evaluation-metrics-in-machine-learning-928999fb79b2

22. Google Machine Learning Education. Classification: ROC Curve and

AUC. URL: https://developers.google.com/machine-learning/crash-

course/classification/roc-and-auc (visited 03.06.2023).

23. Multiclass Receiver Operating Characteristic (ROC) // scikit-learn.

URL: https://scikit-

learn.org/stable/auto_examples/model_selection/plot_roc.html (visited

04.06.2023)

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

