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NUMBER OF ISOMERS IN ICOSAHEDRAL FULLERENE 

C60 A N D Cgo SERIES 

The numbers of isomers in icosahedral fullerene C60 and Cg0 series have been enumerated by 

applying Polya's theorem and analysing symmetries of their molecular frameworks. Cycle indices 

have been deduced for chiral and achiral derivatives. Program operating with polydigital numbers 

have been applied to calculate numbers of isomeric derivatives up to C540. 

Buckminsterfullerene (Buckyball) C60 made a stir 

in the XX century. It was called "the most beautiful 

molecule" [1] and is worthy of this name. It has a nearly 

spherical molecule of the icosahedral point group k with 

120 symmetry operations. 

Buckyball has a lot of relatives that form the 

fullerene family. This term is assigned to carbon mole­

cules Cn with so-called isolated pentagon cycles ar­

ranged between hexagons on the cage surface, which 

means that any couple of pentagons is separated by at 

least one hexagon. Buckminsterfullerene is the simplest 

fullerene. 

Enumeration of isomers arising by addition to, or 

substitution in, a basic framework is a mathematical 

problem with many practical applications in chemis­

try. Therefore, it is no wonder that such a problem as 

applied to carbon clusters interests both chemists and 

mathematicians. One of the most convenient methods 

for solving this problem is based on Polya ' s and related 

theorems [2—10]. Thus, Balasubramanian [8—10] has 

enumerated the isomers of polysubstituted fullerene 

cages by using the cycle index of the rotational sub­

group of the point group of the fullerene cage under 

consideration. 
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Other methods of isomer counting of carbon clus­
ters have also been used. Brocas [11] has presented a 
systematic enumeration of dodecahedrane derivatives, 
which is based on double cosets and framework groups. 
Hflsselbarth [12] has reported an alternative method that 
is based on tables of marks. Mead [13] has presented 
an alternative method and compared above methods by 
using common problems. 

Fujita [14,15] has reported a systematic enumera­
tion of chemical structures derived from dodecahedrane 
and soccerane skeletons (7/,) in terms of unit subduced 
cycle indices. 

The classification of the simplest fullerenes based 
on symmetry of their molecules and isomer counting 
has been described for some simplest cases in [16]; the 
structures were confined by Ceo to C84 and the pen-
cil-and-paper counting method was applied. There is 
no doubt automatized calculations give the results 
quicker and more reliable. Isomer counting in all the 
series presented in this paper is practically impossible 
without computers. 

I. Vertex substitution of fullerenes 

1. Some general principles of structural (position) 

isomers calculation. 

If we consider the most symmetrical structural iso­
mers of fullerenes with icosahedral symmetry of the 
group Ih (IF) we cannot avoid the yet unknown but highly 
possible molecule C20 with the dodecahedron skeleton 
on a purely formal basis. It has to be considered as the 
simplest carbon structure of h symmetry. In fact it is 
starting the first series of IF 's of the common formula 
C 2Op, where ρ = 1 , 2 , 3 , C 2 0 , C 8 0 5 C 1 8 0 , C 3 2 0 , C 5 0 0 etc. 

The main structural feature of the first series lies in the 

fact that each couple of the nearest pentagon cycles 

is separated by p-1 hexagon cycles combined in the 

linearly annelated ensembles: 

It will be shown in the next section that the cycle 

indices of IF structural isomers depend on ρ values. 

When ρ is divisible by 3 (type Ζ1. Cm, C 7 2 0 etc.), the 

cycle index has the form (1): 

If ρ is not divisible by 3 (type Z 2 : C 2 0 , C 8 0 , C 3 2 0 , 

C 5 0 0 , C 9 8 0 etc.), the cycle index has the form (2): 

The second series of IF 's starts with the C 6 0buck-

minsterfullerene and has the common formula C 6 0 N A 

where m = 1,2,3,... (C 6 0 , C 2 4 0 , C 5 4 0 etc.). In this series 

each couple of the nearest pentagon cycles is sepa­

rated by p-1 hexagon cycles combined in the 

para-phenylene-like ensembles: 

This kind of IF 's structural isomers has the cycle 

index (3): 

The numbers of isomers formed by adding one or 

more couples of hydrogens or other atoms to the 

fullerene skeleton (for example, C 6 0 H 2 or C 6 0Cl 4), sub­

stituting heteroatoms for carbons (for example, C7 9Si 

or C 7 8 N 2

2 + ) or substituting other atoms or groups for 

hydrogens in fully hydrogenated fullerenes (for exam­

ple, C 6 0 H 5 8 Cl 2 ), can be calculated by the standard sub­

stitution of ( l+x m ) n for fl into the formulae {Yy-(3), 

which gives the generating functions. Here is the be­

ginning of the generating functions for C 6 0 and C 8 0 : 

The coefficients αϊ of above generating functions 

correspond to the numbers of structural isomers of 

fullerene addition-products or their heteroanalogues. 

For example, there may be 2 theoretically possible 

structural isomers of C7 9Si, 40 dications C 7 8 N 2

2 + , 732 

trications C 7 7 N 3

3 + , 23 structural isomers of C 6 0H 2,4190 

isomers of C 6 0 Cl 4 or 303 isomers of C 6 0 H 5 7 Cl 3 . The co­

efficients aj were calculated with the help of a special 
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program operating with large polydigital numbers. It is 

obvious that the pencil-and-paper method would not 

work here. 

If we need to calculate the numbers of isomers for 

the cases of different substituents or different hetero-

atoms we have to substitute (1 + x
m

 + y
m

 + . . . ) " for 

/„" in the cycle indices formulae (1) — (5). It is not so 

simple a procedure as to use the pencil-and-paper 

method but the computer program works here too. 

2. Stereoisomerism of fullerenes. 

Until now we had not taken into account the 

stereoisomerism of fullerenes. Actually, some of struc­

tural isomers are chiral, others are not. The total num­

ber Sn of stereoisomers includes Qn couples of chiral 

and Rn achiral structures, i.e. Sn = 2Qn + Rn, while the 

number of structural isomers that do not take into ac­

count the IF 's stereoisomerism, is P0 = Qn + Rn. Thus, 

Qn
 =

 Sn — Pn. It may be shown that chirality is the re­

flection of the corresponding molecular polygon sym­

metry. The IF 's stereoisomers produce a symmetry 

group of rotations / that has half as many symmetry op­

erations (60) as the IF 's structural isomers with their 

group Ih (120 symmetry operations). The correspond­

ing cycle indices are the following: 

if η is divisible by 3, and 

if n is not divisible by 3. 

II. Edge substitution of fullerenes 

As it has been above shown (see 1.1) there are two 

series of structural isomers of IF 's with the common 

formulae C2oP2 and C 6om2. Their cycle indices of edge 

substitution are following: 

and 

The cycle indices for stereoisomers of IF's take 

the form: 

where e is the number of edges in the fullerene. 

Edge substitution of fullerenes takes place when 

oxygen or methylene group bridges an edge, or in hy­

pothetical expanded cages where a fullerene C—C 

edge becomes C — C = C — C linkage [17] etc. Addi­

tion reactions of fullerenes, for example, the reduction 

through hydrogenation can also be considered as edge 

substitution as by the reaction double bonds transform 

into single ones. As attachment occurs only at formal 

double bonds of fullerenes, the corresponding modi­

fied cycle indices of IF structural isomers assume the 

form: 

if ρ is divisible by 3; 

If only double bonds are taken into account, the 

cycle indices for stereoisomers of IF's depend on ρ 

value (here d is the number of double bonds): 

when ρ is divisible by 3. 

In case C20p2 of fullerenes where ρ is not divisible 

by 3 introduction of formal double bonds reduces 

the symmetry of structures, and their cycle indices of 

edge substitution for double bonds will be not here 

considered. 

III. The action of a group of symmetries Ih 

and a group of rotations / on a set of fullerene 

vertices 

The Ih symmetry group is a symmetry group of 

fullerenes Cn (n is the number of carbon atoms) at the 

uniform distribution of 5-faces on the fullerene sur­

face. This is the case when η = 60m2 or η = 20p2, 

where m, ρ are natural numbers. The h group has the / 

icosahedral subgroup of rotations of order 60. 

Here is a pel-by-pel description of the elements of 

above groups (see also Table 1). 

1. The neutral element of Д and / groups does not 

move any vertex; it is a product of η cycles of length 1. 

2. Inversion which is an element of Ih group re­

flects each fullerene vertex into its diametrically oppo­

site one. The inversion is a product of n/2 cycles of 

length 2. 

3. Each of 15 rotations by the angle 180° defines 

the symmetry axis that passes through the middles of 

the opposite edges; 15 corresponding elements of Д or 

/groups are products of n/2 cycles of length 2. 



450 НАУКОВІ ЗАПИСКИ. Том 19. Спеціальний випуск 

4. Each of 24 rotations by angles divisible by 72° 
defines in their totality 6 axes of rotations by these an­
gles which pass through centres of the opposite fullerene 
5-faces; each of 24 corresponding elements of Д or 
/ groups is a product of n/5 cycles of length 5. 

5. Each of 20 rotations by the angles divisible by 
120° defines in their totality 10 axes of rotations by 
these angles which pass through a couple of diametri­
cally opposite points — centres of triangles the verti­
ces of which are centres of the nearest fullerene 
5-faces; each of 20 corresponding elements of //, and / 
groups are products of n/3 cycles of length 3 in case η = 

60m2 or η = 20p2, where ρ is divisible by 3. It is a prod­

uct of two cycles of length 1 and (n-2)/3 cycles of 

length 3 in case η = 20p2, where ρ is not divisible by 3. 

6. Each of 15 symmetry operations relative to the 

plane reflects each of fullerene vertices into the sym­

metrical one relative to the plane, each plane passing 

through 4m fullerene vertices when η = 60m2 and 

through 4p fullerene vertices when η = 20p2. Each of 

15 corresponding elements of Ih group is a product 

of 4m cycles of length 1 and 30m 2 — 2m cycles of 

length 2 in case η = 60m2 or 4p cycles of length 1 and 

10p2 — 2p cycles of length 2 in case η = 20p2. 

7. Each of 24 mirror rotations by angles divisible 

by 72° is a consecutive execution of the inversion and 

rotation described above; elements of Ih group are 

products of n/10 cycles of length 10. 

8. Each of 20 mirror rotations by angles divisible 

by 120° is a consecutive execution of the inversion and 

rotation described above; each of 20 corresponding el­

ements of Ih group is a product of n/6 cycles of length 6 

in case η = 60m2 or η = 20p2, where ρ is divisible by 3 

and is a product of two cycles of length 2 and (n-2)/6 

cycles of length 6 in case η = 20p2, when ρ is not divisi­

ble by 3. 

Summary 

The isomer numbers of fullerenes can be calculated 

on the basis of cycle indices of their molecular frame­

works. The cycle indices result from the analysing frame­

works symmetries. Cycle indices of vertex and edge 

substitution for fullerenes of Ih symmetry have been 

developed and generalized. It has been shown that 

there are two series of structural isomers of fullerenes 

with the common formulae C20p2 and C60m2 which form 

icosahedral Ih symmetry group. The stereoisomers of 

fullerenes belong to icosahedral I subgroup. The stan­

dard transformation of the cycle indices into generating 

functions results in the values of structural isomers or 

stereoisomers of fullerenes. Chiral and achiral deriva­

tives have been counted separately. 

Table 1. The terms in the cycle indices. 

Table 2. Buckminsterfullerene C 6 0 and its isomers of vertex substitution 

(N — the number of substituents). 

N 
stereoisomers (chiral 
and achiral isomers) 

structural 
(position) isomers 

chiral isomers 
(enantiomer pairs) 

achiral isomers 

0 1 1 0 1 

1 1 1 0 1 

2 37 23 14 9 

3 577 303 274 29 

4 8236 4190 4046 144 

5 91030 45718 45312 406 

6 835476 418470 417006 1464 
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N 
stereoisomers (chiral 
and achiral isomers) 

structural 
(position) isomers 

chiral isomers 
(enantiomer pairs) 

achiral isomers 

7 6436782 3220218 3216564 3654 

oo
 

42650532 21330558 21319974 10584 

9 246386091 123204921 123181170 23751 

10 1256602779 628330629 628272150 58479 

11 5711668755 2855893755 2855775000 118755 

12 23322797475 11661527055 11661270420 256635 

13 86114390460 43057432740 43056957720 475020 

14 289098819780 144549869700 144548950080 919620 

15 886568158468 443284859624 443283298844 1560780 

16 2493474394140 1246738569480 1246735824660 2744820 

17 6453694644705 3226849468425 3226845176280 4292145 

18 15417163018725 7708584971055 7708578047670 6923385 

19 34080036632565 17040023323785 17040013308780 10015005 

20 69864082608210 34932048763560 34932033844650 14918910 

21 133074428781570 66537224405790 66537204375780 20030010 

22 235904682814710 117952355252550 117952327562160 27690390 

23 389755540347810 194877787472550 194877752875260 34597290 

24 600873146368170 300436595453640 300436550914530 44539110 

25 865257299572455 432628675734195 432628623838260 51895935 

26 1164769471671687 582384767014701 582384704656986 62357715 

27 1466746704458899 733373386161407 733373318297492 67863915 

28 1728665795116244 864332935668892 864332859447352 76221540 

29 1907493251046152 953746664302456 953746586743696 77558760 

30 1971076398255692 985538239868528 985538158387164 81481364 

Table 3. C 8 0and its isomers of vertex substitution 

(N — the number of substituents). 

N 
stereoisomers (chiral 
and achiral isomers) 

structural (position) isomers 
chiral isomers 

(enantiomer pairs) 
achiral isomers 

0 1 1 0 1 

1 2 2 0 2 

2 63 40 23 17 

3 1378 732 646 86 

4 26572 13506 13066 440 

5 400682 201230 199452 1778 

6 5010915 2508958 2501957 7001 

7 52945490 26484548 26460942 23606 

8 483148575 241613043 241535532 77511 

9 3865005820 1932616241 1932389579 226662 

10 27441701452 13721174187 13720527265 646922 

11 174627951940 87314815907 87313136033 1679874 

12 1004111683250 502057977058 502053706192 4270866 

13 5252271461480 2626140736951 2626130724529 10012422 

14 25135875183830 12567949113763 12567926070067 23043696 

15 110597830301160 55298939830653 55298890470507 49360146 

16 449303704778500 224651904399560 224651800378940 104020620 

17 1691496227818540 845748216614906 845748011203634 205411272 

00
 

5920236865724610 2960118632726706 2960118232997904 399728802 
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N 
stereoisomers (chiral 
and achiral isomers) 

structural (position) isomers 
chiral isomers 

(enantiomer pairs) 
achiral isomers 

19 19318667443935860 9659334088315142 9659333355620718 732694424 

20 58921935915528842 29460968620341478 29460967295187364 1325154114 

21 168348387724608520 84174194995664136 84174192728944384 2266719752 

22 451479767657432800 225739885743444420 225739881913988380 3829456040 

23 1138514195243025640 569257100690889408 569257094552136232 6138753176 

24 2703971215098899265 1351985612412704125 1351985602686195140 9726508985 

25 6056895518692773170 3028447766677152629 3028447752015620541 14661532088 

26 12812663600241332049 6406331811049131897 6406331789192200152 21856931745 

27 25625327194466052658 12812663612765383757 12812663581700668901 31064714856 

28 48505083623898300868 24252541833791614034 24252541790106686834 43684927200 

29 86974632694515291154 43487316376592019173 43487316317923271981 58668747192 

30 147856875590732334429 73928437834359788281 73928437756372546148 77987242133 

31 238478831581736161130 119239415840437268425 119239415741298892705 99138375720 

32 365170710875242870325 182585355500008169677 182585355375234700648 124773469029 

33 531157397613861592600 265578698882098856330 265578698731762736270 150336120060 

34 734246990841346298680 367123495510359861590 367123495330986437090 179373424500 

35 965010330790896021320 482505165497972227150 482505165292923794170 205048432980 

36 1206262913516965086380 603131456874559086076 603131456642406000304 232153085772 

37 1434474816040523716160 717237408146242476910 717237407894281239250 251961237660 

38 1623221502394461793460 811610751332664213166 811610751061797580294 270866632872 

39 1748084694850998206080 874042347565112895050 874042347285885311030 279227584020 

40 1791786812256738178780 895893406270934688580 895893405985803490200 285131198380 
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КІЛЬКІСТЬ ІЗОМЕРІВ В ІКОСОЕДРАЛЬНИХ ФУЛЕРЕНАХ 
СЕРІЙ С60 ТА С80 

Використовуючи теорему Пойя та аналізуючи симетрію фрагментів, 

обчислено кількість ізомерів в ікосоедральних фулеренах серій Св0 та С80. 

Виведені циклові індекси для хіральних та ахіральних похідних. Для 

обчислення кількості ізомерів фулеренів до С540 використана програма 

маніпуляції з багатознаковими числами. 


