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Abstract. The article discusses the formulation of an optimization problem with 
a quadratic target function and additional constraints on the permutation set, 
which can be a model of many applied problems. An algorithm for solving an 
optimization problem with a quadratic target function and additional constraints 
on permutations is proposed. 
During the implementation of the method the first reference plan is found and 
additional restrictions for it are checked at the first stage. Thus, in the beginning 
of the algorithm, the number of considered solutions decreases. This makes it 
possible at the first stage to reduce the number of possible solutions and narrow 
the area of the problem study. An example of solving a theoretical problem us-
ing this method, demonstrating its effectiveness, is proposed. 
Such task can be used to modeling various technological processes. The reason 
for this is the optimization of mathematical models and algorithms for the pro-
posed models. 

Keywords: optimization problems, combinatorial set of permutations, model of 
optimization problems, quadratic target function, optimal solutions. 

1 Introduction 

Computer simulation of technological processes consists in optimization of the study 
object by a mathematical model, and further model study with the help of imple-
mented computational algorithms on personal computers. The computer simulation 
process, as a single process of building and researching a model, is used for research, 
analysis, design and optimization of technological objects and systems [1]. Today, 
computer modeling approaches combines both theory and practice. Working with a 



model that represents a research object gives you the opportunity to explore its prop-
erties and behavior in all situations.  

Computer modeling is the process of building a real study object's model and set-
ting up computational experiments on this model in order to understand and evaluate 
various strategies based on the use of algorithms that ensure the functioning of this 
study object. Thus, the process of computer simulation includes the model design, and 
its application to solve the problem of optimization and design of technological proc-
esses in production. All these problems are extremely complex and include numerous 
elements, variables, parameters, constraints, etc. Such problems can be modeled by 
combinatorial optimization tasks [1-8]. 

The combinatorial optimization problems study comprises a fairly wide range of 
mathematical models associated with the need to solve various important practical 
problems of optimal planning, management and design [1, 2, 5, 7, 9, 10-12, 20-29]. In 
this regard, many papers have recently appeared which investigate the combinatorial 
optimization problems and propose approaches to their solution [8, 11-34, 36-38]. 

The paper presents a model of optimization problems on a combinatorial set of 
permutations, which is a model of many applied problems. It is proposed the algo-
rithm for solving an optimization problem with a quadratic target function and addi-
tional restrictions on permutations. 

During the method's implementation the first reference plan is located and addi-
tional restrictions are checked, which reduces the number of considered solutions at 
the beginning of the algorithm  

It is offered an example of solving a theoretical problem by the given method and 
demonstrating its efficiency.  

2 Literature review  

Computer models have become a common tool for mathematical modeling and are 
used in various areas of electronics, engineering, industry, and so on. Computer 
models are used to obtain new knowledge about the object or for an approximate 
assessment of the system’s behavior that are too complex for analytical research. 

Computer modeling is one of the effective methods for studying complex systems. 
The construction of a computer model is based on abstracting from the specific nature 
of the phenomena or the original object under study and consists of two stages – first, 
the creation of a qualitative, and then a quantitative model. The more significant 
properties will be identified and transferred to the computer model – the more 
approximate it will be to the real model, the greater the capabilities that the system 
using this model will have. Today the works of many scientists are devoted to this 
research area [1-5, 8-10, 21]. 

An important computer simulation area is analytical and simulation modeling. In 
analytical modeling, mathematical (abstract) models of a real object are studied in the 
algebraic equations form, as well as providing for the implementation of an 
unambiguous computational procedure leading to their exact solution. In simulation, 
mathematical models are studied in the algorithms form, which reproduce the 



functioning of the system under study by sequentially performing numerous 
elementary operations. Very relevant today for simulation and analytical modeling are 
discrete models, in particular, combinatorial optimization, their study is the subject of 
a great number of papers [1–17], [22–31]. 

A significant contribution to the development of modern discrete optimization 
theory, the development and implementation of its methods in the study and solving 
of important applied problems have been made over the course of more than forty 
years under the scientific guidance of Academician I.V. Sergienko scientists of the 
Institute of Cybernetics named by V.M. Glushkov National Academy of Sciences of 
Ukraine. They obtained important results, which became the basis for the theory 
development and the creation of n lines in discrete optimization. 

At present, intensive studies of the stability problems of vector discrete 
optimization problems are carried out at the Institute of Cybernetics named by V.M.  
Glushkov of the National Academy of Sciences of Ukraine (I.V. Sergienko, T.T. 
Lebedev, N.V. Semenova, T.I. Sergienko) [16, 17], Belarusian State University 
(V.O.Emelyichev, D.P. Podkopayev, Yu.V. Nikulin, etc.) [6, 7], the Joint Institute of 
Computer Sciences of the National Academy of Sciences of Belarus (Yu.N.Sotskov), 
the Computational Center of the Russian Academy of Sciences (E.M. Gordeyev, V.K. 
Leontiev), Omsk Branch of the Institute of System Studies of the Polish Academy of 
Sciences (M. Libura), a number of universities of the Federal Republic of Germany 
(E. Girlich), the Netherlands (ES van der Poort, G. Sierkma, APM Wagelmans, JAA 
van der Veen), in the uniquely Colorado US (H.J. Greenberg).  

Belarusian scientists under the scientific guidance of Professor V.O. Yemelycheva 
successfully develops a constructive approach to the problem of the vector discrete 
optimization problems correctness associated with the reception of quantitative 
characteristics of the stability of specified problem statements, a mathematical 
apparatus for studying the stability of multicriteria discrete problems with different 
types, vector criteria functions, principles of optimality, as well as generalized and 
parameterized principles of optimality are developed. 

It is important to study the relation between different classes of point 
configurations triangulation (regular, weakly regular, deployed, symmetric, political, 
etc.), in particular, the study of the structure of a partially ordered set constructed on 
the family of triangulation classes considered in relation to the inclusion relation. 
Recently, algorithms for solving convex polyhedral admissibility problems are 
actively explored [11, 18, 19]. One of the interesting computational approaches is the 
reduction of the admissibility problem for a polyhedron to the projection problem on a 
normal cone generated by a dual system of inequalities [18, 29, 31], which is 
sufficiently close to the projection problem for a binary polyhedron. Today, in the 
research area of various classes of combinatorial models, the new methods 
development for their solution, great attention is paid to methods based on the use of 
structural properties of combinatorial sets. The properties of combinatorial sets study 
is closely related to the theory of polyhedral and graphs. The use of information about 
the structure of the convex shell of admissible multivariate solutions, which is the 
basis for many methods, is one of the most successful approaches to solving 
combinatorial optimization problems for today. But when solving such tasks there are 



problems related to the complexity of mathematical models, large volume of 
information, etc.  

Applied problems simulated by extreme discrete tasks often have a high 
dimensionality, so they are quite complex from a computational point of view. The 
main task is to determine the value of an argument belonging to a certain 
combinatorial configuration for which the target function acquires the global 
optimum. So it is necessary to develop the most effective algorithm, which is based 
on the specific properties of the combinatorial configurations. 

For the extreme problems of combinatorial optimization, polynomial algorithms 
for finding an optimal solution based on the properties of the input data structure have 
been developed, but there are few such work compared to methods based on partial 
overview of the options. One of the approaches to solving such problem is to carry 
out research and analysis of the combinatorial configurations properties, in which the 
target function, which reflects the combinatorial nature of the tasks, is determined. 
Analysis and study of combinatorial configurations as a target function argument, 
setting the change in the values of the target function, depending on the elements 
ordering of the selected combinatorial configuration and the structure of the input data 
specificity, does not pay sufficient attention in the literature. But it should be noted 
that the study of the certain tasks properties in order to identify their characteristic 
properties and their use for solving the problem, gives the possibility of constructing 
new approaches and the development of known methods.   

Hence, one of the important problems in the discrete optimization area is the 
detection of the properties of combinatorial configurations in extreme problems, the 
use of which would allow to establish the regularity of the change in the values of the 
target functions, depending on the argument ordering and on the specificity and 
structure of the combinatorial configurations sets. 

Today, significant results have been obtained in the area of research of 
combinatorial models' various classes and the development of new methods for their 
solution. The following foreign scientists made a fundamental contribution to the 
development of discrete, in particular, combinatorial optimization: M. Gary, S. Berge, 
D. Johnson, H. Papadimitriou, P. Pardalos, K. Staiglich, R. Stanley, F. Harari, V.A. 
Emelichev, V.M. Sachkov [1-8, 10, 11, 12]. 

In turn, the many Ukrainian scientists' works are devoted to the various classes of 
combinatorial optimization problems' study: L.F. Gulyanitsky, P.I. Stetsyuka, I.V. 
Sergienko, N.S. Shor, Yu.G. Stoyan, S.V. Yakovlev, A.O. Yemetsa, V.O. Perepelitsy 
and many others. 

In particular, in [18–21], the authors describe the convex extensions theory and its 
applications in combinatorial optimization problems. Combinatorial models' 
applications in practical problems of geometric design are presented in the works of 
L.F. Gulyanitsky, I.V. Sergienko, Yu.G. Stoyan, S.V. Yakovlev, N.S. Shor [22-27, 
38]. 

Quadratic optimization on the permutation set is reflected in [28–31]. 
The permutation set's representation as the intersection of a permutation 

polyhedron and a hypersphere is interesting, as well as optimization methods on 
permutation configurations using the intersection described in [32]. 



The development of an integrated approach to the analysis of the properties of 
combinatorial optimization supplies covers a wide range of studies of combinatorial 
functions, combinatorial polyhedral, combinatorial configurations as an argument of 
the target function. The results give the opportunity to improve existing methods for 
solving such problems and develop new methods for optimal solutions searching. The 
problems based on the properties of combinatorial configurations are actual problems 
of combinatorial optimization. Of particular importance in this aspect is the 
consideration of extreme problems in combinatorial configurations using graph 
theory. 

The research of tasks in graphs deals with such scientists as F. Harari, O. Ore, 
I.V. Sergienko, V. O. Yemelichev, A. O. Zikov, V. O. Perepelytsya, R. I. Tyshkevich 
and others. Despite quite large achievements in the area of discrete optimization, in 
the process of modeling, there are extreme problems classes for which a number of 
issues have not yet been investigated. Principal difficulties that arise during modeling 
are also related to various types of uncertainty. These include: the availability of 
many criteria for evaluating the quality of solutions, interval setting of task 
parameters, etc. In these conditions, classical methods are not sufficiently suitable for 
solving problems. As you know, most combinatorial optimization tasks can be 
reduced to integer programming tasks, but this is not always justified, since it 
eliminates the possibility of taking into account the combinatorial properties of task 
solutions. 

This work is a continuation of research in the extreme discrete problem’s area, in 
particular, combinatorial optimization, as well as optimization problems under the 
conditions of multicriteria, which arise in the study of many theoretical and applied 
problems. 

3 Formal problem statement 

We consider the permutation as an ordered sample of elements ),...,,(
21 kiii aaaa  , 

where Aa
ji
 , nj Ni  , nNj  ts ii   if nNsts  , nNt  from some 

multi-set },...,,{ 21 qaaaA  , which is characterized by the base },...,,{)( 21 keeeAS  , 

where kj NjRe  ,1  and the multiplicity of the elements jj rek )( , 

qrrrNj kk  ..., 21  kj N , according to [14, 17]. 

A set of permutations with repetitions of n real numbers, among which k different, 
is called the general permutation set and is denoted as )(APnk . This is the set of or-

dered n-samples from the multiset A under the condition kqn  . 

If we have qkn   set of permutations without repetition, we denote it as nP . 

Obviously, )()( APAP nnn  . In cases where the form of the set of permutations is not 

indicated, it will be possible to write down these sets as )(AP .  



It is known [14] that the convex hull of the set of permutations is a permutation 
polyhedron )(conv AP , which vertex set )(AP

 
is equal to the set of permuta-

tions: )()(vert APA  .                       

Without loss of generality, we order the elements of the multiset A in non-
descending order: qaaa  ...21  and the elements of its foundation –in descending 

order: keee  ...21 .  

Then the convex hull of a common set of )(AP
 
permutations is a generic polyhe-

dron )(conv)( APA  , that is described by a well-known system of linear inequali-

ties: 
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nitjnj NiNtjtjN  ,,,,,   and )(vert)( AAP  . 

Consider the optimization problem: 
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})(|{ bGxRxD n                                           (3) 
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on a set of permutations )(APn .  

Additional linear constraints form a multifaceted set nRD  . 
Then, to every point )(APa n  will match point Xx , one that satisfies equality 

)()( axF  :  

}|)(max{:),( XxxFXFZ                                       (5) 
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and additional constraints: 

})(|{ bGxRxD n                                 (7) 



where 
nmRG  , 

mRb  

X - nonempty set in nR , which is defined as follows: 

)(vert AX  , )(conv AP                       (8) 

It is natural to assume that the maximum of a quadratic function will be one of the 
vertices of the permutation polyhedron, and the vertices of the graph )( nPG  will 

match to all points of the set of permutations )(APn . 

The adjacency of the vertices of a permutation polyhedron is determined by a one-
time transposition of two vertex elements. The number of transpositions in the graph 
is determined by the formula [35]: 

2

)1(2 


nn
Cn  (9) 

4 The algorithm for solving an optimization problem with a 
quadratic target function and additional constraints on the 
set is rearranged 

The algorithm for finding the problem optimal solution consists of four steps, which 
in a few steps make it possible to obtain an optimal solution. 

STEP 1. Finding the first support solution. 
Consider the first transposition of the target function: 

:),...,2(,21 nixx   

)...)(( 221112112 nn xaxaxaxxf 
                                         

 

We form the necessary conditions for finding the first solution: 
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Variants of transpositions: 

:),...,2(,21 nixx   
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… … … 
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:32 xx  )...)(( 22221123223 nn xaxaxaxxf                                            

… … … 

:2 nxx  )...)(( 221122 nnnnnnn xaxaxaxxf                                            

… … … 
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The first solution will be: ),...,,( 21 nxxx . It should be noted that there may be sev-

eral first solutions.  
STEP 2. Check constraints: ),...,,( 21 nggg . 

When checking constraints, the following options are possible: 
All constraints are satisfied, then go to step 3. 
At least one of the restrictions is not satisfied, then the next solution found for the 

given transposition is considered. If there are none, then we consider the next point in 
ascending order and proceed to step 1. 

In the case of consideration of all transpositions, it is necessary to consider the 
point in ascending order by three transpositions, four, etc. 

STEP 3. Formation of conditions for finding the optimal solution. 
Initial conditions for finding the optimal solution: 
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STEP 4. Improved support solution.  
Choose the next point from the set of permutations, which is better than the first 

support solution. Next, we transpose this point with respect to the first support solu-
tion and find the numerical value of the transposition of the target function:  

bxxxf ntr  ),...,,( 21  (13) 

Prerequisite:   

bxxxf ntr  ),...,,( 21  – growth. 

4.1. If this condition is true, then it is necessary to check the growth of restrictions: 
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All increments satisfy conditions (12), then the found point is the optimal solution. 
Otherwise, we return to the beginning of the step 4. 

4.2. If condition (13) is not fulfilled, we return to the beginning of step 4. 
It should be noted that conditions (12) are sufficient for finding the optimal solu-

tion, and the fulfillment of inequality (13) is necessary for finding the optimal solu-
tion. 

5 Example 

Find the maximum value of the target function:  
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on the permutations set 4A ,where )4,3,2,1(A , with the following restrictions: 
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Solving. 

For formula (1), the number of possible transpositions is: 62
4 С . 

Consider the first transposition 21 xx  , presenting the target function as a prod-

uct:  

)6)(( 43212112 xxxxxxf  , 

accordingly, when searching for the first solution, it is necessary to consider the fol-
lowing conditions: 
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Then the first solution may be the following points of the permutations set: (4,3,1,2), 
(4,2,1,3), (3,2,1,4). 

Consider the first point (4,3,1,2): 
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Additional restrictions are enforced. Then the initial conditions for improving the first 
support solution will be: 

,40)2,1,3,4(max 1 f  
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When considering point 2, it is necessary to fulfill the condition if  - increases:  

.5,6)75.05.04)(()3,1,2,4( 3421422  xxxxxxf   

Consequently, the target function increases by 6.5 units, so there is a need to check 
the increment of additional restrictions: 
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Constraints are met, so the support solution can be improved: 
.5,46)3,1,2,4()2,1,3,4()3,1,2,4(max 212  fff  
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Consider the point )4,1,2,3( , then you need to transpose 41 xx   regarding point 

2 )3,1,2,4( : 
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Since the target function decreases by 5.5 units, there is no point in considering this 
point of the set of permutations. 

Consider ascending, point )1,3,2,4( , respectively, transposition, 43 xx  regarding 

point 2 )3,1,2,4( : 

.16)133212)(13(
2
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1
)4,1,2,3( 43124334  xxxxxxf  

The target function decreases by 16 units, respectively, this point is not considered. 
Therefore, point 2 )3,1,2,4( is optimal and cannot be improved.  

.5,46)3,1,2,4(max 2 f  

6 Conclusion 

The article represents an optimization problem model with a quadratic target function 
and additional constraints on the combinatorial set of permutations as a model of 
many applied problems. An algorithm for solving the optimization problem is pro-
posed and a numerical example is demonstrated. It should be noted that the problem 
are very complex from a computational point of view. Therefore, their solutions re-



quire a lot of time and resources. This method significantly simplifies the procedure 
for finding the optimal solution of an optimization problem with a quadratic target 
function and additional constraints on the combinatorial set of permutations, since the 
inequality of restrictions increments allows you to immediately determine whether the 
point of the permutation set is a support solution or not. There is not a necessity to do 
complex calculations of all constraints and the target function; it suffices to find the 
increment of constraint and functions in the case of an improvement the solution. 

The further development of this study is going to be aimed at realizing and adapt-
ing the formulated method on other combinatorial constructions, as well as develop-
ing new methods for solving combinatorial optimization problems, taking into ac-
count the input data. 
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