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Introduction 
  

 Each day, quintillion bytes of information is being transferred through the 

internet. According to a study, people around the world are watching over 4 million 

videos simultaneously, every minute of the day. That doesn’t include music 

streaming, voice messages or other media on the internet. All this would amount to 

a large chunk of data being transferred, consuming vast amounts of data, be it as 

storage in the cloud or on the user devices. One of the largest sources of transferred 

information types is media, or rather audio content. In order to optimize the amount 

of data being transferred, compression methods take place, or a more strict 

methodology, audio downsampling, which introduce noticeable fidelity degradation. 

Audio downsampling is the process of lowering audio sample rate, which is the basis 

of any audio sequence, representing the amount of  observed frequencies every 

second. On the contrary is audio upsampling, which is the process of elevating the 

sample rate.  

 Audio upsampling methods nowadays rely on purely signal processing and 

statistical algorithms, which are good to a certain degree. The best algorithms still 

struggle to retain the fidelity of the source audio, even when upsampling by a factor 

of 2. The generative modeling of audio signals is a fundamental problem of signal 

processing. Looking at the rise of generative modeling using Neural Networks, it’s 

an seems as an obvious extension to the current methods of audio upsampling. To 

formulate the task, audio super-resolution, neural upsampling, or bandwidth 

extension is the task of generating high sampling rate audio signals with full 

frequency bandwidth from low sampling rate signals. 

 The aim of this research is to analyze the current methods of audio upsampling 

and the analysis of the capabilities of Neural Networks as generative models in the 

audio upsampling domain. The task of this research is to conduct thorough 



 

 

 

 

5 

experiments on the fidelity and execution time of current signal processing methods 

and to create and train a Neural Network, which would have a competitive 

comparison to original methods, while producing higher fidelity audio. 

 This work is split into two sections. The first section aims at introducing the 

theoretical knowledge of basic components behind generative Neural Networks, 

how they are trained and a deeper insight into signal processing, including the ways 

we can utilize it to build better generative models. The second section aims at 

building a Neural Network, training it, analyzing the current methods and comparing 

them experimentally, introducing metrics at comparing them.  
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1.Theoretical knowledge of Neural Networks and signal processing 

 

1.1.Basic audio processing concepts 

 

 An audio signal is the representation of sound, typically indicating the change 

in electric voltage in the case of analog signal, or a series of binary numbers for a 

digital signal. It can be expressed as a continuous waveform on the axis of time and 

axis of frequency recorded. The frequency axis typically ranges from 20 to 20,000 

Hz, which is close to the upper bound of human hearing. This leads to it being 

unnecessary to record higher frequencies, if the aim is the media for human 

consumption. 

Audio signal processing is used to convert between analog and digital formats, 

to manipulate the frequency ranges, remove unwanted noise, or even add audio 

effects. The first necessary component of audio capture is an analog to digital 

converter, which takes in the recording of electric signals and transforms it into a 

series of binary representations. Converting it into a digital representation uses a 

fixed sample rate, which is the amount of frequency measurements per each second. 

It is natural that the higher the sample rate, the more precisely we can convey audio 

with minimal degradation. The performance of analog to digital converter (ADC) is 

defined by signal-to-noise ratio (SNR), and the bandwidth is characterized by the 

sample rate. The output of the ADC is a digital signal, the frequencies of which are 

usually represented on a scale from -1 to 1. The discretization of frequencies is 

usually done with a 32 bit number in speech, there is a total of 32767 different 

possible frequencies. It is common to set a higher bit-rate for content, that requires 

greater quality, like music. Although 32 bits is enough to convey speech. 
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Figure 1.1 – Analog to digital signal process 

 

 

Any pre-processing to the audio can be done with the binary representation, 

in order to improve the quality, reduce SNR, remove unwanted noise or bias 

brought in when recording the analog signal. This process is visualized in Figure 

1.1.  

 

1.2. Short-time Fourier transform 

 

 A spectrogram can be defined as a visual representation of the sound. It 

shows the frequencies that make up the sound and how they change over time. It 

can be generated by applying Short-time Fourier transfer to a digital signal. The 

Short-time Fourier transform is a transformation, that is used to determine the 

sinusoidal frequency and phase deltas over time. We can formulate it as: 

𝑋(𝑚, 𝑘) =  ∑ 𝑥[𝑛 +𝑚𝐻]𝜔[𝑛]𝑒−
2𝜋𝑖𝑘𝑛
𝑁

𝑁−1

𝑛=0

 

Where 

𝑥: [0:𝑀 − 1] ≔ {0,1,…𝑀 − 1} →  ℝ  real valued discrete time audio of length M 

received by sampling an audio signal at a constant sampling rate R. 

𝜔: [0:𝑁 − 1]→ ℝ  window function of length 𝑁 ∈ ℕ. 
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𝐻 ∈ ℕ  is the hop size, or by what amount we shift the window function. 

𝑚 ∈ [0:𝑀] 𝑤ℎ𝑒𝑟𝑒 𝑀 ∶=  ⌊
𝐿−𝑁

𝐻
⌋ is the maximal window index.  

𝑘 ∈ [0:𝐾] 𝑤ℎ𝑒𝑟𝑒 𝐾 =
𝑁

2
 frequency index corresponding to Nyquist 

frequency. 

 

The complex representation X(m,k) stands for the kth Fourier coefficient of 

the mth frame. As a result, we for every frame we get a vector of length K. Thus we 

can efficiently transform an audio signal 𝑥 ∈ ℝ𝑛 into 𝑠 ∈ ℝ𝐾×𝑀, a 2-D 

representation of sound which we can further analyze. 

 The main concept of it being short-timed, is the usage of a cropped segment 

of the input signal, instead of using it all at once. This is achieved by using a 

window function, which is non-zero only a certain period of time. Then the signal 

is multiplied by the window function and FFT is applied on that small segment, to 

get a frame of the spectrogram. This is the basic explanation behind the way STFT 

is computed. 

 
Figure 1.2 - Visualization of STFT on audio. 

 

 On Figure 1.2 the whole process of STFT is visualized. The final 

components that are needed are a few user-set parameters. They are window 
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function, window length, hop size, and the number of STFT bins. The window 

function is the function, that we apply over the signal. There are several common 

window functions such as rectangular, triangular, Hann, Bartlett, Hamming 

windows. The window length is the length of the non-zero part of the window 

function. We can effectively call that the number of samples that are taken into the 

window. The hop size is the size, in samples, of the distance between windows. 

The number of FFT bins is effectively the number of bins we are decomposing the 

signal into with FFT. For voice related activities, 1024 is sufficient. 

 By setting all these parameters, we can easily calculate the shape of the 

output spectrogram, given the size of the input signal. It can be calculated with the 

following formula. 

𝑆 ∈ ℝ
𝑑𝑠𝑝𝑒𝑐𝑡𝑟×⌈

𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
ℎ𝑜𝑝 𝑠𝑖𝑧𝑒

⌉
 

 In this formula, S is the resulting spectrogram, 𝑑𝑠𝑝𝑒𝑐𝑡𝑟 is the number of FFT 

bins. In order to localize the digital signal in time, it is necessary to use a 

windowing function, which would fade out on its ends. This is done to remove 

unnatural discontinuities in the resulting spectrogram. The window function which 

will be used further on is the Hann window function. 

𝜔[𝑛] = 0.5 (1 −  cos (
2𝜋𝑛

𝑁
)) , 0 ≤ 𝑛 ≤ 𝑁 

Where the window length is 𝐿 = 𝑁 + 1. 
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Figure 1.3 - Hann window visualization 

 

In Figure 1.3 the Hann window function is visualized. This window function is 

applied to the segments that are cropped from the full digital audio signal. The 

window has the size of window length, which is set by the user, and the amount of 

samples that it slides over through the signal is to compute the next frame is 

determined by the hop size. 

 

1.4. Task formulation 

 

The generative modeling of audio signals is a fundamental problem at the 

intersection of signal processing and machine learning. With the recent advances in 

machine learning in speech recognition, speech synthesis, and other areas, it is 

possible to have enough computational and parametric capacity to operate directly 

on the audio signal. 

This paper is focused on an audio generation task, audio super-resolution, 

neural upsampling, or bandwidth extension, which is the task of reconstructing a 

high-quality audio signal from a lower quality signal, with fewer samples, lower 

sample rate. 
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1.5. Perceptron 

 Perceptron is a simple one layer network. A network with multiple layers is 

called a Neural Network. A perceptron is usually used for binary classification or 

regression.  

 
Figure 1.4 - perceptron visualization 

 

In the case of regression, we can interpret a perceptron as a linear regression. This 

is a visualization of a Rosenblatt’s thresholded perceptron. It tries to mimick the 

basic building block of the brain – a biological neuron. It takes an input vector x 

and outputs a number y. We can formulate it by the following formula. 

𝑧 =∑𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥 

We then pass z through an activation function, specifically the step function, which 

is defined as: 

𝑔(𝑧) = {
1 𝑖𝑓  𝑧 ≥ 0            
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

It is necessary that this function is differentiable. The reason for that is the way a 

neural network learns, with the process called backpropagation . We add in a 

constant, usually 1, as the first entry of the input vector x and is then expressed as 
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the bias of the network. In the case of a perceptron, the bias can be interpreted as 

moving the line or plane away from the origin.  

 

1.6. Multi-Layer Perceptron 

 

A perceptron with multiple hidden layers and activation functions is called a 

multi-layer perceptron, or is a basic neural network. A hidden layer is the vector of 

parameters, as in the example of the perceptron. Multiple consecutive layers 

provide a higher complexity, and the network can be visualized as in Figure 1.5. 

 

 
Figure 1.5 - Multi-Layer perceptron 

 

 

 

 

 

 

 

1.7. Activation function 
 

 The outputs of each layer of a Neural Network is plainly a weighted sum of 

its inputs, which lies on the range of (−∞,+∞), which would make it hard, if not 
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impossible for the network to learn efficiently. The other downside is that a 

weighted sum is just a linear transformation, which reduces computational capacity 

and the resulting feature space that can be constructed by the network. In order to 

limit the range of possible values to suit a specific task and to introduce 

nonlinearity to the model, activation functions are added at the end of each layer of 

the neural network. Figure 1.6 shows examples of the most frequently used 

activation functions. 

 
Figure 

 

Figure 1.6 – Graphics of activation functions 

 

 

1.8. Gradient descent 

 

 Now that the theory behind the algorithms of computing the result, the 

forward pass, of a neural network has been discussed, the only thing left is to 
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understand how they learn. Gradient descent is a widely used optimization 

algorithm, which is focus on minimizing an error function, propagated through the 

network. The main idea is to compute partial derivatives with respect to the 

weights, starting from the end, or the result of the network, and propagating it back 

through all the layers back to the beginning. This is where the name 

backpropagation comes from, or as some regard it as backpropagating through 

time. 

 In order to update all the weights with gradient descent, it is necessary to 

have some kind of evaluation of the current output with respect to what was 

expected. This evaluation is called the cost function. It takes in the result of the 

forward pass of the network, compares it with what was expected through a 

differentiable function, and that is used to update all the parameters of the network. 

By minimizing the cost function we maximize the network accuracy. 

 What the gradient descent algorithm done, broadly speaking, is it measures 

the local gradients of the cost function with regard to the parameter vector 𝜃, and it 

updates them in the direction of descending gradient. The size of the update is 

determined by the learning rate, which scales the update, making the update norm 

lower and thus effectively lowering the update to the weights at the given iteration. 

 Let’s analyze the mean-squared error function (MSE) as an example, where 

we have a single weight vector 𝜃. It is defined the following way: 

𝑀𝑆𝐸(𝑥, 𝑦, 𝜃) =
1

𝑛
∑(𝜃𝑇 ∙ 𝑥(𝑖) − 𝑦(𝑖))2
𝑛

𝑖=0

 

Where x is the input, y is the target, and n is the number of instances of x and y.  
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Figure 1.7 – Gradient descent 

 

 Figure 1.7 visualizes the basic workings of the gradient descent algorithm. 

Having calculated the mean squared error, the next step is to update the weights. 

The next step is to calculate the partial derivatives of the cost function with respect 

to the weights 𝜃, or using the notation 
𝜕

𝜕𝜃𝑖
, which will indicate how much each 

weight factors in the cost function, providing the ability to tweak that closer to the 

expected behavior. 

𝜕

𝜕𝜃𝑗
𝑀𝑆𝐸(𝑥, 𝑦, 𝜃) =

2

𝑛
∑(𝜃𝑇 ∙ 𝑥(𝑖) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑛

𝑖=0

 

It can be rewritten in a vectorized form instead of computing each one of the 

partial derivatives. 

∇𝜃𝑀𝑆𝐸(𝑥, 𝑦, 𝜃) =

(

 
 
 
 

𝜕

𝜕𝜃0
𝑀𝑆𝐸(𝑥, 𝑦, 𝜃)

𝜕

𝜕𝜃1
𝑀𝑆𝐸(𝑥, 𝑦, 𝜃)

…
𝜕

𝜕𝜃𝑚
𝑀𝑆𝐸(𝑥, 𝑦, 𝜃)

)

 
 
 
 

=
2

𝑛
𝑋𝑇 ∙ (𝑋 ∙ 𝜃 − 𝑦) 
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This process is called batched gradient descent, because the whole input set 

X. One way to regularize the network and reduce the computational complexity of 

each step is to split the dataset X  and their correspondence in Y into chunks of 

several instances each, which is called stochastic gradient descent. This step will 

reduce the computations needed to do a single update to the parameters and will 

ensure, that every step the network is given different sets of samples, making it 

harder to overfit, thus having a regularization effect. This strategy is called mini-

batch gradient descent, and it is employed in every single modern deep neural 

network. It is virtually impossible to fit the network and the gigabytes, if not 

terabytes of data in the effective memory of the machine. The only step left is to 

account for the learning rate 𝜼 and update the parameters. This can be easily done 

with the following formula. 

𝜃 ≔ 𝜃 − 𝜂∇𝜃𝑀𝑆𝐸(𝑥, 𝑦, 𝜃) 

 

1.9. Adam 

 

 Adam, which stands for adaptive moment estimation, is an adaptive 

optimizer for neural networks, that was proposed by Kingma and Ba. What makes 

it adaptive is the ability to learn and adapt the learning rate layer-wise. To achieve 

this, it uses first and second order adaptive gradient estimation to calculate the 

adaptive learning rates. We define the n-th moment as: 

𝑚𝑛 = 𝐸[𝑋
𝑛] 

This results in the first moment being the expected value, and the second moment 

is uncentered variance. 
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1.       𝑚 ← 𝛽1𝑚 − (1 − 𝛽1)∇𝜃𝐽(𝜃)                 

2.        𝑠 ← 𝛽2𝑠 − (1 − 𝛽2)∇𝜃𝐽(𝜃)⨂∇𝜃𝐽(𝜃) 

3.       �̂� ←
𝑚

1 − 𝛽1
𝑇                                               

4.        �̂� ←
𝑠

1 − 𝛽2
𝑇                                               

5.       𝜃 ← 𝜃 + 𝜂�̂� ⊘√�̂� + 𝜀                          

 

Where 

 ∇𝜃𝐽(𝜃) – gradient of the cost function J with respect to weight vector  𝜃. 

 𝛽1, 𝛽2   – coefficients set by the user; indicate momentum and scaling decay. 

 𝜂          – learning rate.  

 𝜀          – extremely small number to avoid division by 0. 

 

These are the 5 steps for calculating and updating the parameters using 

Adam optimizer.  It deviates from the original stochastic gradient descent by 

bringing in the statistics about the gradients gathered over training. Step 1 and 2 

compute the exponentially decaying average of first and second moments of the 

gradients. Step 3 and 4 make sure that the network is not biased towards 0, because 

the parameters are set to 0 at the beginning of the training. Step 5 combines the 

statistics with the gradients to introduce the adaptive learning rate, which is scaled 

by calculations in steps 3 and 4, making the learning rate higher in the dimension 

of the steeper slope. 

Adam optimizer currently being used in nearly all modern deep neural 

networks. It has proven to achieve great results with little to no tuning. But if a 

team has enormous computational capacity, a better convergence can be achieved 
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by finding the correct parameters for stochastic gradient descent through trial and 

error. 

 

 

1.10. Convolutional Neural Network 

 
A convolutional neural network (CNN) is a specialized type of neural 

networks, which aims at working with grid-like data or with timeseries (audio 

signals). They emerged from the study on the visual interpretation done by the 

biological brain, which resulted in achieving state of the art performance on image 

data. The main mathematical building block of this kind of neural networks is the 

convolutional layer and the convolution operation. The first layer is not connected 

to every pixel in the image, but rather on a field of pixels, a receptive field which 

contextualizes information on blocks, rather than on every single input. The next 

layer is connected to a field of outputs of the outputs of the first layer. This 

hierarchical architecture is what leads to the great performance CNNs have on 

timeseries and images. 

 CNNs capture the temporal and spatial dependencies in the data. The 

discrete operation of convolution on vectors 𝑥 ∈ ℝ𝑛, 𝑤 ∈ ℝ𝑚, which change over 

time t is defined as 𝑦(𝑡) = (𝑥 ∗ 𝑤)(𝑡), where x is the inputs, w is the kernel. We 

can formulate convolution with the following formula: 

𝑦(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑘)𝑤(𝑡 − 𝑘)

+∞

𝑘=−∞

 

 

 CNNs are operating on tensors, the reason behind it being that the data size 

is large and complex computations. Kernel and data is stored separately, so it is 

necessary to define it this function as 0 everywhere, except the finite set of values 

we need. With this, we can shorten the range and move to a more practical 



 

 

 

 

19 

implementation of the convolution operation, and it allows us to compute an 

infinite sum over a finite array. So we can redefine the formulation over a two-

dimensional input D and a two-dimensional kernel K as: 

𝑌(𝑖, 𝑗) = (𝐷 ∗ 𝐾)(𝑖, 𝑗) = ∑∑𝐷(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

 CNNs are also known to have the shift-invariant property, based on the 

shared weights architecture of the convolution kernels, sparse interactions, and 

equivariant representations. As described earlier, convolutional layers interact over 

a field of values, instead of every single pixel in the case of MLPs, from which the 

sparsity property arises, by making the kernel smaller than the input image. 

 
Figure 1.8 - Convolution kernel 

 

  

 Different kernels are used throughout the history of computer visions, with 

carefully handcrafted kernels transforming the image in certain ways to extract 

useful information out of the data. In a CNN, the task is to learn a set of kernels, 

that transforms the image and extracts the features needed in order to maximize a 
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metric on the given task. A single set of parameters is learned, instead of a 

different set for every location. This is done by sliding the kernel across the data, 

and computing the convolution with small kernels. Two additional parameters, that 

are manually set are padding and stride. Padding of k simply expands the input 

matrix by a factor of k, adding k zero values to each side of the input matrix. Stride 

s is the parameter, which defines by how much the kernel slides over the input 

image. By default, stride is 1, which means that we compute the matrix 

multiplication of kernel by a patch of the input data, then slide it by s samples and 

repeat. 

 After applying a convolution, the result is a set of linear activations, on top 

of which a nonlinear activation function is applied, which is done to achieve a 

nonlinear transformation of the feature space. It has been proven useful and 

effective to apply a function called the pooling function. It is common to use a 

specific instance of pooling functions called max and average pooling. The idea 

behind them is simple – return the maximum or mean over a rectangular 

neighborhood. 

 
Figure 1.9 – pooling layer 

 

 

 The goal of a pooling layer ss to subsample the input data and reduce the 

computational load, memory usage, and number of parameters. It also introduces 
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some level of invariance to small changes within the outputs of the convolutional 

layers. By inserting a pooling layer after each layer, it is possible to achieve a 

translation invariance on a larger scale. As an example, if we shift the image by 

one pixel to some direction, we will still receive roughly the same outputs exactly 

because of the pooling layers giving the ability to remove this dependency. 

Although this operation should be done with the task in mind. This is a destructive 

action, that removes 75% of the outputs of each convolution layer. In a task such as 

semantic segmentation, where pixel-perfect masks are necessary, it is impractical 

to use pooling layers as the information about the whole image is needed to make a 

prediction, which would result in an over smoothing of the predicted mask with 

when applying pooling. But on the other hand, if a task of image classification is 

taken, there are little to no downsides to pooling, as it reduces the time and 

memory complexity of the network. All these concepts come together to create a 

convolutional neural network. 

 
Figure 1.10 – convolutional neural network 

 

 

 

 

 

 

 



 

 

 

 

22 

1.11. Transposed convolution layers 
 

 Convolutions have been discussed as the method to lower the dimension of 

the input and extract features, but what if expanding the input is the goal, instead of 

contracting it? This is where transposed convolutions come in. A simple use-case 

would be in the task of super-resolution. The task, where a small input is given, 

and a larger, higher quality output is expected, in other words the task of 

upsampling. Which is already similar to the task at hand. 

 The transposed convolution layer is equivalent to stretching the image by 

inserting empty rows and columns with zero values, then performs regular 

convolution on top of that. In this layer, the stride parameter defines how much the 

input will be stretched. The larger the stride, the larger the output. 

 
Figure 1.11 – transposed convolution 

 

 

 

1.12. Batch Normalization 
 

 Normalization is a technique in machine learning, which aim at making 

different sample be closer to each other in the feature space. This is done to help 

the model generalize, as different samples are closer to each other making it harder 

to overfit. While training, every mini-batch might have a slightly different 
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distribution in-between layers, thus making it harder for the network to learn, 

making the network chase the moving target. This change in distribution between 

layers is called internal covariate shift. 

 Batch Normalization is a type of normalization, used in neural networks. It 

has been introduced in a 2015 paper, authored by Sergey Ioffe and Christian 

Szegedy. This kind of normalization adaptively normalizes the data in batches to 

look more like other different samples, which leads to faster convergence and often 

lower number of parameters necessary for the task. The main advantage is the 

stimulation of gradient flow through deep neural networks and battles the problem 

of exploding/vanishing gradients. The algorithm is simple, it zero-centers and 

standardizes the data, then it scales it and shift by the y and 𝜷 learnable parameters. 

Meaning that the model has the capacity to learn them for a better representation, 

but as the parameters are learnable, the model can even learn to ignore the 

normalization overall. The estimation of the mean and standard deviation is done 

over the whole batch, where the name comes from. The full algorithm is as 

follows.  

𝜇𝐵 =
1

𝑚𝐵
∑𝑥(𝑖)
𝑚𝐵

𝑖=1

 

𝜎𝐵
2 =

1

𝑚𝐵
∑(𝑥(𝑖) − 𝜇𝐵)

2

𝑚𝐵

𝑖=1

 

𝑥(𝑖) ̂ =
𝑥(𝑖) − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 

𝑧(𝑖) = 𝛾⨂𝑥�̂� + 𝛽 

Where: 

𝜇𝐵   vector of means, evaluated over a mini-batch B. 

𝜎𝐵
2   vector of variances, evaluated over a mini-batch B. 
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𝑚𝐵  number of samples in the mini-batch B. 

𝑥(𝑖)̂  zero-centered and normalized input vector for sample 𝑖. 

𝛾      learnable scale parameter for the layer. 

𝛽      learnable shift parameter for the layer. 

𝑧(𝑖)  output of Batch Normalization for instance 𝑖. 

 

 After a model is trained, there comes an issue. What should be done after it 

is moved on to inference? The first action that can be taken is the fusion of layers 

with batch normalization. As it’s a simple operation, it is easily possible to 

combine convolution layers with batch normalization, thus reducing the amount of 

parameters and complexity. Then, comes the question, what if during test time a 

single instance is received, instead of a batch? Most implementations of Batch 

Normalization track a moving average of the input means and variances during 

training, which is then used during inference as the estimated layer statistics. Ioffe 

and Szegedy have demonstrated in their paper, that Batch Normalization has a 

significant improvement in all deep neural networks. 

 

 

1.13. Skip connections 

 

 Kaiming He. et al. won the ILSVRC 2015 challenge using a novel technique 

in their Residual Network, achieving a 3.5% in top 5 accuracy lead over their 

competition. They were able to achieve this by creating an extremely deep CNN 

composed of 152 layers. In normal conditions, training such a deep neural network 

will give little to no results due to vanishing gradients when training too long, as 

the signal will not be strong enough to be propagated back such a long way. This is 
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where their invention of skip connections comes in. Another key change is giving 

the ability to let the signal pass through the network without going through the 

nonlinearity of activation functions. The nonlinear function, by their nature, are the 

cause of exploding/vanishing gradients. 

 
Figure 1.12 – skip connection 

 

 The idea is simple and is demonstrated in Figure 1.12. While passing 

through the network, a copy of the input is created, multiplied by the identity 

matrix and saved. Then the other copy is being fed to other layers. It is important 

that the result of these layers has the same dimensions, as the previous copy. 

Afterwards, the two results are added together and passed through an activation 

function. It is common to add a Batch Normalization layer after several layers, but 

before adding both of them in. It was done by the authors and is illustrated in 

Figure 1.13. By doing this, it is possible to further refine and normalize the 

network. This simple trick speeds up training significantly and leads to a better and 

faster convergence, even in extremely deep neural networks. 
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Figure 1.13 – ResNet block 

 

 

1.14 Multi-resolution STFT loss 

 

 Loss function lie at the heart of optimization. They are what determines how 

good the model is doing in terms of solving the task, which is inevitably 

minimized. Given that the task lies with dealing with a continuous digital audio 

signal, where a single second is characterized by thousands of samples, it is not 

trivial to create a suiting loss function. A simple absolute difference between the 

generated and target audio signal will not capture long temporal dependencies and 

correlation in small patches of audio. This is why something that takes in temporal 

features into consideration is necessary, to create a system that not just generates 

something similar, but is actually perceived as a similar sounding audio. 

 Yamamoto, Song, and Kim proposed a new approach to training with audio 

sequences. They introduced a multi-resolution STFT loss, at the basis of which lies 

the STFT transformation. A single STFT loss can be defined as:  

𝐿𝑠(𝐺) = 𝐸𝑧~𝑝(𝑧),𝑥~𝑝𝑑𝑎𝑡𝑎[𝐿𝑠𝑐(𝑥, �̂�) + 𝐿𝑚𝑎𝑔(𝑥, �̂�)] 



 

 

 

 

27 

Where x is the target audio signal, �̂� is the generated audio signal by neural 

network G, 𝐿𝑠𝑐 and 𝐿𝑚𝑎𝑔 denote spectral convergence and magnitude respectively. 

The latter two are defined as: 

𝐿𝑠𝑐(𝑥, �̂�) =
‖ | 𝑆𝑇𝐹𝑇(𝑥) | − | 𝑆𝑇𝐹𝑇(�̂�) | ‖𝐹

| 𝑆𝑇𝐹𝑇(𝑥) |𝐹
 

𝐿𝑚𝑎𝑔(𝑥, �̂�) =
1

𝑁
‖ log|𝑆𝑇𝐹𝑇(𝑥)| − log|𝑆𝑇𝐹𝑇(�̂�)| ‖1 

 

In spectral convergence, Frobenius norm is used, and in log magnitude loss, L1 

norm is being used, which is the sum of absolute values. Now the only thing that is 

left is to assemble the STFT losses with different parameters such as hop size, 

number of fft bins and window length into a single loss. This is what comes out. 

𝐿(𝐺) =
1

𝑀
∑ 𝐿𝑠

(𝑚)(𝐺)

𝑀

𝑚=1

 

 

The reason why multiple STFT losses are necessary is because the network can 

overfit to a single set of STFT parameters, or a single representation. This is bad, 

because the change in their parameters leads to slightly different representations; 

e.g., increasing window size gives higher frequency resolution while reducing 

temporal resolution. This is why it is important to have several STFT losses to 

create a model that is able to create realistic and natural sounding audio. 
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Section 2. Experiments and analysis 

2.1. Experiment requirements 

 

• Python 3 programming language 

• PyTorch as the library of choice for Neural Networks and training. 

• Seaborn, matplotlib, and IPython for visualization 

• ResamPy as the library for resampling 

 

2.2. Data preprocessing 

 

 The task at hand is to upsample an audio signal from 22050 sample rate up 

to 44100, effectively doubling it. All that is needed for this is a dataset of 44100 

audio. Audio is normalized by volume and projected onto [-1,1] scale. The dataset 

that is being used is VCTK multi-speaker dataset, which contains 48kHz audio. It 

is downsampled to 44100 and used as a target. While assembling the batch, with 

the help of resampy it is easy to downsample a high quality 44100 rate signal to a 

lower quality, lower rate 22050 audio signal. It is necessary to constrain the audio 

signal time-wise, as it will not fit into memory if we use several minutes of audio 

for each entry in the batch. 2 seconds samples are chosen as the size of each entry 

in the batch. So the audio is loaded and a random chunk of 2 seconds (44100 

samples) from the downsampled 22050 signal, and that the target is 88200 

samples. A pair of downsampled and its corresponding upsampled segments are 

formed. After receiving the pair, the 22050 rate part is upsampled using the fast 

Kaiser filter to 44100 rate. It will be discussed further on. 
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2.3. Baseline model – Kaiser upsampling 

 

 In digital signal processing, one of the best ways to upsample a signal is 

using a Kaiser filter. It’s an interpolation method, that in our case inserts values in 

between the each two samples. Then it estimates the values of the inserted values 

to best interpolate them for a good sounding audio. Kaiser filters are generated 

using the windowed method of finite impulse response (FIR) filter design with the 

use of a Kaiser window. A Kaiser window is generated through the use of Bessel 

functions with the length and shape parameters. By varying these parameters the 

main and side lobes can be adjusted accordingly. It maximizes the energy 

concentration on the main lobe, but this is often expensive to compute. The Kaiser 

window is defined as: 

𝜔0(𝑥) ≜

{
 
 

 
 𝐼0[𝜋𝛼√1 − (

2𝑥
𝐿 )

2

]

𝐼0[𝜋𝛼]
,    |𝑥| ≤

𝐿

2

0,                                      |𝑥| >
𝐿

2

 

Where 𝐼0 is the 0th order modified Bessel function, L is the window duration, 𝛼 is 

the nonnegative value that determines the shape of the window. 

 
Figure 2.1 – Kaiser windows constructed with different parameters 
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2.4. Building U-Net Neural Network 

 

 The network that will be used is a U-Net, which can be used to 

work with the task of super-resolution. The main idea behind this 

network is to take in some poor approximation of the desired signal and 

enhance that, making it a better approximation closer to the intended, 

higher quality and higher sample rate audio. 

 
 

Figure 2.2 – U-Net neural network 

 

 

 The architecture in Figure 2.2. The blue arrows are a double convolution 

block. They consist of 1D convolution with kernel size 3 and padding 1, followed 

by a Batch Normalization layer and a ReLU activation function. Then it is fed to 

the second 1D convolution layer with kernel size 3 and padding 1. The red arrow 
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displays, that a stride of 2 is being used in the previous double-convolution block. 

The gray arrows are the residual connections. The green arrows display an 

upsampling block, which takes in the lower dimension representation, linearly 

upsamples it twice the size it was, concatenates it with the residual connection that 

is coming in and that is followed by a blue arrow, which is the double-convolution 

block but with stride set to 1, while we are upsampling, or going up. The task of 

creating a feature map with the help of CNNs is simple, but it is extremely hard for 

them to reconstruct an image back from that feature map.  

The whole idea of a U-Net revolves around this problem and around solving it. 

Providing the copy of all the outputs of the intermediate steps while upsampling is 

of great help and improves the quality and convergence significantly. 

 

2.5. Training objective and optimization 

 

 Now that the data is processed and the model is built, the next step is to 

define the training objective and optimization. The U-Net acts as an enhancer 

network. The fastest upsampling using Kaiser fast filter is used to produce a rough 

estimate of the upsampled audio signal, which has a low quality, but is 

computationally inexpensive working much faster than real-time. Having the rough 

and poor quality estimate of the upsampled audio, the network is now tasked with 

enhancing it, adding in more details in the higher and lower frequencies, making it 

perceptually better. Given the pairs of poor quality upsampled and original audio in 

high sample rate, pairs are formed on which the model is trained. Multi-resolution 

STFT loss will be used in pair with MSE loss. 3 resolution of the multi-resolution 

STFT loss will be used with the following parameters: 
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STFT loss FFT bins Window size Hop size 

𝐿𝑠
(1)

 512 240 50 

𝐿𝑠
(2)

 1024 600 120 

𝐿𝑠
(3)

 2048 1200 240 

Table 1 – Multi-resolution STFT parameters 

 

 Given that the signal is in the range [-1,1], the MSE loss will be significantly 

lower than multi-resolution STFT (MR-STFT) loss. This is why it is scaled by a 

coefficient of 100, to provide an importance to the training procedure, but the MR-

STFT loss is still more important as it is partly a perceptual loss, unlike MSE. The 

optimization is done with Adam, with the learning rate set to 0.0001, weight decay 

set to 0.00001, betas are the default at 𝛽1 = 0.9, 𝛽2 = 0.999. At each training step, 

the gradient norm is clipped at 10 to avoid exploding gradients and stabilize the 

training. 
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Figure 2.3 – training losses a) MSE loss; b) total training loss as the sum  

of all the losses; c) log magnitude loss of the MR-STFT;  

d) spectral convergence loss of the MR-STFT loss. 

 

 As shown on Figure 2.3, the training converged quickly and although it 

might look like it could have trained more, the validation loss, started to grow on 

one of the most important losses – the spectral convergence loss. It can be seen that 

all the losses started to plateau and even slightly grow, which is the second reason 

to stop, before overfitting or starting to diverge. 

 

 

2.6. Validation 

 

 Validation is done on audios that the model has never seen, making it a fair 

comparison and an evaluation of generalization. All the same losses are calculated 

during validation, training and gradient flow is turned off, weight norms are 

removed. This is all to provide a fair comparison to never-seen examples. 
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Figure 2.4 – validation losses a) MSE loss; b) total training loss as the sum  

of all the losses; c) log magnitude loss of the MR-STFT;  

d) spectral convergence loss of the MR-STFT loss. 

 

 In Figure 2.4 we can see that all the losses are healthy, and towards the end 

spectral convergence starts to rise, which is the reason to stop training. It is one of 

the most important losses, as it is responsible for measuring the quality of 

generation of the higher frequencies, which is the hardest part of generating audio.  
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2.7. Analyzing and comparing results 

 

 Now that there is a trained network, it is time to analyze the results of it and 

compare it to the best results achievable with methods from digital signal 

processing, which do not involve Neural Networks. The baseline is the Kaiser 

filter, which has a fast and the best quality implementations. The difference 

between them are that uses more coefficients to compute the window and estimate 

the missing samples in a signal.  

 In order to compare all these methods, it is necessary to create an evaluation 

function. Two classical approaches from digital signal processing, are signal-to-

noise ratio and log spectral distance. These are the functions we will be evaluating 

with, as well as time complexity. 

𝑆𝑁𝑅(𝑥, 𝑦) = 10 log
‖𝑦‖2

2

‖𝑥 − 𝑦‖2
2  

 

Where x and y are the generated and target audio signals. 

𝐿𝑆𝐷(𝑥, 𝑦) =
1

𝐿
∑√

1

𝐾
∑(𝑌(𝑙, 𝑘) − 𝑋(𝑙, 𝑘))

2
𝐾

𝑘=1

𝐿

𝑙=1

 

𝑋 = log|𝑆𝑇𝐹𝑇(𝑥)|2 , 𝑌 = log|𝑆𝑇𝐹𝑇(𝑦)|2 

 

Where L and K are the number of time frames and frequency bins respectively. X 

and Y are the log power spectrogram of their respective signals. 2048 fft bins and 

hop size of 512 is being used while calculating STFT. 
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Objective Kaiser fast 

upsampling 

Kaiser best 

upsampling 

U-Net upsampling 

SNR ↑ 6.091 6.165 11.067 

LSD ↓ 6.272 6.119 2.6916 

Table 2 – Evaluation results. U-Net against classical methods. 

 

 As indicated by the arrows, a higher SNR is desirable and a lower log 

spectral distance. The method with U-Net outperforms classical methods by a large 

margin on both the evaluation functions. All the evaluation has been done on the 

test set, which was not seen by the model during training, which gives a good 

reason to think that the model generalizes well to unseen audio, greatly 

outperforming best classical methods. 

 

Objective Kaiser fast 

upsampling 

Kaiser best 

upsampling 

U-Net upsampling 

Upsampling time 

↑ (Real-time ratio)  

170 22.8 55.5 

Table 3 – upsampling time comparison between methods 

 

 Table 3 display the generation time, calculated as the real-time ratio. This 

means the amount of seconds that can be upsampled, in a second of computation, 

so the higher the number the better. Although Kaiser fast is the fastest algorithm, 

the quality on it is the worst of the three. And Kaiser best, which is focused on 

quality, takes twice as long to upsample an audio, in comparison to the U-Net. 
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Conclusion 

 

 Machine learning and deep learning is on the rise, bringing improvements 

and the states of the art in multitudes of fields. In this work, the focus lies on the 

task of audio super-resolution, which is genearating a higher quality higher sample 

rate audio out of a poor quality audio signal. Different current best and fast 

implementations of upsampling methods are presented. A neural network is built, 

trained, and presented, which greatly outperforms the previous best upsampling 

methods, that rely on windows for upsampling. Overall, the model is successful, 

because it exceeds in quality greatly and computational requirements in 

comparison to the best classical methods. Even having such great success, there is 

certainly room to grow. The loss functions showed, that that the network could be 

further improved by bringing in other training techniques such as weight 

regularization, correct initialization and making the network deeper. Another 

interesting and promising way of future development would be to try train it as a 

Generative Adversarial Network or completely overhaul the architecture and 

explore lighter architecture, than the one presented. 
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Appendix A. Program Text 
import torch 

from torch import nn 

import torch.nn.functional as F 

import numpy as np 

import resampy 

from torch.utils.data import Dataset 

import random 

import soundfile as sf 

from tqdm import tqdm 

import argparse 

import json 

import os 

import sys 

from torch.optim import Adam 

class ConvBlock(nn.Module): 

    def __init__(self, in_channels, out_channels, stride=1): 

        super().__init__() 

        self.double_conv = nn.Sequential( 

            nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1), 

            nn.BatchNorm1d(out_channels), 

            nn.ReLU(inplace=True), 

            nn.Conv1d( 

                out_channels, out_channels, kernel_size=3, padding=1, stride=stride 

            ), 

            nn.BatchNorm1d(out_channels), 

https://arxiv.org/pdf/1412.6980.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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        ) 

    def forward(self, x): 

        return self.double_conv(x) 

 

class OutConv(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(OutConv, self).__init__() 

        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1) 

    def forward(self, x): 

        return self.conv(x) 

class UpscaleBlock(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super().__init__() 

        self.up = nn.Upsample(scale_factor=2, mode="linear", align_corners=True) 

        self.conv = ConvBlock(in_channels, out_channels) 

    def forward(self, x1, x2): 

        x1 = self.up(x1) 

        diffY = x2.size()[1] - x1.size()[1] 

        diffX = x2.size()[2] - x1.size()[2] 

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) 

        x = torch.cat([x2, x1], dim=1) 

        return self.conv(x) 

class UNet(nn.Module): 

    def __init__(self): 

        super(UNet, self).__init__() 

        self.inp = ConvBlock(1, 16) 

        self.down1 = ConvBlock(16, 32, stride=2) 

        self.down2 = ConvBlock(32, 64, stride=2) 

        self.down3 = ConvBlock(64, 128, stride=2) 

        self.down4 = ConvBlock(128, 256, stride=2) 

        self.down5 = ConvBlock(256, 512, stride=2) 

        self.down6 = ConvBlock(512, 1024, stride=2) 

        self.down7 = ConvBlock(1024, 2048 // 2, stride=2) 

        self.up1 = upscale_block(2048, 1024 // 2) 

        self.up2 = upscale_block(1024, 512 // 2) 

        self.up3 = upscale_block(512, 256 // 2) 

        self.up4 = upscale_block(256, 128 // 2) 
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        self.up5 = upscale_block(128, 64 // 2) 

        self.up6 = upscale_block(64, 32 // 2) 

        self.up7 = upscale_block(32, 16) 

        self.final = OutConv(16, 1) 

    def forward(self, signal): 

        x1 = self.inp(signal) 

        x2 = self.down1(x1) 

        x3 = self.down2(x2) 

        x4 = self.down3(x3) 

        x5 = self.down4(x4) 

        x6 = self.down5(x5) 

        x7 = self.down6(x6) 

        x8 = self.down7(x7) 

        x = self.up1(x8, x7) 

        x = self.up2(x, x6) 

        x = self.up3(x, x5) 

        x = self.up4(x, x4) 

        x = self.up5(x, x3) 

        x = self.up6(x, x2) 

        x = self.up7(x, x1) 

        res= self.final(x) 

        return signal + res 

 

def stft(x, fft_size, hop_size, win_length, window): 

    x_stft = torch.stft(x, fft_size, hop_size, win_length, window) 

    real = x_stft[..., 0] 

    imag = x_stft[..., 1] 

    return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) 

 

class SpectralConvergengeLoss(torch.nn.Module): 

    def __init__(self): 

        super(SpectralConvergengeLoss, self).__init__() 

    def forward(self, x_mag, y_mag): 

        return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") 

 

class LogSTFTMagnitudeLoss(torch.nn.Module): 

    def __init__(self): 
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        super(LogSTFTMagnitudeLoss, self).__init__() 

    def forward(self, x_mag, y_mag): 

        return F.l1_loss(torch.log(y_mag), torch.log(x_mag)) 

class STFTLoss(torch.nn.Module): 

    """STFT loss module.""" 

 

    def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"): 

        super(STFTLoss, self).__init__() 

        self.fft_size = fft_size 

        self.shift_size = shift_size 

        self.win_length = win_length 

        self.window = getattr(torch, window)(win_length) 

        self.spectral_convergenge_loss = SpectralConvergengeLoss() 

        self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() 

 

    def forward(self, x, y): 

        x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) 

        y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) 

        sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) 

        mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) 

 

        return sc_loss, mag_loss 

 

 

class MultiResolutionSTFTLoss(torch.nn.Module): 

 

    def __init__(self, 

                 fft_sizes=[1024, 2048, 512], 

                 hop_sizes=[120, 240, 50], 

                 win_lengths=[600, 1200, 240], 

                 window="hann_window"): 

        super(MultiResolutionSTFTLoss, self).__init__() 

        assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) 

        self.stft_losses = torch.nn.ModuleList() 

        for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): 

            self.stft_losses += [STFTLoss(fs, ss, wl, window)] 
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    def forward(self, x, y): 

        sc_loss = 0.0 

        mag_loss = 0.0 

        for f in self.stft_losses: 

            sc_l, mag_l = f(x, y) 

            sc_loss += sc_l 

            mag_loss += mag_l 

        sc_loss /= len(self.stft_losses) 

        mag_loss /= len(self.stft_losses) 

 

        return sc_loss, mag_loss 

class Collater(object): 

    def __call__(self, batch): 

        y_batch, x_batch = [], [] 

        for idx in range(len(batch)): 

            x, y = batch[idx] 

            x_batch += [x.astype(np.float32).reshape(-1, 1)] 

            y_batch += [y.astype(np.float32).reshape(-1, 1)] 

        x_batch = torch.FloatTensor(np.array(x_batch)).transpose(2, 1) 

        y_batch = torch.FloatTensor(np.array(y_batch)).transpose(2, 1) 

        return x_batch, y_batch 

class AudioDataset(Dataset): 

    def __init__( 

        self, 

        prompts, 

        audio_length_threshold=50000, 

        source_sample_rate=22050, 

        target_sample_rate=44100, 

        output_num_seconds=2, 

    ): 

        self.source_sample_rate = source_sample_rate 

        self.target_sample_rate = target_sample_rate 

        self.output_num_seconds = int(output_num_seconds) 

        audio_files = self.read_prompts(prompts) 

        audio_files, audio_lengths = self.get_audio_lengths_and_filter_by_sr(audio_files) 

        self.audio_files, self.audio_lengths = self.filter_out_audio_by_length( 

            audio_files, audio_lengths, audio_length_threshold 
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        ) 

    def read_prompts(self, prompts): 

        audio_files = [] 

        with open(prompts, "r") as prompts: 

            data = prompts.readlines() 

        for point in data: 

            point = point.strip() 

            audio_files.append(point.split("|")) 

        return audio_files 

    def get_audio_lengths_and_filter_by_sr(self, audio_files): 

        audio_lengths = [] 

        audio_files = [] 

        print("Reading audio files and filtering by sr") 

        for audio_paths in tqdm(audio_files): 

            data_44, sr_44 = sf.read(audio_paths[0]) 

            data_44_len = len(data_44) 

            data_22, sr_22 = sf.read(audio_paths[1]) 

            data_22_len = len(data_44) 

            audio_files.append(audio_paths) 

            audio_lengths.append(len(data_44)) 

        return audio_files, audio_lengths 

    def filter_out_audio_by_length(self, audio_files, audio_lengths, min_audio_length): 

        idxs = range(len(audio_files)) 

        filtered_audio_files = [] 

        filtered_audio_length = [] 

        for idx in idxs: 

            filtered_audio_files.append(audio_files[idx]) 

            filtered_audio_length.append(audio_lengths[idx]) 

        return filtered_audio_files, filtered_audio_length 

    def __getitem__(self, idx): 

        start_ind = random.randint( 

            0, 

            self.audio_lengths[idx] 

            - (self.output_num_seconds + 1) * self.target_sample_rate, 

        ) 

        source_num_samples = self.output_num_seconds * self.source_sample_rate 

        target_num_samples = self.output_num_seconds * self.target_sample_rate 
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        if start_ind % 2 != 0: 

            start_ind += 1 

        target_audio = sf.read( 

            self.audio_files[idx][0], frames=target_num_samples, start=start_ind 

        )[0] 

        source_audio, sr = sf.read(self.audio_files[idx][1], frames=source_num_samples, start=start_ind // 2) 

        source_audio = resampy.resample( 

            source_audio, sr, self.target_sample_rate, filter="kaiser_fast" 

        ) 

        return (source_audio, target_audio) 

 

    def __len__(self): 

        return len(self.audio_files) 

 

def save_checkpoint(model, model_optimizer, iteration, epoch, output_dir): 

    filepath = output_dir+'/checkpoint_'+str(iteration)+'.pt' 

    print("Saving model and optimizer state at iteration {} to {}".format( 

          iteration, filepath)) 

    torch.save({'model': model.state_dict(), 

                'optimizer': model_optimizer.state_dict(), 

                'iteration': iteration, 

                'epoch':epoch}, filepath) 

 

def load_checkpoint(model, optimizer, checkpoint_path): 

    checkpoint = torch.load(checkpoint_path, map_location='cpu') 

    iteration = checkpoint['iteration'] 

    model.load_state_dict(checkpoint['model']) 

    optimizer.load_state_dict(checkpoint['optimizer']) 

    epoch = checkpoint['epoch'] 

    return model, optimizer, iteration, epoch 

 

 

def validate(model, mseloss, stft_loss, writer, epoch, iteration): 

    collater = Collater() 

    val_set = AudioDataset( 

            data_config['val_prompts'] 

        ) 
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    val_loader = DataLoader(val_set, num_workers=data_config["num_workers"], 

                            shuffle=False, 

                            collate_fn=collater, 

                            batch_size=train_config["batch_size"] // 2) 

    model.eval() 

    gen_mse  = 0.0 

    gen_mag  = 0.0 

    gen_sc   = 0.0 

    gen_loss = 0.0 

    with torch.no_grad(): 

        for j in tqdm(range(30)): 

            for i, batch in enumerate(val_loader): 

                x, y = batch 

                x = x.cuda() 

                y = y.cuda() 

                y_gen = model(x) 

                mse = mseloss(y_gen, y) 

                sc_loss, mag_loss = stft_loss(y_gen.squeeze(1), y.squeeze(1)) 

                generator_loss = mse + sc_loss + mag_loss 

                gen_mse += mse.data 

                gen_sc += sc_loss.data 

                gen_mag += mag_loss.data 

                gen_loss += rgenerator_loss.data 

    steps = (j + 1) * (i + 1) 

    gen_mse  = gen_mse  / steps 

    gen_sc   = gen_sc   / steps 

    gen_mag  = gen_mag  / steps 

    gen_loss = gen_loss / steps 

    writer.add_scalar('validation/mse_loss', gen_mse, global_step=epoch) 

    writer.add_scalar('validation/spectral_convergence', gen_sc, global_step=epoch) 

    writer.add_scalar('validation/log_magnitude', gen_mag, global_step=epoch) 

    writer.add_scalar('validation/loss', gen_loss, global_step=epoch) 

    model.train() 

    torch.cuda.empty_cache() 

    print(f"Validation {epoch} finished!") 

 

def train(checkpoint_path): 
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    train_set = AudioDataset( 

            data_config['train_prompts'] 

        ) 

    collater = Collater() 

    train_loader = DataLoader(train_set, num_workers=data_config["num_workers"], 

batch_size=train_config['batch_size'],  collate_fn=collater) 

    model = UNet() 

    model = model.cuda() 

    mseloss = torch.nn.MSELoss() 

    stft_loss = MultiResolutionSTFTLoss() 

    optimizer = Adam(model.parameters(), lr=model_config["lr"], weight_decay=model_config["weight_decay"]) 

    checkpoint_dir = train_config["checkpoint_dir"] 

    from torch.utils.tensorboard import SummaryWriter 

    logs_dir = os.path.join(checkpoint_dir, 'logs') 

    if not os.path.exists(logs_dir): 

        os.makedirs(log_dir) 

    if not os.path.isdir(checkpoint_dir): 

        os.makedirs(checkpoint_dir) 

    writer = SummaryWriter(logs_dir) 

    if checkpoint_path != '': 

        model, optimizer, iteration, epochs = load_checkpoint(model, optimizer, checkpoint_path) 

    else: 

        iteration = 0 

        epochs = 1 

    for epoch in range(epochs, train_config["epochs"]): 

        for repeat in tqdm(range(train_config["data_repeat_times"])): 

            exit = False 

            for batch in train_loader: 

                optimizer.zero_grad() 

                x, y = batch 

                x = x.cuda() 

                y = y.cuda() 

                y_gen = model(x) 

                gen_mse = mseloss(y_gen, y) 

                sc_loss, mag_loss = stft_loss(y_gen.squeeze(1), y.squeeze(1)) 

                generator_loss = model_config["mse_weight"] * gen_mse + sc_loss + mag_loss 
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                generator_loss.backward() 

                optimizer.step() 

                reduced_gen_sc = sc_loss.data 

                reduced_gen_mag = mag_loss.data 

                reduced_gen_mse = gen_mse.data 

                reduced_gen_loss = generator_loss.data 

                writer.add_scalar('train/mse_loss', reduced_gen_mse, global_step=iteration) 

                writer.add_scalar('train/spectral_convergence', reduced_gen_sc, global_step=iteration) 

                writer.add_scalar('train/log_magnitude', reduced_gen_mag, global_step=iteration) 

                writer.add_scalar('train/loss', reduced_gen_loss, global_step=iteration) 

                iteration += 1 

                if iteration % 100 == 0: 

                    print(f"Iteration {iteration} : loss {reduced_gen_loss}   mse {reduced_gen_mse}  spectral convergence 

{reduced_gen_sc}  log magnitude {reduced_gen_mag}\n") 

                if iteration % train_config['checkpoint_it_interval'] == 0: 

                    save_checkpoint(model, optimizer, iteration, epoch, checkpoint_dir) 

                    exit = True 

                    break 

            if exit: 

                validate(model, mseloss, stft_loss, writer, epoch, iteration) 

                break  

if __name__=='__main__': 

    parser = argparse.ArgumentParser() 

    parser.add_argument('-c', '--config', type=str, ='JSON file for configuration') 

    parser.add_argument('--checkpoint', type=str, default='', help='checkpoint_path') 

    args = parser.parse_args() 

    with open(args.config) as f: 

        data = f.read() 

    config = json.loads(data) 

    train_config = config["train"] 

    global data_config 

    data_config = config["data"] 

    global model_config 

    model_config = config["generator"] 

    train(args.checkpoint) 
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