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ANALYSIS OF THE SHAPE OF WAVE PACKETS IN THE “HALF SPACE–LAYER–LAYER 
WITH RIGID LID " THREE-LAYER HYDRODYNAMIC SYSTEM  

O. V. Avramenko1, 2  and  M. V. Lunyova1 UDC 532.59 

We study the process of propagation of weakly nonlinear wave packets on the contact surfaces of a “half 
space–layer–layer with rigid lid” hydrodynamic system by the method of multiscale expansions.  The 
solutions of the weakly nonlinear problem are obtained in the second approximation.  The condition of 
solvability of this problem is established.  For each frequency of the wave packet, we construct the do-
mains of sign constancy for the coefficient for the second harmonic on the bottom and top contact sur-
faces.  The regularities of wave formation are determined depending on the geometric and physical pa-
rameters of the hydrodynamic system.  We also analyze the plots of the shapes of deviations of the bot-
tom and top contact surfaces typical of the constructed domains of sign-constancy of the coefficient.  
We discover the domains where the waves become  ∪ -  and   ∩ -shaped and reveal a significant influ-
ence of wavelength on the shapes of deviations of the contact surfaces of the analyzed hydrodynamic 
system. 

Keywords: wave packet, hydrodynamic system, shape of deviation of the contact surface. 

Introduction 

The investigation of the wave processes running in fluids, their general properties and characteristics at-
tracts significant attention of numerous researchers.  At present, we observe the extensive development and ap-
plication of the packages of symbolic calculus.  These packages enable us to study various classes of problems 
that were not analyzed earlier due to the awkwardness of transformations and significant difficulties encountered 
in getting the analytic results.  As an example, we can mention the class of problems in which the effect of sur-
face tension, which significantly affects the gravity-capillary waves, is taken into account.  We now present a 
brief survey of the general state-of-the-art of the problem of propagation of waves in layered hydrodynamic sys-
tems. 

In [12], the authors present a survey of the properties of internal solitary waves and the transient processes 
of generation and evolution of these waves from the viewpoint of weakly nonlinear theory.  The authors ana-
lyzed the processes of instability of waves that are important for oceanography and cannot be described by using 
other models.  The cited study also revealed the existence of strongly nonlinear waves whose properties can be 
explained only with the help of nonlinear models.  

The results of investigation of internal interface waves in three-layer stratified incompressible fluids per-
formed with the help of the singular method of perturbations are also of great interest [10].  On the basis of the 
theory of small-amplitude waves, the asymptotic solutions of the third order were obtained for the velocity po-
tentials and the Stokes wave solutions of the third order were constructed.  It was discovered that the wave ve-
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locity depends not only on the wave number and the thickness of each layer but also on the wave amplitude. 
In [11], the authors considered a model of potential flow of axisymmetric waves propagating along a ferro-

fluid jet.  This model is of significant interest because the mechanism of stabilization allows the motion of ax-
isymmetric magnetohydrodynamic solitons and, moreover, the presented numerical scheme enables one to find 
steady periodic and generalized solutions for solitary waves.  It was also established that the space of solutions 
of this model is similar to the space of solutions of the classical problem for the two-dimensional gravity-
capillary waves.  

A quite comprehensive analysis of the wave motion can be found in [14], where the method of multiscale 
expansions (up to the third order) was used to deduce the evolutionary Schrödinger equation for the wave mo-
tion on the contact surface of two fluid half spaces.  A similar problem of propagation of wave packets in a “lay-
er–half space” system was studied by I. T. Selezov and O. V. Avramenko [4] who analyzed the problem of sta-
bility of wave packets by the method of multiscale expansions up to the third order [5, 7].  In addition, various 
aspects of the problem of evolution of nonlinear wave packets up to the fourth approximation were analyzed in 
[2], whereas the evolutionary equation for the wave numbers close to the critical value was deduced in [6].   

In [13], the problem of propagation of internal wave packets was investigated for “layer with rigid lid–
layer–layer with rigid bottom” three-layer hydrodynamic systems.  In particular, a weakly nonlinear model of 
interacting waves propagating along the contact surfaces was developed, the first three linear approximations 
were obtained, and the conditions of propagation of waves along the contact surfaces were established.    

The problem of propagation of wave packets in “layer with lid–layer with rigid bottom” hydrodynamic sys-
tems in the presence of surface tension was studied by the method of multiscale expansions.  The evolutionary 
equation in the form of a nonlinear Schrödinger equation was constructed in [8] for the envelope on the contact 
surface of two fluid layers.  On the basis of this equation, the analysis of dependence of the shape of wave pack-
et on the physical parameters of the system was carried out in [3]. 

In [1, 9], the authors studied the problem of propagation of waves in a “half space–layer–layer with rigid 
lid” three-layer hydrodynamic system.  Three linear approximations were constructed for a weakly nonlinear 
problem and a dispersion equation was obtained.  The roots of this equation were found and the analysis of their 
dependence on the physical and geometric parameters of the system was carried out.  The dependences of the 
amplitudes of waves running along the contact surfaces on the thickness of the top layer and on the wave num-
ber were analyzed, and the structure of wave motions was described.   

In the present work, we continue the investigation of the weakly nonlinear problem of propagation of wave 
packets in three-layer hydrodynamic systems.  We establish the condition of solvability, obtain the solutions in 
the second approximation and analyze the dependence of the shapes of wave packets moving on the bottom and 
top contact surfaces on the physical and geometric parameters of the system.  

1.  Statement of the Problem and the Procedure of Its Solution 

We consider the problem of propagation of two-dimensional wave packets with finite amplitudes on the sur-
face of the fluid half space   Ω1 = {(x, z) : x < ∞ ,  −∞ ≤ z < 0}  with density  ρ1 ,  the fluid layer  Ω2  =  {(x, z): 
x < ∞ ,  0 ≤ z ≤ h2}  with density  ρ2 ,  and the top fluid layer   Ω3 = {(x, z) : x < ∞ ,  h2 ≤ z ≤ h2 + h3}  with den-

sity  ρ3 .     
The layers  Ω1  and  Ω2   are separated by the contact surface  z = η1(x, t),  the layers  Ω2   and  Ω3   are 

separated by the contact surface  z = h2 + η2(x, t),  and the layer  Ω3  is bounded by a rigid lid  z = h2 + h3.  In 
our calculations, we take into account the forces of surface tension on the contact surfaces.  The gravity force is 
directed to the negative direction of the z -axis, and the fluids are incompressible (Fig. 1). 
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Fig. 1

The mathematical statement of the problem takes the following form: 

– equation of motion 

 
∂2ϕ j

∂x2
+

∂2ϕ j

∂z2
= 0     in    Ω j ,    j = 1, 2, 3; (1) 

 – kinematic conditions on the contact surfaces 

 ∂η1
∂t

−
∂ϕ j

∂z
= −∂η1

∂x
∂ϕ j

∂x
     for    z = η1(x, t),    j = 1, 2 , (2) 

 ∂η2
∂t

−
∂ϕ j

∂z
= −∂η2

∂x
∂ϕ j

∂x
     for    z = h2 + η2(x, t),    j = 2, 3; (3) 

 – dynamic conditions on the contact surfaces 

 ρ1
∂ϕ1
∂t

− ρ2
∂ϕ2
∂t

+ g(ρ1 −ρ2 )η1 + 0.5ρ1(∇ϕ1)
2   

  – 0.5ρ2(∇ϕ2 )
2  – T1 1+ ∂η1

∂x
⎛
⎝

⎞
⎠

2⎡

⎣
⎢

⎤

⎦
⎥
−3/2

∂2η1
∂x2

= 0     for    z = η1(x, t), (4) 

 ρ2
∂ϕ2
∂t

− ρ3
∂ϕ3
∂t

+ g(ρ2 −ρ3)(h2 + η2 ) + 0.5ρ2(∇ϕ2 )
2  

  – 0.5ρ3(∇ϕ3)
2 T2 1+ ∂η2

∂x
⎛
⎝

⎞
⎠

2⎡

⎣
⎢

⎤

⎦
⎥
−3/2

∂2η2
∂x2

= 0     for    z = h2 + η2(x, t); (5) 
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 – condition of impermeability on the rigid lid 

 ∂ϕ3
∂z

= 0     for    z = h2 + h3; (6) 

 – condition of vanishing at infinity  

 ∇ϕ1 → 0     for    z → −∞ . (7) 

Here,  ϕ j ,  j = 1, 2, 3,  are the velocity potentials in  Ω j ;  T1  and  T2   are the coefficients of surface tension on 
the contact surfaces, respectively; and  g   is the gravitational acceleration.   

The dimensionless quantities are introduced by using the characteristic length  H  equal to the thickness of 
the middle layer  h2 ,  characteristic wavelength  L ,  maximum deviation  a   of the contact surface between the 

layers  Ω2   and  Ω3,  characteristic time  L
gH

,  and density of the bottom layer  ρ1 .  In this case, the dimen-

sionless coefficient of surface tension takes the form  T1,2 = L2ρ1gT1,2
∗   (in what follows, the asterisk is omitted).  

To determine the approximate solution of problem (1)–(7) for small amplitudes, we use the method of mul-
tiscale expansions up to the third order [14]: 

 ηi (x, t) = αn−1ηin (x0, x1, x2, t0, t1, t2 )
n=1

3

∑ + Ο(α3),    i = 1, 2 , (8) 

 ϕ j (x, z, t) = αn−1ϕ jn (x0, x1, x2, z, t0, t1, t2 )
n=1

3

∑ + Ο(α3),    j = 1, 2, 3, (9) 

where  xk = αkx   and  tk = αkt ,  k = 1, 2, 3. 
As a result of the substitution of relations (8) and (9) in Eqs. (1)–(7), we get three linear problems for the 

unknown functions  η11 ,  η21,  ϕ11,  ϕ21 ,  ϕ31,  η12 ,  η22 ,  ϕ12 ,  ϕ22 ,  ϕ32,  η13 ,  η23,  ϕ13,  ϕ23,  and  ϕ33  
[1].   

In what follows, we present the statement of the problem of propagation of waves in a three-layer “half 
space–layer–layer with rigid lid” hydrodynamic system in the second approximation and find its solutions. 

2.  Solutions and the Condition of Solvability of the Problem in the Second Approximation 

In the first approximation, the solutions of the problem are as follows [1]:  

 
 
ϕ11 = − iω

k
(Aeiθ+kz − Ae−iθ+kz),  

 
 
ϕ21 = − iω

k
{(ρ1ω2 − kρ1 + kρ2 −T1k

3) cosh k(h2 − z)  
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  + ρ2ω
2⎡⎣ cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3)  

  × 
 
sinh kh2⎤⎦ sinh kz} Aeiθ − Ae−iθ

ρ2ω
2 cosh kh2

,  

 ϕ31 = iω
k

ρ2ω
2⎡⎣{ cosh kh2 + (ρ1ω

2 − kρ1  

  + kρ2 −T1k
3) sinh kh2⎤⎦ cosh k(h2 + h3 − z)} Aeiθ − Ae−iθ

ρ2ω
2 sinh kh3

,  

 η11 = Aeiθ + Ae−iθ ,  

 
 
η21 = ρ2ω

2 cosh kh2 +(ρ1ω
2 − kρ1 + kρ2 −T1k

3)sinh kh2⎡⎣ ⎤⎦
Aeiθ + Ae−iθ

ρ2ω
2 ,  

where k is the wave number,  ω   is the frequency of a wave packet,  θ = kx +ωt ,  and  A(ρ1, ρ2, ρ3, k, h2, h3, T1, 
T2, ω)  is the envelope of a wave packet on the bottom contact surface.   

The problem in the first approximation was studied in [1], where the authors established the condition of 
propagation of waves with two pairs of frequencies in the wave packet  ±ω1  and  ±ω2 ,  ω1 < ω2 . 

By using the presented solutions of the problem in the first approximation, the condition of impermeability 
of the rigid lid (6), and the condition of vanishing at infinity (7), we represent the problem in the second approx-
imation [9] in the following form:  

  ϕ12,x0x0 + ϕ12,zz = −2ωA, x1e
iθ+kz + c.c.    in    Ω1, (10) 

 
 
ϕ22,x0x0 + ϕ22,zz = −2ω{(ρ1ω2 − kρ1 + kρ2 −T1k

3) cosh k(h2 − z)  

  +  [ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3)  

  × 
  
sinh kh2 ]sinh kz}

A,x1e
iθ

ρ2ω
2 cosh kh2

+ c.c.    in    Ω2 , (11) 

 
  
ϕ32,x0x0 + ϕ32,zz = 2ω{[ρ2ω

2 cosh kh2 + (ρ1ω
2 − kρ1 + kρ2 −T1k

3) sinh kh2 ]  

  × 
 
cosh k(h2 + h3 − z)}

A,x1e
iθ

ρ2ω
2 sinh kh3

+ c.c.    in    Ω3, (12) 
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 η12,t0 + ϕ12,z = −A,t1e
iθ − 2i k ω A2e2iθ + c.c.    at    z = 0, (13) 

 
 
η12, t0 + ϕ22,z = −A, t1e

iθ − 2i kω(ρ1ω2 − kρ1 + kρ2 −T1k
3) A2e2iθ

ρ2ω
2 + c.c.    at    z = 0, (14) 

 η22, t0 + ϕ22,z = − ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

A, t1e
iθ

ρ2ω
2   

  – 2i kω ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦{   

  × (ρ1ω
2 − kρ1 + kρ2 −T1k

3)  

  + ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

2
  

  × sinh kh2 } A2e2iθ

ρ2
2ω4 cosh kh2

+ c.c.    at    z = h2 , (15) 

 η22, t0 + ϕ32,z = − ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

A, t1e
iθ

ρ2ω
2   

  + 2ikω ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 − T1k
3) sinh kh2⎡⎣ ⎤⎦{ 2

  

  × cosh kh3} A2e2iθ

ρ 2
2ω4 sinh kh3

+ c.c.    at    z = h2 , (16) 

 ρ1ϕ12, t0 − ρ2ϕ22, t0 + (ρ1 −ρ2 )η12 − T1η12, x0x0   

  =  0.5 ρ2
(ρ1ω

2 − kρ1 + kρ2 −T1k
3)2

ρ2
2ω2 −ρ2ω

2⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ AA   

   + iρ1ω
2 − i(ρ1ω

2 − kρ1 + kρ2 −T1k
3)⎡⎣ ⎤⎦

A, t1
ωk

− 2iT1kA, x1
⎡
⎣⎢

⎤
⎦⎥
eiθ  

   + (ρ1 −ρ2 )ω
2 + 0.5ρ2 (ρ1ω

2⎛
⎝⎜

− kρ1
⎡

⎣
⎢   
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   + kρ2 −T1k
3)2 1

ρ2
2ω2 −ω2⎞

⎠⎟
⎤

⎦
⎥ A

2e2iθ + c.c.    at    z = 0 , (17) 

 ρ2ϕ22, t0 − ρ3ϕ32, t0 + (ρ2 −ρ3)η22 − T2η22, x0x0   

  =  0.5 ρ2 −ρ3( ) ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

2 1
ρ2
2ω2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

  

   + ρ3 ρ2ω
2(⎡⎣⎛⎝⎜ cosh kh2 + (ρ1ω

2 − kρ1  

   + kρ2 −T1k
3) sinh kh2) cosh kh3⎤⎦ 1

ρ2ω sinh kh3
⎞
⎠⎟
2

  

   – ρ2 (ρ1ω
2 − kρ1 + kρ2 −T1k

3)⎡⎣
⎛
⎝⎜

+ ρ2ω
2( cosh kh2   

   + (ρ1ω
2 − kρ1 + kρ2 −T1k

3) sinh kh2) sinh kh2⎤⎦   

   × 1
ρ2ω cosh kh2

⎞
⎠⎟
2⎤

⎦
⎥
⎥
AA + i ρ2 (ρ1ω

2 − kρ1 + kρ2 −T1k
3)⎡⎣

⎛
⎝⎜
⎡
⎣⎢

  

   + ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2( )  

   × 
 
sinh kh2⎤⎦

1
ρ2ωk cosh kh2

+ i ρ3 ρ2ω
2(⎡⎣ cosh kh2 + (ρ1ω

2  

   – kρ1 + kρ2 −T1k
3) sinh kh2) cosh kh3⎤⎦

1
ρ2ωk sinh kh3

⎞
⎠⎟
A, t1   

   + −(iρ2h2 + iρ3h3) ρ2ω
2 cosh kh2 + ρ1ω

2((⎡⎣( − kρ1 + kρ2   

   – T1k
3) sinh kh2)⎤⎦ 1

ρ2k
+ 2iT2k ρ2ω

2(⎡⎣ cosh kh2 + (ρ1ω
2   

   – 
 
kρ1 + kρ2 −T1k

3⎞

⎠⎟
sinh kh2

⎞

⎠⎟
⎤

⎦
⎥
⎥

1
ρ2ω

2
⎞

⎠⎟
A, x1

⎤

⎦
⎥
⎥
eiθ  
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   + (1.5ρ2 −1.5ρ3) ρ2ω
2⎡⎣

⎡
⎣⎢

cosh kh2 + (ρ1ω
2 − kρ1 + kρ2 −T1k

3)  

   × sinh kh2]
2 1
ρ2
2ω2 − 0.5ρ2 ρ2ω

2⎡⎣ sinh kh2 + (ρ1ω
2 − kρ1  

   + kρ2 −T1k
3) cosh kh2⎤⎦

2 1
ρ2
2ω2 + 0.5ρ3 ρ2ω

2(⎡⎣ cosh kh2   

   + (ρ1ω
2 − kρ1 + kρ2 −T1k

3) sinh kh2) cosh kh3⎤⎦
2

  

   × 1
(ρ2ω sinh kh3)

2
⎤

⎦
⎥ A

2e2iθ + c.c.    at    z = h2. (18) 

Here and in what follows, by  c.c.,  we denote the quantities complex conjugate to the preceding terms and   

 A, x1  = ∂A
∂x1

    and    A, t1 = ∂A
∂t1

   

are the partial derivatives of the envelope of wave packet on the bottom contact surface  z = η1(x, t).  
We seek the solution of system (10)–(18) in the form 

 ϕ12 = B10
(2) + B11

(2) ⋅ z( ) eiθ+kz + B20
(2)e2iθ+2kz + c.c.,  

 ϕ22 = C10
(2) +C11

(2) ⋅ z( ) eiθ+k(h2−z) + C20
(2)e2iθ+2k(h2−z)  

  + D10
(2) + D11

(2) ⋅ z( ) eiθ−k(h2−z) + D20
(2)e2iθ−2k(h2−z) + c.c.,  

 ϕ32 = E10
(2) cosh k(h2 + h3 − z)eiθ  

  + E11
(2)(h2 + h3 − z) sinh k(h2 + h3 − z) eiθ   

  + E20
(2) cosh 2k(h2 + h3 − z) e2iθ + c.c.,  (19) 

 η12 = F0
(2) + F1

(2)eiθ + F2
(2)e2iθ + c.c.,  

 η22 = G0
(2) + G1

(2)eiθ + G2
(2)e2iθ + c.c., 
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where  Bij
(2) ,  Cij

(2),  Dij
(2),  Eij

(2),  Fi
(2),  and  Gi

(2)   are unknown coefficients. 

Substituting relations (19) for the unknown functions and the solutions of the problem in the first approxi-
mation [9] in Eqs. (10)–(12), we can easily determine the coefficients  B11

(2) ,  C11
(2),  D11

(2),  and  E11
(2).   

Further, substituting (19) in conditions (13)–(18) and equating the coefficients of the same functions, we ar-
rive at two independent systems of equations for the remaining unknown coefficients.  Thus, equating the ex-
pressions at the function  eiθ,  we obtain a system of equations for the coefficients  B10

(2) ,  C10
(2),  D10

(2),  E10
(2) ,  

F1
(2),  and  G1

(2) :  

 −kB10
(2) − iωF1

(2) = b1,  

 kekh2C10
(2) − ke−kh2D10

(2) − iωF1
(2) = b2 ,  

 kC10
(2) − kD10

(2) − iωG1
(2) = b3,  

   (20) 

 k sinh kh3E10
(2) − iωG1

(2) = b4 ,   

 −iρ1ωB10
(2) + iρ2ω ekh2C10

(2) + iρ2ω e−kh2D10
(2) + (ρ1 −ρ2 +T1k

2 )F1
(2) = b5 ,   

 −iρ2ωC10
(2) − iρ2ωD10

(2) + iρ3ω cosh kh3E10
(2) + (ρ2 −ρ3 +T2k

2 )G10
(2) = b6  

with the free terms 

 b1 = −A,t1 − ω
k
A,x1 ,  

 b2 = −A,t1 − ω
k
A,x1 ,  

 b3 = − ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

A,t1
ρ2ω

2   

  – ρ2ω
2⎡⎣ (kh2 sinh kh2 + cosh kh2 )+ (ρ1ω

2 − kρ1 + kρ2 −T1k
3)  

  × (kh2 cosh kh2 + sinh kh2 )⎤⎦
A,x1
kρ2ω

,  

 b4 = − (ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2 )⎡⎣ ⎤⎦

A,t1
ρ2ω

2    
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  – ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦   

  × 1+ kh3 cosh kh3
sinh kh3

⎛
⎝⎜

⎞
⎠⎟

A,x1
kρ2ω

,  

 b5 = −i ρ1ω
2 − (ρ1ω

2 − kρ1 + kρ2 −T1k
3)⎡⎣ ⎤⎦

A,t1
kω

+ 2iT1kA,x1 ,  

 b6 = iρ2(ρ1ω
2 − kρ1 + kρ2 −T1k

3)
ρ2ω

2k cosh kh2
+ iρ2

sinh kh2
cosh kh2

+ iρ3
cosh kh3
sinh kh3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

  

  × ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

1
ρ2ω

2k
⎞
⎠⎟
A,t1   

  + 2iT2k ρ2ω
2⎡⎣

⎛
⎝⎜

cosh kh2 + (ρ1ω
2 − kρ1  

  + kρ2 −T1k
3) sinh kh2⎤⎦

1
ρ2ω

2 − i(ρ2h2 +ρ3h3)  

  × ρ2ω
2 cosh kh2 + (ρ1ω

2 − kρ1 + kρ2 −T1k
3) sinh kh2⎡⎣ ⎤⎦

1
kρ2

⎞
⎠⎟
A,x1 .  

System (20) is inconsistent.  For  F1
(2) = 0,  the condition of its solvability takes the following form: 

 

−k 0 0 0 b1 0

0 kekh2 −ke−kh2 0 b2 0
0 k −k 0 b3 −iω
0 0 0 k sinh kh3 b4 −iω

−iρ1ω iρ2ω ekh2 iρ2ω e−kh2 0 b5 0

0 −iρ2ω −iρ2ω iρ3ω cosh kh3 b6 ρ2 −ρ3 +T2k
2

= 0 .  

Separating the terms with the derivatives  A,x1   and  A,t1   of the envelope of the wave packet, we rewrite the 
condition of solvability in the following form: 

 V1A,t1 + V2A,x1 = 0 , (21) 

where  Vi ,  i = 1, 2 ,  are coefficients depending on  ρ1,  ρ2 ,  ρ3 ,  k ,  h2,  h3,  T1,  T2 ,  and  ω .   
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If condition (21) is satisfied, then the system for the coefficients  B10
(2),  C10

(2),  D10
(2),  E10

(2),  and  G1
(2)  takes 

the form  

 −kB10
(2) = b1,  

 kekh2C10
(2) − ke− kh2D10

(2) = b2 ,  

 kC10
(2) − kD10

(2) − iωG1
(2) = b3,  

 k sinh kh3E10
(2) − iωG1

(2) = b4 ,  

 −iρ2ωC10
(2) − iρ2ωD10

(2) + iρ3ω cosh kh3E10
(2) + (ρ2 −ρ3 +T2k

2 )G10
(2) = b6  

and is solvable.  Its solution was obtained in the package of symbolic calculations and we do not present it here. 
The system for the coefficients  B20

(2),  C20
(2),  D20

(2),  E20
(2),  F2

(2),  and  G2
(2)  obtained  by equating the coeffi-

cients of  e2iθ   is consistent.  The unknown coefficients are also found in the package of symbolic calculations.   
We consider the last two conditions (17) and (18).  Equating the coefficients of  e0,  we get the values of the 

coefficients  F0   and  G0 :  

 F0 = 0.5
ρ1 −ρ2

−ρ2 (ρ1ω
2 − kρ1 + kρ2 −T1k

3)2 1
ρ2
2ω2

⎛
⎝⎜

⎞
⎠⎟
+ρ2ω

2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
AA ,  

 G0 = 0.5
ρ2 −ρ3

−(ρ2 −ρ3) ρ2ω
2(⎛

⎝⎜
⎛
⎝⎜

⎛
⎝⎜

cosh kh2 + (ρ1ω
2 − kρ1 + kρ2 −T1k

3)  

  × sinh kh2)2 1
ρ2
2ω2

⎞
⎠⎟
− ρ3 ρ2ω

2(⎛
⎝⎜

cosh kh2 + (ρ1ω
2   

  – 
 
kρ1 + kρ2 −T1k

3) sinh kh2) cosh kh3 1
ρ2ω sinh kh3

⎞
⎠⎟
2

  

  + ρ2 (ρ1ω
2 − kρ1 + kρ2 −T1k

3) + ρ2ω
2⎡⎣{⎛⎝⎜ cosh kh2  

  + (ρ1ω
2 − kρ1 + kρ2 −T1k

3) sinh kh2⎤⎦ sinh kh2}
 

1
ρ2ω cosh kh2

⎞
⎠⎟
2⎞

⎠
⎟
⎞

⎠
⎟ AA .  

Thus, the solutions in the second approximation take the form: 
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 η12 = F0AA + Λ1A
2e2iθ + c.c.,   

 η22 = G0AA + S1A,t1e
iθ + S2A,x1e

iθ + Λ2A
2e2iθ + c.c., 

 ϕ12 = 1
k

A,t1 +
ω
k

1− kz( ) A,x1
⎛
⎝

⎞
⎠ eiθ+kz + iω

k
S3A

2e2(iθ+kz) + c.c.,  (22) 

 ϕ22 = 1
k

S41A,t1 +
ω
k
(S42 + S43z)A,x1

⎛
⎝

⎞
⎠ eiθek(h2−z)  

  + 1
k

S44A,t1 +
ω
k
(S45 + S46z)A,x1

⎛
⎝

⎞
⎠ eiθe−k(h2−z)  

  + iω
k

S47e
2k(h2−z) + S48e

−2k(h2−z)( ) A2e2iθ + c.c.,  

 
 
ϕ32 = 1

k
S51 cosh k(h2 + h3 − z)A,t1 +

ω
k

⎛
⎝ (S52 cosh k(h2 + h3 − z)   

  + 
 
S53(h2 + h3 − z) sinh k(h2 + h3 − z))A,x1

⎞
⎠⎟ e

iθ   

  + iω
k

S54 cosh 2k(h2 + h3 − z)A2e2iθ + c.c., 

where  S1,  S2,  S3,  S41,  S42 ,  S43,  S44 ,  S45,  S46 ,  S47 ,  S48 ,  S51,  S52,  S53,  S54,  Λ1,  and  Λ2  are coeffi-
cients depending on  ρ1 ,  ρ2 ,  ρ3 ,  k ,  h2 ,  h3,  T1,  T2 ,  and  ω .  In this case, in view of the conditions of solva-
bility (21), we get  S1 = S2 = 0.  

3.  Analysis of the Shape of Wave Packet on the Contact Surfaces  

To determine the shape of deviations of the contact surfaces, it is important to know the signs of the coeffi-
cients  Λ1  and  Λ2  of the other harmonics on the surfaces.   By using the expressions for the first [1] and se-
cond (22) approximations to the deviations of contact surfaces, we construct the domains of sign constancy for  
Λ1  and  Λ2  and analyze the shapes of waves on the contact surfaces.  The analysis is performed for a fixed 
value of density of the bottom layer  ρ1 = 1.   

We consider the following two cases: 

Case 1.  Assume that the densities of the bottom half space  ρ1  and the middle layer  ρ2   are fixed:  ρ1 = 1  
and  ρ2 = 0.9,  respectively, and that the density of the top layer  ρ3   varies from  0  to  ρ2 .  The other parame-
ters of the system are as follows:  0 ≤ k ≤ 3.5,  h2 = 1,  and  T1 = T2 = 0.   
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 (a)  h3 = 0.5  (b)  h3 =1 

 
(c)  h3 = 3 

Fig. 2.  Domains of sign constancy for Λ1 in the plane (ρ3, k) .

1.1.  Shape of Deviation of the Bottom Contact Surface.  The shape of deviation of the bottom contact sur-
face  η1(x, t)   depends on the sign of the coefficient  Λ1  of the second harmonic.  The analysis of the sign of  
Λ1  shows that the curves  L1  and  L2   along which  Λ1  is equal to zero exist in the plane  (ρ3, k ).  Moreover, 
there exists a curve  L3  in the vicinity of which  Λ1  takes arbitrarily large values.  In passing through the curves  
L1,  L2,  and  L3,  the sign of the coefficient  Λ1  changes into the opposite.    

As follows from Fig. 2, the curves  L1,  L2,  and  L3  split the plane  (ρ3, k)   into five domains.  In the do-
mains  S1,  S3,  and  S5 ,  where the coefficient  Λ1  of the second harmonic takes positive values, the waves 
have sharp crests and blunt troughs.  In the remaining two domains  S2   and  S4 ,  where  Λ1 < 0,  we observe 
waves with blunt crests and sharp troughs.   

It was discovered that the area of the domain  S2  in which long waves are  ∩-shaped increases with the 
thickness of the top layer  h3  (Figs. 2a, b).  The accumulated results also demonstrate that the domains  S1  and  
S3  are separated by a narrow part of the domain  S2 ;  moreover, a narrow part of the domain  S3  is located be-
tween the domains  S2   and  S4   (Fig. 2c).  
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 (a)  k = 1.2  (b)  k = 2.5 

Fig. 3.  Plots of the shape of deviations of the inner bottom contact surface  η1(x, t).   

In Fig. 2c, we mark the points  A   and  B   for which the plots of the shape of deviations of the bottom con-
tact surface  η1(x, t)   are presented in Fig. 3.  These points are chosen to analyze the changes in the shape of 
waves in passing the curve  L3.  In the vicinity of the curve  L3,  the value of  Λ1  changes its sign from positive 
to negative and takes arbitrarily large values.  In this case, we observe a significant influence of the second har-
monic on the shape of the contact surface.  The plots of the shape of deviations of the bottom contact surface  
η1(x, t)   (Fig. 3) are shown for the frequency of the wave packet  ω1  and the following parameters of the sys-
tem:  ρ1 = 1,  ρ2 = 0.9,  ρ3 = 0.85,  h2 = 1,  h3 = 3,  T1 = T2 = 0,  a = 0.15,  and  α = 0.1  at the point  A  
(Fig. 3a), where  k = 1.2 ,  and at the point  B  (Fig. 3b), where  k = 2.5  (the positions of these points are shown 
in Fig. 2c). 

As follows from Fig. 3a, the amplitude of the first harmonic is larger than the amplitude of the second har-
monic and the period of the second harmonic is twice smaller.  Therefore, the overlapping of the minimum of 
the first harmonic and the maximum of the second harmonic results in the effect of blunting of the troughs on 
the contact surface.  In the case of overlapping of the maximum of the first harmonic and the next maximum of 
the second harmonic, we observe the effect of sharpening of the wave crest.  Hence, the deviations of the bottom 
contact surface in the domain  S5   become  ∪-shaped.   

The plot of deviations of the contact surface in Fig. 3b shows the shape of waves in the domain  S4 ,  where  
Λ1  takes negative values.  In this case, we can see the picture in which the effect of overlapping of minima of 
the first and second harmonics results in sharpening of the wave troughs.  The overlapping of the maximum of 
the first harmonic and the next minimum of the second harmonic results in blunting of the wave crests.  Hence, 
the domain  S4   contains  ∩-shaped waves. 

It was also discovered that, within the limits of a single domain, there exists a significant influence of the 
wave number  k   on the amplitudes of harmonics for the same remaining parameters of the system. 

1.2.  Shape of Deviations of the Top Contact Surface.  In Fig. 4, we present the constructed domains of 
sign constancy for the coefficient Λ2,  the frequency of the wave packet ω2, and the following values of the
parameters:  ρ1 = 1,  ρ2 = 0.9,  0 ≤ ρ3 ≤ ρ2,  0 ≤ k ≤ 4.5,  h2 = 1,  and  T1 = T2 = 0.  

As follows from Fig. 4, the curves  L4   and  L5   along which the coefficient  Λ2  is equal to zero decom-
pose the plane  (ρ3, k )  into three domains.  In the domains  S6   and  S8 ,  the coefficient  Λ2  takes positive val-
ues.  In the domain S7 ,  the coefficient  Λ2 < 0 .  In this case, the area of the domain S7 decreases, as the
thickness of the top layer  h3  increases.  We discovered no curves in the vicinities of which  Λ2  may take arbi-
trarily large values. 
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 (a)  h3 = 0.5  (b)  h3 = 1 

 

(c)  h3 = 3 

Fig. 4.  Domains of sign constancy for  Λ2  in the plane (ρ3, k) . 

We construct the plots of deviations of the top contact surface for the following parameters of the system:  
ρ1 = 1,  ρ2 = 0.9,  ρ3 = 0.7,  h2 = 1,  h3 = 3,  T1 = T2 = 0,  a = 0.15,  and  α = 0.1  at the points  C   and  D  (see 
Fig. 4c) for which  k = 0.1  and  k = 3,  respectively.  

As follows from Fig. 5a, in the case where the coefficient  Λ2  takes negative values, we observe the over-
lapping of minima of the first and second harmonics creating the effect of sharpening of the wave troughs.  
Moreover, as a result of overlapping of the maximum of the first harmonic with the next minimum of the second 
harmonic, we observe the effect of blunting of the wave crests.  

In Fig. 5b, we present the case where  Λ2  is positive.  In this case, the overlapping of the maxima of the 
first and second harmonics leads to sharpening of the wave crests.  Moreover, the overlapping of the minimum 
of the first harmonic with the next maximum of the second harmonic results in the effect of blunting of the wave 
troughs.  Hence, the wave has the  ∪-like shape in the domains  S6   and  S8   and the  ∩-like shape in the do-
main  S7 .  
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(a) k = 0.1 (b) k = 3

Fig. 5.  Plots of the shape of deviations of the top inner contact surface  η2(x, t).  

    

 (a)  h3 = 0.5  (b)  h3 = 1 (c)  h3 = 3 

Fig. 6.  Domains of sign constancy for  Λ1  in the plane  (ρ2, k).  

Case 2.  Assume that the density of the bottom half space  ρ1 = 1  and that the density of the top layer  
ρ3 = 0.8.  Suppose that the density of the middle layer  ρ2   varies from  ρ3   to  ρ1 .  The other parameters are as 
follows:  0 ≤ k ≤ 3.5,  h2 = 1,  and  T1 = T2 = 0.   

2.1.  Shape of Deviations of the Bottom Contact Surface.  In Fig. 6, we present the domains of sign con-
stancy for the coefficient  Λ1  of the second harmonic in the bottom contact surface.  The plots are constructed 
for different values of  h3  and the following parameters of the system:  ρ1 = 1,  ρ3 ≤ ρ2 ≤ ρ1,  ρ3 = 0.8,  h2 = 1,  
and  T1 = T2 = 0.   

We revealed the curves  L6 ,  L7 ,  and  L8   decomposing the plane  (ρ2, k )  into five domains.  In passing 
through these curves, the sign of the coefficient  Λ1  of the second harmonic on the bottom contact surface 
changes into the opposite.  In this case, the coefficient  Λ1  is equal to zero along the curves  L7   and  L8   and 
takes arbitrarily large values along the curve  L6 .  In the domains  S9 ,  S11,  and  S13   (where the coefficient  
Λ1 > 0),  the waves are   ∪- shaped, whereas in the domains  S8   and  S10   (where the coefficient  Λ1 < 0),  the 
waves are   ∩- shaped.  
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 (a)  k = 0.9   (b)  k = 1.1 

  

   (c)  k = 3.5  

Fig. 7.  Plots of the shapes of deviations of the bottom contact surface η1(x, t).  

    

 (a)  h3 = 0.5  (b)  h3 = 1 (c)  h3 = 3 

Fig. 8.  Domains of sign constancy for  Λ2   in the plane  (ρ2, k ).  

Note that, as in the already analyzed Case 1 for  Λ1  (see Fig. 2), the thickness of the top layer  h3  affects 
the area of the domain  S10 :  as the thickness of the top layer increases, the area of the domain  S10   increases in 
its part, where the long waves are   ∩-shaped.  We also observe the presence of narrow domains with the differ-
ent signs of the coefficient. 

In Fig. 6a, we marked three points  E ,  F,  and  G   (k = 0.9,  k = 1.1,  k = 3.5,  respectively) for which the 
plots (Fig. 7) of the shapes of deviations of the bottom contact surface  η1(x, t)   are constructed for the follow-
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ing parameters of the system:  ρ1 = 1,  ρ2 = 0.9,  ρ3 = 0.85,  h2 = 1,  h3 = 0.5,  T1 = T2 = 0,  and  a = 0.15.   

The plots of deviations of the bottom contact surface  η1(x, t)   in Figs. 7a, b correspond to the points  E   
and  F   lying in the domains separated by the curve  L6.  The point  E   belongs to the domain  S9,  where the 
coefficient  Λ1  is positive.  Therefore, the waves are  ∪- shaped.  The point  F   belongs to the domain  S12   
(where  Λ1 < 0).  Therefore, the waves are  ∩- shaped.  

The plot of the shape of deviations of the surface presented in Fig. 7c reveals the shape of waves in the   
domain  S11  (where the coefficient  Λ1 > 0)  separated from the domain  S12   by the curve  L7.  Along this 
curve, the value of  Λ1  is equal to zero.  Therefore, we observe the decay of the second harmonic in its neigh-
borhood. 

2.2.  Shape of Deviations of the Top Contact Surface.  In Fig. 8, we show the domains of sign constancy 
for the coefficient  Λ2  of the second harmonic on the top contact surface, for the frequency of the wave packet  
ω2  and the following parameters of the system:  ρ1 = 1,  ρ3 = 0.8,  0 ≤ k ≤ 4.5,  h2 = 1,  and  T1 = T2 = 0.   

We observe two curves  L9   and  L10   (along which  Λ2 = 0)  decomposing the plane  (ρ2, k)  into three 
domains.  In the domains where  Λ2  is positive  (S14   and  S16),  the waves are   ∪- shaped.   In the domain  S15 ,  
Λ2  is negative.  Therefore, the waves are  ∩- shaped.  By analogy with Case 1 for the coefficient  Λ2  (Fig. 4), 
the area of the domain  S15   decreases as the thickness of the top layer  h3  increases. 

CONCLUSIONS   

We have studied a weakly nonlinear problem of propagation of wave packets in a “half space–layer–layer 
with rigid lid” system.  By the method of multiscale expansions up to the third order, we have posed the problem 
in the second approximation, established the condition of its solvability, and found its solutions.  For any fre-
quency of the center of wave packet, we constructed the domains of sign constancy for the coefficient of the se-
cond harmonic in the bottom and top contact surfaces.  

The following effects and regularities were discovered: 

 – In the domains of the planes  (ρ2, k)  and  (ρ3, k),  where the coefficients  Λ1  and  Λ2  of the second 
harmonics in the bottom and top contact surfaces, respectively, are positive, the waves take the   ∪-
like shapes.  In the case where  Λ1  and  Λ2  are negative, the waves are   ∩- shaped. 

 – The capillary waves are mostly  ∪-shaped.  In this case, we revealed two narrow domains with  ∩-like 
shapes. 

 – The thickness of the top layer affects the domains with  ∪-like and  ∩-like waves.  In particular, as the 
thickness of the top layer increases, the area of the domain in which the long waves are  ∩-shaped also 
increases, whereas the domains with   ∪-like waves become narrower;  

 – We revealed the domains of vanishing of the second harmonic and the domains in which the second 
harmonic strongly affects the shape of the contact surface. 
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