
Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF KYIV-MOHYLA ACADEMY

Department of Informatics Faculty of Informatics

Euclidean Algorithm for Sound Generation

 Supervisor

Head of the Informatics Department,

associate professor, candidate of physical and mathematical sciences

Horokhovskyi S.S

 (signature)

 “____” __________ 2021 р.

 By student 1st year

Master Degree Program

122 «Computer Science»

Laiko A.V

 “____” __________ 2021 р.

Kyiv 2021

Ministry of Education and Science of Ukraine
NATIONAL UNIVERSITY OF KYIV-MOHYLA ACADEMY

Department of Informatics Faculty of Informatics
CERTIFY

H e a d o f t h e I n f o r m a t i c s
Department, associate professor,
c a n d i d a t e o f p h y s i c a l a n d
mathematical sciences
____________ Horokhovskyi S. S.
 (signature)
„____”_______________2021 р.

PERSONAL ASSIGNMENT
for course work

To student Laiko Artem Volodymyrovych faculty of informatics 1-year master
programme
Thesis «Euclidean Algorithm for Sound Generation»

Output:
Text part content of coursework:
An individual task
Calendar plan
Annotation
Introduction
Chapter 1: Music Theory and Sound Generation
Chapter 2: Euclidean Algorithm
Chapter 3: Euclidean Algorithm for Sound Generation
Chapter 4: Practice
Conclusion
References

Issue date „___” _________ 2021 р. Supervisor _______________
 (signature)
 Task received __________
 (signature)

 2

Thesis: Euclidean Algorithm for Sound Generation
Calendar plan of coursework execution:

Student Laiko A.V.

Supervisor Horokhovskyi S.S.

 “______”______________

№ Stage name Deadline Note

1. Assignment received 29.10.2020

2. Literature lookup 30.10.2020

3. Introduction into resources and following
development of a draft intro

09.11.2020

4. Introduction part written 11.11.2020

5. Familiarising with Music theory relationship to
math and further development of the first chapter

17.12.2020

6. Lookup for Euclidean algorithm development
history and possible ways of application

8.01.2021

7. Testing the Euclidean algorithm for rhythm
generation

25.02.2021

8. Further development of second and third chapters 29.02.2021

9. Testing and development of VST3 plugin using
the Euclidean algorithm as wave shaping helper

17.03.2020

10. Course work amendments according to the
supervisor feedback

15.04.2021

11. Created final presentation and formatted layout
of course work

9.05.2021

12. Presentation of the course work 17.05.2021

 3

ANNOTATION
This course work aims to research possible ways of Euclidean algorithm

application and influence for sound generation process, as well as mathematical

basis of sound and sound waves.

The practice part applies obtained knowledge to develop a VST3 plug-in

for sound wave morphing with the Euclidean algorithm application.

 4

Contents

Annotation 4 ...

Introduction 7 ...

1. Music Theory and Sound Generation 8 ..

1.1 Pitches and Notes 8 ..

1.2 Scales and Modes 9 ..

1.3 Consonance and dissonance 10 ..

1.4 Rhythm 10 ..

1.5 Sound Generation 11 ...
1.5.1 Sound waves 11 ..
1.5.2 Sound waves and Pitch 12 ..
1.5.3 Basic waveforms 13 ..

2. The Euclidian algorithm 15 ...

2.1 Algorithm description 15 ..

2.2 The Euclidean algorithm application for rhythm generation 16 ..

3. The Euclidean algorithm for Sound Generation 18 ...

3.1 Waveshaping with the Euclidean algorithm 18 ..

3.2 The Euclidean rhythm as oscillation pattern 19 ...

3.3 The Euclidean rhythm oscillation for FX control 20 ..
3.3.1 FX types 21 ...
3.3.2 FX controls 22 ..

3.4 Macros mapping with the Euclidean rhythm 22 ..

4. Practice 23 ..

4.1 Tools 23 ...

4.2 Main abstractions and understanding of DSP pipeline 24 ..

4.3 Plug-in interface 24 ...

4.4 Plug-in behaviour 25 ...

 5

4.5 Plug-in application 25 ...

Conclusion 28 ...

References 29...

 6

INTRODUCTION
The Euclidian algorithm has been known by humanity for more than

2000 years so far, and its further development, together with understanding the

ways it could be used, lead to many new inventions and improvements in

various sciences.

 In 2005 the application of the Euclidean algorithm found its way in

music, especially, explaining and generating traditional musical rhythms, using

the simple concept of finding the greatest common divisor.

 7

1. MUSIC THEORY AND SOUND GENERATION

To get an understanding of what music theory is and how sounds could

be generated, let’s first start with the definition of sound. Sound is a vibration of

any surface that creates an acoustic wave through a medium which usually is

air, but could be any liquid or even soil. We as human beings are given the

ability to decode the changes in air pressure in a wide range from 20 Hz up to

20 kHz, and depending on oscillation speed recognise those as continuous

sounds.

1.1 Pitches and Notes
The frequency of the sound wave is called «pitch», some of those

pitches are more likely to be caught by our sensory system and we know them

as notes. Those notes in western music notation have names as follows:

Table 1. Notes with names and base frequencies.

Each of those notes has multiple pitches, which repeat themselves and

called «octaves». The process of calculating the frequency of a certain note in a

certain octave could be described as:

Note Name Base Frequency

A La 13.75
B Si 15.43
C Do 8.17
D Re 9.17
E Mi 10.3
F Fa 10.9
G Sol 12.24

 8

Where x is the pitch of the note in the desired octave, and n is a base

frequency for this note, and b is the desired octave. For example, note A (la)

fourth octave will have a frequency of 440 Hz.

1.2 Scales and Modes
After defining what notes are, we able to assume, that they can be

arranged in a variety of systems, with intervals in frequency and relations.

Those arrangement systems called «scales». In western music theory octave is

usually consists of 12 tones and named «chromatic scale». Two notes (tones)

usually have a middle tone which is half step away from them and can be

named either «sharp» or «flat». Creating different patterns among the set of 12

tones, arranging them by whole-tone or semi-tone creates different scales,

which utilising same notes, but having different relation between them creates

distinct sound.

Picture 1. D major key with steps between notes.

Each scale that is used for a composition is usually determined by a key

signature, which helps to define all the pitches that define a certain scale.

During the course of composition set of pitches could change and introduce new

x = n × 2b+1

 9

one’s, that are not part of the initial scale, this called «transposition».

Sometimes transposition used as an artistic function, but sometimes to

accommodate composition for a certain instrument or artist, which is not able to

perform a piece of music in the original key.

1.3 Consonance and dissonance
Consonance and dissonance are the qualities based on the subjective

judgement of intervals between tones. They define relations inside and outside

the key. Each note in key can be marked as a «step» and depending on the

interval if it’s a whole-step or half-step between two neighbour notes,

dissonance or consonance will be heard.

Consonant interval is the one, that stable and gives a subjective feeling

of calmness and completion. On the other hand, the dissonant interval doesn’t

have such stability and wants to be resolved back into the consonant interval.

Those two fundamentals are used in any music to create tension and release,

which creates movement inside of a composition.

1.4 Rhythm
The music consists of several pitches, which have relations and also

keys to which those pitches belong, and any given composition also has rhythm.

Rhythm is the movement of the musical piece and consists of sets of sounds and

silences during the course of composition.

Time measurement of a complete music composition begins with the

definition of BPM (beats per minute). As well as having the definition of BPM

the time signature for the music piece is important as well because it defines

how many pulses the bar consist of. Common time signatures are next:

•
4
4

 10

•

•

•

Those time signatures could be read as 4 occurrences of quarter-note in

one bar, which means, that one bar can have 2 4th notes and 4 8th notes, and in

this way, using different note-length together with certain time-signature allows

for the composer to achieve unique sounding of a music piece, due to variation

in rhythmical patterns and change in pulses.

1.5 Sound Generation
All the traits of a sound and knowledge of music theory based on the

basic concepts of what sound is, how it could be generated, and the physics

behind each sonic component in music.

1.5.1 Sound waves

Sounds are the collection of waves that create unique sounding,

depending on the shape of the wave. Each wave could be treated as a function,

the basic sound wave available is , because of its repetitive shape and

predictable period of oscillation it creates a plain buzzing sound, without any

sub-harmonies.

5
4
6
8
7
8

sin(x)

 11

Picture 2. Sin(x) waveform.

Having a rough look at the function, we can determine x axis as

Time measurement, and y axis amplitude as the change in pressure. Change in

pressure determines by the difference of average local pressure in a given

medium and sound wave influence on it.

1.5.2 Sound waves and Pitch

Pitch in human perception is being perceived as a «low» or «high»

sound and represents the repetitive nature of the vibration that defines the

sound. When it comes to the relation between pitch and frequency of a sound

wave, it is being defined as the slowest vibration in the given sound and usually

called a fundamental harmonic, for complex sounds pitch perception can be

different, due to individual perception.

Pitch is being decoded by the human brain in the pre-conscious

examination of sound waves and balance in frequencies and loudness between

them. Most of the attention usually being drawn by recognised harmonics that

build the sound.

When multiple sound waves persist in given composition, they will sum

up and the resulting sound will consist of the unified and continuous sound

wave, because of the wave summing, some of the instruments that were used to

produce the sound might be cancelled by the difference in phases of given

sound waves. Usually, when this occurs, the loudest or «highest» pitch will

dominate over the weaker ones and will cancel most or all of the characteristics

that are created by weak pitch.

sin(x)

 12

1.5.3 Basic waveforms

Most of the instruments and ways to create the sound are exploiting 4

basic waveforms, which usually are oscillated using the basic waveform of

.

Those waveforms are next:

Table 2. Waveforms and formulas.

As we see in the given table, the basic sine function could be used as

part of the Fourier series, to modulate any other given waveform. In that way,

sin(x)

Name Image Formula
Sine

wave

Square

wave

Triangle

wave

Sawtooth

wave

y(t) = sin(t)

y(t) =
∞

∑
n=1

sin ((2n) t)
2n

y(t) =
4
π

∞

∑
k=1

sin (2π(2k − 1)f t)
2k − 1

y(t) =
2a
π

arcsin (sin (2π
p

t))

 13

many modern digital instruments reproduce sound, by taking the base sine

waveform and modulating the waveform that is defined by a certain shape. Due

to the modulation nature, the sine wave introduces harmonics, which are the

glitches in a waveform that are not initially present in a given shape, but

acquired due to modulation accuracy. Usually, harmonics are used as a

technique to bring new sounding to the instrument and morph the sound.

 14

2. THE EUCLIDIAN ALGORITHM
The Euclidian algorithm is the algorithm first described by the ancient

Greek mathematician Euclid in his work «Elements». This algorithm is used to

calculate the greater common divisor of two natural numbers. The result of its

work is the largest natural number, which divides two numbers without remain.

This algorithm can also be applied for three or more numbers, in this

case GCD will be the product of prime factors common to all the numbers:

2.1 Algorithm description
Euclidean algorithms work in a series of steps in which the output of the

step is used as an input for the next one. Let’s assume that i is an integer that

will count steps taken by the algorithm, which starts with zero value, where the

initial step corresponds to and the following steps are .

Steps start with two remainders and with a value . Due to

the requirement of the algorithm to steadily decrease with each step, the

remainder has to be less than , with the goal for i-th iteration to discover

the quotient and remainder that will satisfy the following equation:

And that following clause is true: .

Initial step has both remainders and equal to given a and

b, but next step remainders equal b and the remainder of the first step.

Due to the fact, that remainders decrease with every step, but cannot be

, the last remainder has to be zero and it will be treated as a stopping

gcd(a, b, c) = gcd(a, gcd(b, c)) = gcd(gcd(a, b), c) = gcd(gcd(a, c), b)

i = 0 i = i + 1

ri−1 ri−2 > 0

ri−1 ri−2

qi ri

ri−2 = qiri−1 + ri

0 ≤ ri < ri−1

i = 0 ri−2 ri−1

i = 1 r0

< 0 rN

 15

point for the algorithm. Final remainder is being used as a result and

defined as the greatest common divisor of a and b.

2.2 The Euclidean algorithm application for rhythm generation
The Euclidean algorithm can be used as the way to define rhythm in

music composition by creating patterns for hits and silences in a given size, as

been described in the paper «The Euclidean algorithm Generates Traditional

Musical Rhythms» by Godfried Toussaint.

The idea is simple to define the musical size for cycle rhythm and place

the pulses of music (tones that will introduce most tension) by application of

Euclidean algorithm. In this case, number of pulses has to be less than number

of steps in cycle. Let’s assume we want to place the 5 pulses over the size of 16

steps, this will give us musical size combining and , and by application of

Euclidean algorithm we get resulting pattern like this (1 is moment of pulse, and

0 is moment of silence):

1 step: [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]

2 step: [1 0] [1 0] [1 0] [1 0] [1 0] [0] [0] [0] [0] [0] [0]

3 step: [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [0]

4 step: [1 0 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0]

Final result: [1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0]

We can put this series of pulses onto the stave and we will have next

pattern:

Picture 3. Euclidean rhythm generated over E(5, 16).

≠ 0 rN−1

4
4

3
4

 16

This rhythm combines multiple sizes, with 4/4 part over the first bar, and

the following 3 bars are creating unstable movement due to stepping over 3/4

size.

In general, the Euclidean algorithm could be in hand for application in

many parts of the sound generation process, coming first from the definition of

pulses inside music composition, but in the same fashion, it applies for more

complex signal tuning for oscillators and LFOs. Those ways of application and

examples are described in the following chapters.

 17

3. THE EUCLIDEAN ALGORITHM FOR SOUND GENERATION
Given the ability of the Euclidean algorithm to generate rhythm patterns

for music pieces, the same approach can be utilised to create the sound waves

and sound automation with pulses (zones of high pressure) defined by the

resulting value from the Euclidean algorithm.

3.1 Waveshaping with the Euclidean algorithm
Apart from creating the rhythm for percussion elements and actual

movements in sound, we can take the same approach of defining stepping of 1

and 0 over a given number of pulses, to develop the pulse patterns inside of the

wave shapes, transforming them into more complex sounds.

We can take the basic LFO (low-frequency oscillator) and use it as our

envelope during the process of waveshaping. The base function for wave

folding will be one of 4 waveforms we’ve defined previously (sine, square,

triangle, sawtooth). From there we will take peak values of those functions and

 18

Picture 4. Waveform oscillation shaping with Euclidean algorithm

treat them as true or 1 in our euclidean algorithm result, and 0 values as the

release ones. The number of LFO pulses per second could be defined by the size

of note and number passed in Euclidean algorithm function, in this example,

we’re passing 16 pulses with 5 «hits» over one second of LFO oscillation.

The parameters that being morphed by the LFO are waveform position,

meaning the wave shape transform from sine to sawtooth, with the 1 position as

sawtooth and 0 as a sine wave. Oscillation takes the steady decline back from

sawtooth to sine wave triggering shapes such as triangle and square and cause

of this, sound becomes dirtier and could be used as composer choice to bring

new characteristic to the defined synthesiser.

3.2 The Euclidean rhythm as oscillation pattern
We’ve taken a look at the Euclidean algorithm oscillation through LFO

to change sonic characteristics of a generated waveform, but we proceed further

with Euclidean rhythm application to blend multiple patterns from separate

 19

Picture 5. Function 1 with E(5,16) and sawtooth OSC waveform.

Picture 6. Function 2 with E(7, 12) and triangle OSC waveform.

LFOs and with such approach push the boundaries of possible creativity,

designing waveshapes that will be more complex, compared to 4 basic ones.

By re-arranging the behaviour of the oscillation function in the

synthesiser editor, we can achieve a blending of multiple functions and their

separate influence on the resulting sound wave.

On the two pictures (5 and 6) we’re able to see the oscillation patterns

with peak points being defined by 1’s in resulting Euclidean output, and decay

parts as 0.

Setting those oscillators output for wave shape change, allows us to

achieve unique, and non-basic waveform, which is being modulated using the

Fourier series, adding more sub-harmonies to the resulting sound.

3.3 The Euclidean rhythm oscillation for FX control
The beauty of LFO oscillators is in their simplicity, it generates the

signal value that is being modulated to the given function form, and can be used

not only for wave shaping and morphing waveforms but also as an FX controls

unit, making possible the control of FX values like cutoff for filtering sound or

resonance and panning with ease.

 20

Picture 7. Resulting waveform with blended OSC outputs.

3.3.1 FX types

Each synthesiser that creates sound based on OSC and waveshaping,

depends on few key elements.

First, is the oscillator itself, and the wave function that is being used as a

sound form. The oscillator passes the value at a given moment throughout the

pipeline, which goes through filters or other effects, that can drastically change

the resulting waveform.

The second is the FX. FX is short for «effect» and usually means a

single function for sound wave morphing, it could be a filter, cutting

frequencies above or below a certain threshold.

Apart from the common filter, there exist other FX, they are as follows:

• LowPass Gate – the function that ensures that all the frequencies

below the defined threshold will be cut off with a given intensity

• Phaser – the function that inverts phase momentum in the given

frequency range, allowing a switch to phase.

• Comb – morphs frequencies(cutting or boosting them) based on the

provided waveform or multiple waveforms and given the intensity of the FX

that has to be applied.

 21

Picture 8. FX Cutoff being oscillated by Function 2.

3.3.2 FX controls

Each FX has a set of controls that define the level of «presence» of the

effect on the resulting waveform, custom controls specifically for FX, but

usually the range of frequencies impacted by the FX and amount of signal that

is being mixed into resulting one.

3.4 Macros mapping with the Euclidean rhythm
Macros in any synthesiser usually mean the quick access knob or slider,

which provides numeric value which can be used to pass value to different

parameters of the sound generator.

Macros could be automated with an LFO oscillator in the same fashion

as any other digital parameter of a defined synthesiser, and this creates an

additional layer of creativity, making possible the development of rhythmic

patterns that influence the sound generation pipeline.

 22

4. PRACTICE
The practice part is dedicated to the development of the VST3 plugin for

any host DAW(digital audio workstation) which will implement the synthesiser

where sound waves are being generated with Euclidean algorithm stepping.

4.1 Tools
For plugin development author decided to take the JUCE framework

written in C++, which defines the abstractions for DSP (digital signal

processing), such as input and output channels, MIDI messages capturing and

oscillation signal generation. Additional library Maximilian that provides

additional DSP abstractions and oscillator engine classes was in use too.

As a host DAW has used Logic Pro X software, this audio workstation

allows integration of the plugin into the sound generation pipeline, and captures

the output signal, as part of the recording.

Apart from shaping sound waves inside of the custom-made plugin,

another VST Pigments were used to test and compare possible output, and

compare wave shaping quality to the one developed in this course work.

Picture 9. JUCE Plug-in Host used for plug-in debug.

 23

For debugging purposes the environment provided by JUCE were used,

it allows to customise signal and messages that are being sent over the plugin

pipeline, but also generates MIDI signal.

4.2 Main abstractions and understanding of DSP pipeline
Any existing VST3 plug-in integrates into the host DAW application as a

middle-man program, that receives the audio signal from DAW, does the

calculation of a received buffer and outputs signal with introduced changes.

For further development of this plugin, the author decided to take a path

with separate abstraction for the Euclidean rhythm generation, which will be

triggered each time the function processBlock by VST3 processor will be called.

In this case, the parameters which could be defined by knobs for size and

number of pulses are sent to the euclid() function alongside the current step of

the oscillator, to receive value based on the stepping.

JUCE framework came in hand with supporting types for oscillator

signal generation. It provides pulses required for buffer synchronisation as well

as the ability to utilise oscillator as LFO for more granular tuning and precision

in the calculation.

4.3 Plug-in interface
Plug-in interface requirements are as follows:

• Simple controls for the Euclidean rhythm generator

• Less obstructive and confusing elements

• Defined presets for quick-start work

• Number approximation control for sound quality control

Based on those requirements the control surface of the plugin was

created and tested.

 24

4.4 Plug-in behaviour
The developed plug-in has predictable behaviour with controls for

Euclidean rhythm generation, which define the number of steps and beats in a

given sequence, outputting the resulting pattern in binary form, together with

controls for BPM sync either from the host (in this case DAW) or manually

defining one. Apart from controls of Euclidean rhythm generator, mix controls

persist as well, they represent the amount of «wet» signal (a signal that has been

impacted by plugin processing) is being mixed into an output signal and «dry»

signal (a signal that has been initially sent to the plugin).

4.5 Plug-in application
Developed plugin, was used to process the synthesiser signal, and the

result of processing saved in processed.mp3 file attached with other sources for

this course work, the clean example provided too.

As well as sonic examples the spectrogram for both clean and processed

examples provided below, where we able to see, how in the same pice, the

peaks of high frequencies are correlated with defined pattern (for examples the

rhythm of E(5, 16) and E(7, 12) were used).

 25

Picture 10. Plugin interface with stepping.

 26

Picture 11. Spectrogram of the clean signal.

Picture 12. Spectrogram of the processed signal.

Due to the waveshape phase change, with two different rhythms defined,

we are able to observe, the overall high-frequency range increase, with peaks

located at Euclidean algorithm 1’s location. This behaviour was expected, and

the sound blending gives an additional level of creativity for music production.

 27

CONCLUSION
This course work gave an ability to test author knowledge in different

fields, such as music theory, digital signal processing and the mathematical

basis of music. Given the example of sound generation that uses Euclidean

algorithm as the main source for rhythmical and waves folding development,

helped to understand the nature and physics of the sound better and combined

with practice plug-in for digital signal processing.

As well, plug-in development experience leveraged and tested the

knowledge of C++ language and frameworks such as JUCE. The time spent

playing with different settings for the Euclidean plug-in gave a positive

experience and showed new ways for sound production, that was not known by

the author before.

 28

REFERENCES
1. Godfried Toussaint, «The Euclidean Algorithm Generates Traditional

Musical Rhythms», 2005

2. Cogan Robert, «Sonic Design The Nature of Sound and Music», 1976

3. David Byrne, «How Music Works», 2012

4. Shah Saloni, «An Exploration of the Relationship between Mathematics

and Music», 2010

5. Jonathan M. Blackledge, «Digital Signal Processing: Mathematic and

Computational Methods, Software Development and Applications», 2006

6. Olson, Harry F., «Music, physics and engineering», 1967

7. Arturia Pigments User Manual [https://downloads.arturia.net/products/

pigments/manual/pigments_Manual_2_0_EN.pdf]

8. JUCE documentation [https://docs.juce.com/master/index.html]

9. Maximilian DSP library [https://github.com/micknoise/Maximilian/]

 29

	Annotation
	Introduction
	Music Theory and Sound Generation
	1.1 Pitches and Notes
	1.2 Scales and Modes
	1.3 Consonance and dissonance
	1.4 Rhythm
	1.5 Sound Generation
	1.5.1 Sound waves
	1.5.2 Sound waves and Pitch
	1.5.3 Basic waveforms

	2. The Euclidian algorithm
	2.1 Algorithm description
	2.2 The Euclidean algorithm application for rhythm generation

	3. The Euclidean algorithm for Sound Generation
	3.1 Waveshaping with the Euclidean algorithm
	3.2 The Euclidean rhythm as oscillation pattern
	3.3 The Euclidean rhythm oscillation for FX control
	3.3.1 FX types
	3.3.2 FX controls

	3.4 Macros mapping with the Euclidean rhythm

	4. Practice
	4.1 Tools
	4.2 Main abstractions and understanding of DSP pipeline
	4.3 Plug-in interface
	4.4 Plug-in behaviour
	4.5 Plug-in application

	Conclusion
	References

